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ABSTRACT

Motivation: Image non-uniformity (NU) refers to systematic, slowly

varying spatial gradients in images that result in a bias that can

affect all downstream image processing, quantification and statistical

analysis steps. Image NU is poorly modeled in the field of high-content

screening (HCS), however, such that current conventional correction

algorithms may be either inappropriate for HCS or fail to take advan-

tage of the information available in HCS image data.

Results: A novel image NU bias correction algorithm, termed intensity

quantile estimation and mapping (IQEM), is described. The algorithm

estimates the full non-linear form of the image NU bias by mapping

pixel intensities to a reference intensity quantile function. IQEM ac-

counts for the variation in NU bias over broad cell intensity ranges

and data acquisition times, both of which are characteristic of HCS

image datasets. Validation of the method, using simulated and HCS

microtubule polymerization screen images, is presented. Two require-

ments of IQEM are that the dataset consists of large numbers of

images acquired under identical conditions and that cells are distrib-

uted with no within-image spatial preference.

Availability and implementation: MATLAB function files are available

at http://nadon-mugqic.mcgill.ca/.
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1 INTRODUCTION

The effectiveness of high-content screening (HCS) depends

critically on data processing and analysis techniques that are

appropriate to its unique technologies and data formats

(Carpenter, 2007; Kozak et al., 2009; Miron and Nadon, 2006;

Niederlein et al., 2009; Soleilhac et al., 2010; Wollman and

Stuurman, 2007). In particular, image preprocessing, which rep-

resents a conditioning or preparation of the image data, is an

often overlooked but essential step (Hill et al., 2008; Zhou and

Wong, 2008). Image non-uniformity (NU) is a spatially varying

bias that is intrinsic to all image-based biological datasets (Jones

et al., 2008; Lindblad and Bengtsson, 2001; Model and

Burkhardt, 2001; Russ, 2002; Tomazevic et al., 2002). The

quality of image NU bias correction, which occurs during the

preprocessing stage, can affect the validity of all subsequent data

analysis steps which include image quantification and statistical

inference. In particular, the methods implemented in these steps

usually presuppose that the incoming image data are free of bias.
Image NU produces a bias in the pixel intensities across

images, which causes objects of interest and their surrounding

background to appear spuriously brighter or darker depending

on their spatial location (e.g. Figure 1a; Lindblad and Bengtsson,

2001, Figure 10; Russ, 2002, Figures 45 and 51). This can create

difficulties in the identification of consistent thresholds that dis-

tinguish objects of interest from background and, as a result,

reduce the accuracy of their segmentation. Bias and variability

are also induced in measured cell metrics which depend on both

the pixel intensities and the segmentation step. Reduced quality

in cell metric data reduces the sensitivity and specificity of hit

identification which typically relies on treatment-control com-

parisons of cell-metric-derived statistics (Fenistein et al., 2008).

Cell classification accuracy (e.g. Loo et al., 2007) will also be di-

minished if the classification criteria depend on pixel intensity in

any way. The within-image spatial variation in cell inten-

sity caused by image NU bias also introduces spurious hetero-

geneity between cells which can obscure the existence of real,

biologically based cell subpopulations, a topic that has gained

recent interest and pertinence (Loo et al., 2009; Slack et al., 2008;

Snijder et al., 2009). In a particular, striking example of the

impact of NU bias, Jones et al. (2008) show how the separation

of the G1- and M-phase peaks in a cell-cycle classification ana-

lysis is obscured by the uncorrected image NU bias. Further

discussion of the impact of image NU on image analysis and

inference can be found in Lindblad and Bengtsson (2001),

Model and Burkhardt (2001), Russ (2002), Tomazevic et al.
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(2002) and Waters (2009); discussions specific to an HCS context

can be found in Carpenter et al. (2006) and Jones et al. (2008).
In the field of HCS, however, the nature of this bias, its impact

on subsequent analyses and appropriate correction methods are

often poorly understood or overlooked, which leads to the choice

of suboptimal correction methods. For example, a large number

of HCS studies make use of background subtraction type algo-

rithms (such as the ‘rolling ball’) which, despite providing visu-

ally appealing results, does not correct the higher cell foreground

intensities whose quantification is of paramount interest in HCS

data analysis. Multiplicative correction and calibration-based

methods also have limitations, since HCS assays typically com-

prise extreme ranges of cellular intensities (e.g. Figure 2) and are

also susceptible to instrumental drift effects. In general, various

pre-existing NU bias correction methods and models developed

for low-throughput microscopy, which may be either inappro-

priate for HCS or fail to take advantage of the additional infor-

mation available in high-throughput contexts, have been the

methods of choice for HCS studies.
We present the intensity quantile estimation and mapping

(IQEM) algorithm, a novel image NU correction method that

makes use of the ‘asymptotic spatial homogeneity’ property

found in large throughput (HCS) datasets (c.f. Section 3.1.1

and Supplementary Material Appendix B). (The method is not

applicable to the correction of individual images acquired in a

low throughput setting). The method accounts for characteristics

and analysis objectives of HCS which include (1) large image

datasets that comprise extremely diverse ranges of a priori un-

known cell phenotypes and thus intensity levels; (2) image acqui-

sition times that can extend over days and which lead to

instrumental biases or drifts that can vary with experimental

‘batch’ and (3) the need for multiple inter-image and inter-plate

statistical comparisons over large numbers of images, and the

critical importance of controlling the error rates in the resultant

hit detection. Concepts of image NU bias and limitations of

existing correction methods used in HCS are first described, fol-

lowed by a theoretical description and practical implementation

of the IQEM method. Finally, validation tests using simulated

image datasets as well as empirical HCS assay images acquired

from a multiparametric assay on microtubule polymerization

status (c.f. Supplementary Material Appendix A and Vassal

et al., 2006) are shown.

2 THEORY

2.1 Mathematical formulation of image NU bias

The general mathematical formulation for the effect of image

NU is

Imeas x, yð Þij¼ fx, y Iobj x, yð Þij

� �
, ð1Þ

where Imeas x, yð Þij denotes the measured image intensity corres-

ponding to spatial coordinates x, y for the ith image and jth plate

or experimental batch. Iobj x, yð Þij denotes the ‘actual’, unbiased

intensity of the object (e.g. fluorescent cells) under measurement.

fx, y is a function that transforms the object intensities and rep-

resents the distortion bias effect of the image NU; the subscript

Fig. 1. Representative (1028� 1300 pixel) images of the same field taken from the multiparametric assay on microtubule polymerization status; the Cy3

channel (Exc535–Em620nm) is shown. Cells have been treated with colchicine and exhibit an extremely low-intensity (relative to control), depolymerized

phenotype (c.f. also Figure 2b and Supplementary Material Appendix A). All images have been clipped between the 10th and 75th intensity percentiles

which greatly brightens the cell intensities, but permits the NU bias effect at low intensities to become visually apparent. (a) An uncorrected image in

which the slowly varying, parabolic, low-intensity background NU is evident in the spaces between the cells; a NU bias at higher intensities that affects

the cells also exists but is less easily discerned. (b) The result of a multiplicative-only (intensity-independent) correction is shown. This correction works

well for brighter cells, but results in a highly inaccurate removal that augments the low-intensity NU bias. (c) The corrected image after application of the

IQEM algorithm, which removes the NU bias at all intensity quantiles

Fig. 2. Uncorrected samples of HeLa cells (Cy3 channel) from the

high-content multiparametric assay of microtubule polymerization

status are shown. A sample of typical cells from a DMSO control well

is depicted in (a); cells treated with the depolymerizing agent colchicine,

representing a low intensity ‘hit’ well, are shown in (b) on an intensity

scale that is expanded by 10�
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x, y indicates the spatial dependence of the transformation func-

tion. Equation 1 shows that the NU distortion bias represents a

mapping of object intensities to measured intensities, specific to

each spatial (pixel) location. The objective of NU correction al-

gorithms is to estimate the inverse of the image NU function f�1x, y

so that the object intensity can be recovered from the measured

intensity:

Iobjðx, yÞij ¼ f�1x, yðImeasðx, yÞijÞ: ð2Þ

It can be shown that a non-linear transformation function of

intensity can also be expressed as an intensity-dependent multi-

plicative factor (c.f. Supplementary Material Appendix C). This

leads to a conceptually useful alternative expression to Equation

(1) for the effect of image NU:

Imeas x, yð Þij¼M x, y, Iobj
� �

j
�Iobj x, yð Þij, ð3Þ

where M is the spatially dependent multiplicative factor that

represents the NU bias effect unique to each intensity.

2.2 Description of existing NU correction methods used in

HCS

Background subtraction, multiplicative correction and calibra-

tion methods are the three most frequently used NU correction

methods in HCS. In these (as well as most other) NU correction

methods, a linear approximation to Equation 1 is used:

Imeas x, yð Þij�M x, yð Þj�Iobj x, yð ÞijþA x, yð Þj, ð4Þ

where M x, yð Þj and A x, yð Þj are multiplicative and additive fac-

tors that describe the effect of the NU bias. A primary advantage

of this simplified model is that the estimation of the two

intensity-independent factors M and A is much more tractable

than the estimation of the general non-linear function fx, y Iobsð Þj.

2.2.1 Background subtraction methods In this class of meth-
ods, the image NU is modelled as a purely additive or back-

ground component. (The ‘rolling ball’ algorithm described in

Sternberg (1983) and implemented in the ImageJ software

(Rasband, 1997–2011) provides an example.) Its correction

thus consists of the estimation of A x, yð Þj and its subsequent

subtraction from the measured image intensities. Using

Equation 4, it can be seen that the corrected image intensities

(Icorr) will have the following form:

Icorr x, yð Þij ¼ Imeasðx, yÞij � Aðx, yÞj

¼M x, yð Þj�Iobj x, yð Þij:
ð5Þ

It is evident from Equation 5 that despite the removal of the

spatially non-uniform additive component, the cell image inten-

sities remain spatially distorted due to the multiplicative factor

M x, yð Þj, which in general is non-negligible. As a consequence, a

spatial bias in intensity will continue to exist in the corrected

images. Many HCS studies nevertheless make use of only a back-

ground subtraction type method for the removal of image NU. It

is possible that the visual appeal of removing background noise

from images and the relative straightforwardness of the algo-

rithms contribute to the use of this approach. Supplementary

Material Appendix D provides simulation studies and further

detailed discussion on the relative performance of background

subtraction methods as compared to a full non-linear correction

of the NU bias using IQEM.

2.2.2 Multiplicative correction methods In multiplicative
correction methods (often termed ‘shading’ or ‘illumination’ cor-

rection), the image NU is assumed to be dominated by the multi-

plicative factor. The CellProfiler software (Carpenter et al., 2006)

for example, provides a multiplicative correction option that uses

the ‘image-averaging’ algorithm. This simplification is justifiable

when the foreground or object image intensities are much

brighter than the background intensities. That is, Iobj x, yð Þ �

A x, yð Þ, and therefore Imeas x, yð Þ �M x, yð Þ � Iobj x, yð Þ. NU cor-

rection proceeds by estimating M x, yð Þ and then dividing the

measured image intensities to estimate the actual image:

Icorr x, yð Þ ¼
Imeas x, yð Þ

M x, yð Þ
� Iobj x, yð Þ: ð6Þ

For most fluorescent microscopy images, the assumption

described by Equation 6 is not unreasonable since the intensity

level of fluorescing cells is generally much brighter than that of

background. HCS assays, however, consist of large-scale image

datasets where libraries of tens of thousands of compounds can

be screened. Within such screens, a small number of wells with

exceedingly low cell intensities may represent critically important

cell populations that exhibit a pronounced response (e.g. apop-

tosis or depolymerization) to treatment (c.f. Figure 2b). For these

cases, Iobj x, yð Þ � A x, yð Þ and application of a multiplicative cor-

rection will not accurately remove the image NU spatial bias and

can in fact lead to an augmentation of the bias at low intensities;

an example is shown in Figure 1b.

2.2.3 Calibration methods Calibration methods measure a
series of reference (i.e. flat field standard) wells prior to imaging

experiments in order to estimate both the additive and multi-

plicative NU components characteristic of the imaging system.

The method is described in a low-throughput microscopy context

by Wolf et al. (2007), Model and Burkhardt (2001) and Souchier

et al. (2003). It is also provided as an option by several commer-

cial HCS image analysis packages including Metamorph�

(Molecular Devices Corp.) and Volocity� (Perkin Elmer, Inc.).

Measurements made on reference wells at a particular point in

time, however, may not be applicable to all of the images mea-

sured over the time course of an HCS assay which can occur over

a period of days or more. Temporal ‘drift’ in the performance of

an imaging system and its components is a well-known phenom-

enon (Jonker et al., 1997; Model and Burkhardt, 2001; Waters,

2009; Wilkinson, 1994) and is caused by factors such as electrical,

thermal and mechanical variations (Dailey et al., 2010). Since

image NU is an artefact produced by imaging instrumentation,

it is highly likely that each experimental batch in an HCS assay

would have its own unique NU bias (Waters, 2009). As a con-

sequence, images generated in later batches would not be accur-

ately corrected via an estimation made at the beginning of the

experiment. Multiple reference measurements interspersed be-

tween or within experimental batches could potentially address

this problem, but would be time-consuming and likely impracti-

cal to implement within the workflow of HCS assays.

In general, image NU consists of both additive and multiplica-

tive components and thus NU correction should not be restricted
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to the estimation and correction of just one or the other. Within

HCS image datasets, substantial spatial NU bias will likely per-

sist in cells that manifest high-/low-intensity phenotypes when

only background subtraction/multiplicative methods are used.

Non-calibration-based correction of both additive and multi-

plicative NU components, however, requires the implementation

of two separate and very different algorithms that each must be

tested, parameterized and validated (e.g. CellProfiler; Carpenter

et al. (2006)); a method that could estimate and correct both

components simultaneously would be preferable.
Moreover, the partitioning of image NU into additive and

multiplicative components is itself an approximation to the gen-

eral, non-linear transformation function. For example, the model

of additive background NU subtracts a single threshold intensity

value at each pixel location, A x, yð Þj, as an approximation to the

low-intensity background NU, which is in fact a spectrum of

intensities. Any dependence in the NU bias function itself

(fx, y :ð Þ) with intensity within this range is thus neglected. In the

model for the multiplicative component of NU, estimation of the

correction factor,M x, yð Þj, is done via a single intensity reference

or mean value (e.g. via calibration or image-averaging methods)

at each pixel location, which presupposes that this factor applies

to the entire range of intensities in the assay. This is an approxi-

mation whose accuracy likely decreases with intensities increas-

ingly different from the reference or mean.
As an alternative, we present the IQEM algorithm that esti-

mates the full non-linear NU function, applies a bias correction

that is appropriate over the full range of intensities present in an

assay and can be implemented in a batch-specific level to account

for possible experimental drift effects.

3 ALGORITHM

3.1 Theoretical description of the IQEM algorithm

3.1.1 Image intensities at each pixel location are statistical

realizations of an intensity quantile function (IQF). Under the
‘asymptotic spatial homogeneity’ condition, the object IQF is
spatially invariant; the measured IQF can be estimated

empirically Consider the distribution of the image intensities
(I x, yð Þij) for a specific pixel location over all images of a particu-

lar experimental batch. This distribution, which comprises all of

the inter-image variations in cell brightness and placement due to

treatment compounds, phenotypes and random variability, can

be described by the IQF Q x, y,Pð Þj (where P denotes the per-

centiles of the quantile function, which range from 0% to 100%)

(c.f. Supplementary Material Appendix E). In well-calibrated

and optimized high-throughput image assays, there should be

no within-image spatial preference for cell brightness or place-

ment that persists systematically over all images. As a result, for

the (unbiased) object intensities, the distribution of possible

inter-image intensities is the same at each pixel location, and

therefore

Qobj x, y,Pobj

� �
j
� Qobj Pobj

� �
j
: ð7Þ

Furthermore, in the (asymptotic) limit as the number of

images (njÞ becomes sufficiently large, the IQF for the measured

image intensities can be estimated empirically from the observed
intensity values over all images in the batch:

lim
nj!1
hQmeas Pjx, yð Þij ¼ Qmeas Pjx, yð Þj:

The above results comprise the ‘asymptotic spatial homo-

geneity’ condition, which is also assumed in multiplicative NU

correction methods that use the image-averaging approach.

(Further details are provided in Supplementary Material

Appendix B.)

3.1.2 The effect of NU bias can be expressed as a mapping of the

intensity quantiles of the object IQF to the measured IQF Both
the measured and object intensities can be associated with the

corresponding percentiles of their IQFs; thus Equation 1 can be

written as Imeas Pmeas, x, yð Þij¼ fx, yðIobjðPobj, x, yÞijÞ. Assuming that

fx, y is monotonic in P and does not scramble the order of the
object intensity quantiles, then Pmeas ¼ Pobj ¼ P, and therefore

Imeas P, x, yð Þij¼ fx, yðIobj P, x, yð ÞijÞ. Thus, it can be seen that the

effect of the image NU is to map object intensities to measured

intensities while preserving the associated percentile. Note that

the IQFs can be thought of as sets of intensity–percentile pairs.

When fx, y is applied to the IQFs, the effect is to map the object
IQF to a measured IQF. Thus,

Qmeas P, x, yð Þj¼ fx, y Qobj Pð Þj
� �

: ð8Þ

Therefore, if both the object intensity and measured IQFs

could be measured, then the NU bias function fx, y and its in-

verse, f�1x, y, could be estimated.

3.1.3 Removal of the effect of NU bias can be achieved by map-
ping the measured intensities at each spatial location to an arbi-
trary reference IQF The object IQF is intrinsically unknowable

since object intensities cannot be measured without NU bias.

Consider, however, an arbitrary reference IQF, Qref Pð Þj. Let
gx, y be the function that monotonically maps the measured

IQF at each pixel location to Qref Pð Þj. Then Qref Pð Þj¼

gx, yðQmeas P, x, yð ÞjÞ and also Iref P, x, yð Þij¼ gx, yðImeas P, x, yð ÞijÞ.

Since both Qmeas P, x, yð Þij and Qref Pð Þj are known, the function

gx, y can be estimated. Application of the mapping transform-
ation gx, y to all the pixels in an image removes the spatial dis-

tortion effect of NU bias since the IQFs of the resulting

transformed image will be spatially invariant and equal to

Qref Pð Þj. Furthermore, as Iref P, x, yð Þij¼ gx, yðfx, yðIobj P, x, yð ÞijÞÞ

and gx, y fx, y :ð Þ
� �

is also a monotonic transformation, the ordering

of the intensity quantiles in the mapped image is unchanged from
those of the unbiased image, Qobj Pð Þj. If Qref Pð Þj is then chosen

from the IQF at the centre of the measured images, its distribu-

tional form should be quite close to that of Qobj Pð Þj (since the

region with least NU distortion is typically close to the image

centre). As a result, mapping of the measured intensities to

Qref Pð Þj will remove the spatially varying NU while preserving
the intensity-based information in Qobj Pð Þj (i.e. image processing

and statistical operations will be either unchanged or minimally

perturbed).

3.2 Implementation of the IQEM algorithm

The IQEM correction is implemented in two stages, as shown in

Figure 3. In the estimation stage (Stage 1), the measured and
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reference IQFs for the image batch of interest are estimated; in

the correction stage (Stage 2), the inverse mapping function gx, y
is applied to correct each of the measured images. Details of the

algorithm are provided below.

Stage 1, Step 1: A spatial grid is chosen for the initial esti-

mation of the intensity-dependent NU variation

across images. In the present study, a grid of 25�

20¼ 500 elements is used for all quantiles and allows

for an adequate fit to the NU variation which in

general varies relatively slowly across the image.

For images that are 1300� 1028 pixels in size, this

results in approximately 52� 50¼ 2600 pixels per

grid element. Note that if the spatial grid is chosen

too finely, the number of pixels per grid element will

be reduced, which may diminish the precision of the

estimated IQFs (c.f. Section F3, Supplementary

Material Appendix F). This step is depicted in

Figure 3a.

Stage 1, Step 2: The pixel intensities within each spatial grid

element and over all images in an experimental batch

are aggregated, and the corresponding IQF is deter-

mined from the quantiles of the resulting distribu-

tion. In the present study, with each experimental

batch consisting of 768 images (corresponding to a

96-well plate with eight image fields per well), each

IQF was formed from the aggregation of

2600� 768¼ 1 996 800 pixels. The measured IQFs

were stored as vectors of intensity values estimated

for a grid of pre-specified percentiles. This step is

depicted in Figure 3b (c.f. also Section F4,

Supplementary Material Appendix F). Examples of

IQFs are shown in Figure 3d.

Stage 1, Step 3: The spatial variation (over grid elements) of

the intensities corresponding to each quantile

represents the empirical estimate of the image NU

distortion bias at that intensity quantile. Profiles of

the spatial NU for several quantiles from

the assay of the current study are shown in

Figure 4d-i. Note the slowly varying, parabolic vari-

ation across the image that is characteristic of image

NU. 2D quadratic functions (of the form,

y ¼ b0 þ b1x
2 þ b2y

2 þ b3xþ b4yþ b5xy) are fitted

using multiple linear regression to the spatial inten-

sity variation for each quantile (Figure 3c; c.f. also

Supplementary Material Appendix G); log trans-

formation of the intensity quantiles was done

before fitting, to stabilize the variance. A vector of

6 coefficients is thus computed for each intensity

quantile, and these permit the fine-scale computation

of the IQFs at each pixel location during the correc-

tion process. Figure 5 shows representative plots of

the b1 (quadratic) coefficient versus percentile, for

the Cy3 channel, for three different replicate plates.

Note the variation in the coefficients (and hence vari-

ation in the shape of the NU bias) with percentile,

illustrating the pertinence of the full non-linear NU

model. Note also that the estimated coefficients vary

smoothly, indicating that the image population sizes

chosen provide adequate precision.

Stage 2, Step 1: For each pixel location in a measured image,

the IQF, Qmeas P, x, yð Þj, is computed over pre-

specified percentiles, using the 2D quadratic func-

tions. Using the estimated IQF, the percentile asso-

ciated with the measured intensity value at each pixel

is determined. This is depicted in Figure 3d.

Stage 2, Step 2: The intensity value in the reference IQF,

Qref Pð Þj, that coincides with the identified percentile

is determined. The pixel intensities in the corrected

image are set (i.e. mapped) to these intensity values,

as depicted in Figure 3d.

Further technical details, sensitivity studies and guidelines

related to the selection of the IQEM algorithm spatial grid

(Stage 1, Step 1), percentile grid (Stage 1, Step 2), the effect of

image number, quadratic fitting (Stage 1, Step 3) and algorithm

run-time are provided in Supplementary Material Appendices F

(Sections F3, F4 and F5), G and H.

Fig. 3. The sequence of steps in the IQEM algorithm is depicted. In Stage

1, the measured and reference IQFs are estimated; in Stage 2, the NU bias

is corrected via a mapping of pixel intensities
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4 VALIDATION

4.1 Validation tests

The objective of the validation tests is to demonstrate two as-

pects: (1) that the algorithm does not alter the pixel intensity of

images when there is no NU present and (2) that the algorithm

can correctly detect and remove a known, imposed image NU

(e.g. Tomazevic et al., 2002). Validation tests of the IQEM

algorithm were first performed on simulated image datasets,

which are described in Sections 4.1.1–4.1.3; further details of

the simulated datasets are provided in Supplementary Material

Appendix I. Next, a ‘self-consistency’ test using real HCS images

is described in Section 4.1.4. Each validation dataset consists of

768 images; each individual image measures 1300� 1028 pixels in

dimension.
The results of each validation consist of profiles of

Qmeas P, x, yð Þj that are estimated and then fitted by the IQEM

algorithm. Profiles are shown at four representative percentiles,

P ¼ 25%, 50%, 75%, 90%, and plotted along the central long

axis of the images. The estimated intensity quantile profiles

were determined via aggregation across images while fitted in-

tensity quantile profiles correspond to the fitted 2D quadratic

function, as described in Section 3.2.

4.1.1 Simulated images contain no NU and consist of random
noise For the simulated images in this validation dataset, each

pixel is assigned an intensity value that is generated from a

positive-constrained normal distribution. This validation test

thus represents the simplest ‘null’ test as there is no spatial uni-

formity in the images nor are there ‘objects’ of any kind. As

shown in Figure 4a, the IQEM algorithm does not detect any

discernible image NU in any of the intensity quantiles.

4.1.2 Simulated images contain no NU and consist of both cells
and noise Next, an image dataset with both noise and simu-

lated cells is tested. Simulated cells consisted of truncated bivari-

ate Gaussian intensity functions, with peak intensity, x� y

correlation, spatial placement and number of cells determined

randomly over ranges of values chosen to mimic real cell

populations (c.f. Supplementary Material Appendix Ib). Both

multiplicative and additive noise were also added. Despite

the much greater spatial heterogeneity produced by the

simulated cells, the IQEM algorithm correctly detects no image

NU, as shown by the flat measured and fitted intensity profiles

(Figure 4b).

4.1.3 Simulated images consist of both cells and noise, with a

non-linear NU imposed A parabolic NU is applied only to
pixel intensities that are higher than the 85th intensity percentile

of the simulated image dataset from Figure 4b. The IQEM al-

gorithm correctly detects and fits this highly non-linear NU bias,

as shown by the flat fitted profiles corresponding to the 25th,

50th and 75th percentiles and the parabolic NU that is detected

for the 90th quantile (Figure 4c). The imposed NU was centred

at 900 units (c.f. Supplementary Material Appendix Ic), which is

also accurately detected.

4.1.4 NU correction of Cy3 channel images of HeLa cells from a
microtubule polymerization assay The IQEM algorithm is

applied to actual images from the multiparametric assay of

microtubule polymerization status (c.f. Supplementary Material

Appendix A, Lafanechere, 2008; Vassal et al., 2006). The tested

image batch was acquired on Day 2 of the assay and consists of

lysed cells acquired on the Cy3 channel (which corresponds to

Tyr-tubulin cell content). The algorithm detects a pronounced

image NU present in all intensity quantiles as shown in

Figure 4d-i. Figure 4d-ii shows profiles of the ratio between

the fitted intensity and that measured at the image centre, for

each quantile. In the ratio profiles, the intensity dependence in

both the shape and curvature of the image NU can be more

clearly seen—while the image NU is approximately symmetric

at lower intensity quantiles, it becomes markedly off-centre at

higher intensity levels.
Absolute validation of NU correction algorithms on real

images is not possible since the actual NU distortion bias is in-

trinsically unknown. However, a self-consistency test is possible

in that a correction algorithm should not detect further NU bias

on images that have already been corrected once. Figure 4d-iii

Fig. 4. The results of the validation tests. Plots (a), (b), (c), (d-i) and (d-iii) show profiles of measured and fitted intensity quantiles, for four representative

percentiles (P¼ 25%, 50%, 75%, 90%), plotted on a log(intensity) scale. The units of intensity vary between image sets and are not shown. (d-ii) Plots of

the intensity ratio at each position along the profile relative to intensity value at the centre of the image, for the image set of (d-i)
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shows the results of such a test, where a second-pass run of the

IQEM algorithm is performed on the images pertaining to
Figure 4d-i. The resulting measured and fitted profiles across

all intensity quantiles are flat, demonstrating that the IQEM al-

gorithm detects no NU bias once the images have been corrected.

Finally, Figures 1a and 1c represent a qualitative, visual val-

idation of the IQEM algorithm performance; the NU bias at

very low intensities that is visually evident in the background

between cells of an uncorrected image (Figure 1a) is no longer

apparent in the corrected image shown in Figure 1c.

4.2 Variability of NU bias according to experimental

batch

As described in Section 2.1, various experimental factors could

cause NU bias to vary over the course of an HCS assay. For the

microtubule depolymerization assay, a single setting was used for

the imaging system throughout the assay. However, while wells

within plates were imaged consecutively and close together in

time (52 s between images), the time interval between plates

was variable and ranged from 10min to more than an hour for
plates acquired on the same day, and more than 16h for con-

secutive plates acquired between different days. For this reason,

the IQEM correction method was applied on a plate-specific

basis. Correction results were then examined for possible

plate-specific variation in the NU bias. Figure 5 shows plots of

a representative fitted quadratic coefficient (b1) to the NU spatial

bias function versus percentile, for the Cy3 channel. Each curve

corresponds to a replicate plate that was measured on one of

three different days. It can be seen that the fitted coefficients

for plate 1 show a systematic deviation from that of the other

two days, demonstrating the phenomenon of batch-specific

image NU bias.

5 DISCUSSION

The IQEM algorithm represents an improvement over existing

methods of image NU correction used in HCS, which are based

on varying degrees of simplification to a linear model approxi-
mation of NU bias. By estimating the full non-linear form of the

NU bias, the IQEM method essentially applies a correction

factor that is appropriate to each intensity quantile in the mea-

sured image. The method is particularly pertinent for the

quantification of extremely low-intensity cell phenotypes, where

multiplicative correction provides an inaccurate fit to the

low-intensity image NU, and where background subtraction

does not adequately model the range of dim intensity levels.

An additional positive feature of the IQEM algorithm is that it

can be applied on a batch-specific basis such that a unique image

NU correction is estimated for each batch.
The IQEM method does require that cell placement and in-

tensity are spatially homogeneous within images (i.e. that the

asymptotic spatial homogeneity condition holds). Assays that

have been properly calibrated, and for which there are no sys-

tematic within-image gradients caused by poor optical focus,

non-uniform fluorophore or reagent concentrations or cell dens-

ity gradients (c.f. Supplementary Materials Section B.5), for

example, should satisfy this condition. The measurement of mul-

tiple fields within wells, a standard practice in HCS, further

ensures that on average, the spatial homogeneity condition will

hold. Although the IQEM algorithm may be more complex than

other conventional methods of NU bias correction, it is readily

automated, and its complexity will not be apparent from the

user’s perspective once integrated into an image-processing

pipeline.
The IQEM algorithm arose during the analysis of the multi-

parametric assay of microtubule status, in which a method of

batch-specific NU bias correction effective for very low-intensity,

depolymerized phenotypes was needed (Lo, 2009). The develop-

ment of IQEM provides an illustration that methods adopted

from low-throughput science may not necessarily be optimal in

a high-throughput context, which involves the analysis of

large-scale image datasets, the testing of compound libraries

that produce extremely diverse ranges of a priori unknown cell

phenotypes/intensities and requires statistical comparisons of

metrics taken across the dataset. It should further be noted

that while high-throughput, high-content datasets provide chal-

lenges to analysis methods (Lang et al., 2006; Soleilhac et al.,

2010; Vizeacoumar et al., 2009; Wollman and Stuurman, 2007),

they also provide opportunities. In the present case for example,

the enormous size of HCS image datasets, which consist of

images that are effectively statistical replicates within each experi-

mental batch, makes possible the existence and estimation of the

inter-image IQF; estimation of this entity in turn makes possible

the inversion of the non-linear NU bias function via a mapping

of intensity quantiles.
In general, HCS systems comprise and integrate many com-

plex state-of-the-art subsystems, ranging over biological experi-

mentation (cell cultures and immunofluorescence staining for

example), automated image acquisition, imaging instrumentation

and image processing, each of which acts to produce or condition

the high-content data, and also to contribute bias and variability

that determine the resultant statistical characteristics of the data

(Soleilhac et al., 2010). By more fully understanding the technical

and technological issues of each subsystem within an HCS work-

flow, it becomes possible to better model the statistical distribu-

tion of the data, and thus to improve the sensitivity and

specificity of statistical inference methods used to draw scientific

conclusions from HCS experiments. The current work represents

a step in this direction, in the context of the image NU bias

produced by HCS imaging instrumentation.
Fig. 5. The fitted quadratic coefficient for the NU bias is shown plotted

versus intensity percentile for three different replicate plates
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