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ABSTRACT

Summary: Non-ribosomal peptide synthetases (NRPSs) are multi-
modular enzymes, which biosynthesize many important peptide
compounds produced by bacteria and fungi. Some studies have
revealed that an individual domain within the NRPSs shows
significant substrate selectivity. The discovery and characterization of
non-ribosomal peptides are of great interest for the biotechnological
industries. We have applied computational mining methods in order
to build a database of NRPSs modules that bind to specific
substrates. We have used this database to build a hidden Markov
model predictor of substrates that bind to a given NRPS.
Availability: The database and the predictor are freely available on
an easy-to-use website at www.nrpssp.com.
Contact: carlos.prieto@unileon.es
Supplementary information: Supplementary data is available at
Bioinformatics online.

Received on July 12, 2011; revised on November 2, 2011; accepted
on November 24, 2011

1 INTRODUCTION
Nonribosomal peptide synthetases (NRPSs) are multi-modular
enzymes involved in the biosynthesis of natural products. A minimal
NRPS module contains specific functional domains which are
able to catalyze several activities, such as amino acid adenylation
(A-activation), thioesterification (T- thiolation or acyl carrier
domain) and peptide-bond formation (C-condensation domain),
allowing elongation of the nascent peptide (Schwarzer and Marahiel,
2001). The primary composition of the final product is determined
by the sequential order of the A-domains along the synthetase,
because each A-domain recruits a particular type of substrate.
The crystal structure of the peptide synthetase GrsA, which was
solved with a bound, a phenylalanine substrate molecule, has
enabled the identification of 10 key residues in the A-domain,
which are important for the substrate binding (Conti et al., 1997).
Accordingly, these residues can be determinant in the substrate
specificity of A-domains, and their extraction from characterized
A-domains has achieved a collection of key residues signatures and
general rules for deducing substrate specificity of non-characterized
A-domains (Challis et al., 2000; Stachelhaus et al., 1999). Moreover,
machine learning techniques have been applied to build a classifier
based on 20 key residues and on the physico-chemical properties of
amino acids to gain prediction power (Rausch et al., 2005; Röttig
et al., 2011). Consequently, software tools and databases have been
developed to collect NRPS products, such as NORINE (Caboche
et al., 2008) and NRPS-PKS (Anand et al., 2010), and to predict
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the binding substrates of an NRPS such as NRPS-PKS (Ansari
et al., 2004), NP.Searcher (Li et al., 2009), PKS/NRPS Analysis
(Bachmann and Ravel, 2009) and NRPSPredictor2 (Röttig et al.,
2011). These prediction websites are mainly based on the generally
accepted rule of analysing the active site within the A-domains.
However, it is known that this approach has difficulties analysing
certain types of synthetases, especially those which belong to fungi
species. Problems can be caused because the GrsA crystal seems
to be an inadequate model for them (Jenke-Kodama and Dittmann
2009), or because the large number of sequence variants in the active
centre does not allow a correct extraction of the key residues for
prediction. This observation suggests the interest of developing new
prediction methods supported by other approaches. One of these
approaches could be the use of hidden Markov model (HMM)
as Khurana et al. (2010) have applied to functionally classify the
acyl:CoA synthetase super-family members. This work suggests
that the application of HMM profiles to classify this superfamily
outperforms the predictions based on a limited number of active site
residues (Khurana et al., 2010). The methods stated above can also
be applied to a more ambitious goal, such as the determination of
the substrate that binds to an adenylation domain.

The current omics era has enabled the exponential growth of
the sequenced NRPS. This implies that a tool which could predict
the specificity of their A domains is of increasing interest, and its
training could be beneficial with the new annotated NRPS. These
facts, the previous experience of our group in the area, and the
cited publications, have enabled the presented work, whose ultimate
goal is to develop a new bioinformatic tool in order to achieve
the collection, annotation, storage and prediction of substrates,
which bind to adenylation domains in NRPSs. This open software
tool applies a new approach in the areas of, the prediction based
on HMM, enlarged training sets applying mining techniques, the
regular update of its database and its design for the functional
analysis of incoming NGS data.

2 METHODS
This work has been developed in three phases: (i) construction of a database
with adenylation domains, which bind a known substrate; (ii) build, train
and test a computational predictor; and (iii) development of a web tool.
The global work flow is represented in the Supplementary Figure S1 and
a detailed description of the methods is in the Supplementary Material. In
order to construct the database, a semi-automatic annotation protocol was
implemented and will be applied regularly in order to update the database (see
Supplementary Material for a detailed description of the methods). Regarding
the predictor, strategies based on position specific scoring matrices (PSSMs)
and HMMs were tested to build the classifier. HMM approaches obtain better
results due to the sequence heterogeneity of the A-domains and consequently
the difficulty of its alignment. That is why the classification method was
developed with HMM, although the idea of identifying key residues in input
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sequences was abandoned. A cross-validation of the predictor was done
applying a leave one out test (LOO) and an receiver operating characteristic
curve of these results was plotted with the R package ROCR (Supplementary
Fig. S2). The input sequences of the LOO test were also analysed with
NRPSpredictor2 (one class classifier) and PKS/NRPS Analysis in order to
compare different approaches. The predictor is available online through the
website www.nrpssp.com. It was developed with LAMP architecture (Linux,
Apache, MySQL and PHP).

3 RESULTS
The large increase of sequenced proteins that has occurred in recent
years has enabled the collection of more data than in previous
studies. Proteins (37 126) were initially worked with, which were
annotated as NRPSs or had at least one A-domain. However, only a
small subset of these proteins are fully annotated (only 721 proteins
are in the Swissprot subset), and a small fraction of this subset
was useful for building the database. The automatic annotation of
substrates with its corresponding A-domain obtained 1490 entries.
Then, a data curation was manually done correcting the existing
data errors and deleting the doubtful entries [mainly because (i) they
do not belong to an NRPS module and (ii) the lack of knowledge
of the exact correspondence with a substrate]. This process results
in a database with 1598 domains, which have a known binding
substrate. From these, 1578 sequences were used for training the
classifier because the rest binds to substrates that have <4 annotated
sequences. Although the size is not too large, it is the biggest
database that has been used to train a method which predicts NRPS
substrates. Rausch et al. (2005) used a database with 394 entries,
of which 300 were used to train the SVM classifier, and the recent
update of this method used a database with 557 entries (the number
of entries to train the classifier was not described) (Rausch et al.,
2005; Röttig et al., 2011). This means that our database has more
than triple the size of previous ones. It is available online and the
semi-automatic methods that have been developed allow its regular
update. We expect that this resource will be a reference set for future
research in this area.

This database was used to construct the classifier by means of the
application of HMM profiles. The reliability of the classifier was
measured using all data as a train and test set and by a LOO method
as well (Section 2). The error rate was 13.6 and 4.96% for LOO and
whole training data, respectively. If low score results (highlighted
in red in the web application) are considered as not available, the
error rate decreases to 5.77 and 3.76%, respectively. The LOO
sequences were analysed with NRPSpredictor2 and PKS/NRPS
Analysis in order to estimate their error rate in similar terms. The
NRPSpredictor2 test obtained an error rate of 22.6% taking into
account all the predictions and 8.29% excluding null and unavailable
predictions. Similarly, PKS/NRPS Analysis obtained error rates of
73.7 and 27.35%, respectively (Supplementary Table S1). This is a
very promising result, indicating that the use of more comprehensive
training data and HMM achieves a more reliable predictor. In
addition, the results obtained by classifying fungal proteins were
studied separately. The error rate excluding low score results were
4.35% for LOO and 2.17% for whole training data, and if the low
score results are not excluded, 35% for LOO and 4.10% for whole

training data. An increase of the error rate is noticeable when low
score results are not filtered. This increase is induced by the wide
variety of fungi A-domains and their small number in the training
set. Similar results have been obtained with NRPSpredictor2 and
PKS/NRPS Analysis, whose predictions had a low coverage (around
30%) and an error rate of 36 and 9.1%, respectively (excluding
null and non-available predictions, see Supplementary Table S2).
However, coverage problems are expected to disappear as the
number of fungi A-domains in the test set is increased, and this is
a major objective which NRPSsp attempts to address with frequent
updates.

NRPSsp is available via the website www.nrpssp.com. This
website easily allows the analysis of a set of sequences, which are
passed as parameters in a FASTA format (Supplementary Fig. S3
shows an example). In addition, the website has a download section
which contains the updated database that has been used to train the
current classifier and the HMM profiles which have been built. It
enables future studies in the area and the execution of the classifier
in a stand-alone mode. In this way, the application is designed for
use with NGS data, which is becoming common in biotechnological
research, and allows a quick functional annotation of NRPS proteins
and knowledge of the substrate specificity of their A domains.
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