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ABSTRACT

Motivation: More and more evidences have indicated that long–non-

coding RNAs (lncRNAs) play critical roles in many important biological

processes. Therefore, mutations and dysregulations of these lncRNAs

would contribute to the development of various complex diseases.

Developing powerful computational models for potential disease-

related lncRNAs identification would benefit biomarker identification

and drug discovery for human disease diagnosis, treatment, prognosis

and prevention.

Results: In this article, we proposed the assumption that similar

diseases tend to be associated with functionally similar lncRNAs.

Then, we further developed the method of Laplacian Regularized

Least Squares for LncRNA–Disease Association (LRLSLDA) in the

semisupervised learning framework. Although known disease–

lncRNA associations in the database are rare, LRLSLDA still obtained

an AUC of 0.7760 in the leave-one-out cross validation, significantly

improving the performance of previous methods. We also illustrated

the performance of LRLSLDA is not sensitive (even robust) to the

parameters selection and it can obtain a reliable performance in all

the test classes. Plenty of potential disease–lncRNA associations were

publicly released and some of them have been confirmed by recent

results in biological experiments. It is anticipated that LRLSLDA could

be an effective and important biological tool for biomedical research.
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1 INTRODUCTION

It is well known that genetic information is stored in protein-

coding genes, which are referred to as the central dogma of mo-

lecular biology (Crick et al., 1961; Yanofsky, 2007). Therefore,

RNA is only considered to be an intermediary between a DNA

sequence and its encoded protein during a considerable long
period (Mattick and Makunin, 2006). Recent studies have

shown that protein-coding genes account for only a small frac-

tion of the human genome (�1.5%). In other words,498% of

the human genome does not encode protein sequences (Bertone

et al., 2004; Birney et al., 2007; Carninci et al., 2006; Claverie,

2005; Core et al., 2008; Kapranov et al., 2007; Lander et al.,

2001; Taft et al., 2010; Wilusz et al., 2009). Especially, it has
been observed that the proportion of non–protein-coding

sequence increases with the complexity of organisms (Taft

et al., 2007). These facts challenge forementioned traditional
view of RNA. Furthermore, accumulating evidences have

shown that non-coding RNAs (ncRNAs) normally play a critical
role in various biological processes. Specially, long–non-coding

RNAs (lncRNAs) are a class of important ncRNAs with the

length 4200nt (Kapranov et al., 2007; Mercer et al., 2009;
Wapinski and Chang, 2011). In the past few years, increasing

number of lncRNAs have been discovered in eukaryotic organ-
isms ranging from nematodes to humans with the rapid devel-

opment of both experimental technology and computational

methods (Amaral et al., 2011). It has also been shown that the
expression levels of lncRNAs appear to be lower than protein-

coding genes (Babak et al., 2005; Bono et al., 2003; Gibb et al.,
2011; Guttman et al., 2010; Ramsköld et al., 2009), and some

lncRNAs have high tissue specificity (Gibb et al., 2011; Mercer

et al., 2008; Pauli et al., 2012; Ponting et al., 2009).
Accumulating evidences have indicated that plenty of

lncRNAs play critical roles in many important biological pro-
cesses, including transcription, translation, splicing, differenti-

ation, epigenetic regulation, immune responses, cell cycle
control and so on (Bu et al., 2012; Chen et al., 2013; Lander

et al., 2001; Managadze et al., 2011; Mattick, 2009; Mattick and
Makunin, 2006; Mitchell Guttman et al., 2009; Qureshi et al.,

2010; Wapinski and Chang, 2011; Wilusz et al., 2009). Therefore,

mutations and dysregulations of lncRNAs are associated with a
broad range of human diseases (Mercer et al., 2009; Ponting

et al., 2009; Taft et al., 2010; Wapinski and Chang, 2011), such
as cancers (Chung et al., 2011; Gupta et al., 2010; Spizzo et al.,

2012; van Poppel et al., 2011; Yang et al., 2011; Zhang et al.,

2012), cardiovascular diseases (Congrains et al., 2011) and neu-
rodegeneration diseases (Johnson, 2011). For example, lncRNA

HOTAIR, PCA3 and UCA1 have been treated as potential
biomarker of hepatocellular carcinoma recurrence (Yang et al.,

2011), prostate cancer aggressiveness (van Poppel et al., 2011)

and bladder cancer diagnosis, respectively (Zhang et al., 2012).
Therefore, identifying potential human disease-related lncRNAs

can facilitate not only the understanding of molecular mechan-
isms of human disease at lncRNA level, but also biomarker

identification for human disease diagnosis, treatment, prognosis

and prevention (Chen et al., 2013). So far, plenty of studies have
generated a large amount of lncRNA-related biological data

about sequence, expression, function and so on. These datasets*To whom correspondence should be addressed.
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have been stored in some publicly available databases, such as

NRED (Dinger et al., 2009), lncRNAdb (Amaral et al., 2011),

NONCODE (Bu et al., 2012). However, only relatively few

lncRNA–disease associations have been reported. Developing

powerful computational models based on these datasets to pre-

dict potential disease–lncRNA associations on a large scale has

been treated as one of the most important topics of lncRNAs

and diseases. Computational model can provide most promising

lncRNA–disease associations for further experimental valid-

ation, hence decrease the time and cost of biological experiments.
In the previous work, we have manually collected experimen-

tally reported disease–lncRNA associations and constructed the

first lncRNA–disease association database, LncRNADisease

(http://cmbi.bjmu.edu.cn/lncrnadisease) (Chen et al., 2013).

This database has included4480 lncRNA–disease associations,

�208 lncRNAs and 166 diseases and laid the solid data funda-

ment for lncRNA-related predictive research. Furthermore, we

obtained an important conclusion that lncRNAs tend to be

related to the same disease as their genomic neighbor genes

and developed a simple lncRNA–disease association prediction

method based on the genomic context of a given lncRNA (Chen

et al., 2013). The conclusion obtained in this study laid the solid

theoretical fundament for disease–lncRNA association predic-

tion research. Based on this conclusion, various disease-related

lncRNA prediction methods can be developed.
In this article, we logically extended the basic assumption in

the previous disease-microRNA (miRNA) association prediction

research (Chen et al., 2012a, b) and proposed the following as-

sumption for disease-related lncRNA prediction: similar diseases

tend to be associated with functionally similar lncRNAs. Based

on this assumption and the fact that selecting lncRNAs that are

not related to the given disease is currently difficult or even

impossible, we developed a computational model of Laplacian

Regularized Least Squares for LncRNA–Disease Association

(LRLSLDA) in the semisupervised learning framework. This

method prioritizes the entire lncRNAome for disease of interest

by integrating known phenome-lncRNAome network obtained

from the database of LncRNADisease, disease similarity net-

work and lncRNA similarity network. LRLSLDA is a global

approach that can rank candidate disease–lncRNA pairs for all

the diseases simultaneously. In the leave-one-out cross validation

(LOOCV), LRLSLDA obtained the reliable AUC of 0.7760,

demonstrating superiority performance of LRLSLDA to previ-

ous methods and potential value for disease-related lncRNA pre-

diction and biomarker detection in the diagnosis, treatment,

prognosis and prevention of human disease. We also classified

test samples of lncRNA–disease associations into distinct classes,

and LRLSLDA obtained reliable performance in different test

classes. Plenty of potential disease–lncRNA associations were

publicly released for experimental verification. Some of the

associations have been confirmed by recent results in biological

experiments.

2 MATERIALS

2.1 LncRNA–disease associations

We downloaded known lncRNA–disease association dataset

from the LncRNADisease database in October, 2012. This

dataset is used as gold standard dataset in the cross validation

and training dataset in potential disease–lncRNA association

prediction. After getting rid of duplicate associations, 293 dis-

tinct experimentally confirmed lncRNA–disease associations

were obtained, including 118 lncRNAs and 167 diseases

(Supplementary Table S1). We denoted variable nl as the

number of lncRNAs, nd as the number of diseases, matrix A

as the adjacency matrix of lncRNA–disease associations, where

A(i,j) in row i column j is 1 if lncRNA l(j) is related to the

disease d(i), otherwise 0.

2.2 LncRNA expression similarity

Considering the current situation that comprehensive expression

data of lncRNA is still unavailable and the fact that long inter-

genic non-coding RNA (lincRNA) accounts for a large fraction

of the whole lncRNA set, we downloaded lincRNA expression

profiles from UCSC Genome Bioinformatics (http://genome.

ucsc.edu/) in October, 2012, including the expression profiles

of 21 626 lincRNAs in 22 human tissues or cell types

(Supplementary Table S2). Then, we defined the lincRNA

expression similarity as the Spearman correlation coefficient be-

tween the expression profiles of each lincRNA pair. Matrix SPC

is denoted as the lncRNA expression similarity matrix, where

SPC(i,j) in row i column j is the expression similarity between

lncRNA l(i) and l(j) if they are both lincRNA, otherwise 0.

LRLSLDA developed in this article can be applied to inter-

actions prediction between all the lncRNAs (not only

lincRNAs, but also other members of lncRNA) and diseases

by integrating lncRNA–disease association data and lncRNA

expression data. Making use of Spearman correlation coefficient

between the expression profiles of each pair is the general method

in bioinformatics research. Hence, it is likely that this similarity

measure would still obtain reliable performance for lncRNA

expression data, as already shown for lincRNAs in this article.

3 METHODS

3.1 Gaussian interaction profile kernel similarity for

diseases

Based on the assumption that similar diseases tend to show a similar

interaction and non-interaction pattern with the lncRNAs, we con-

structed Gaussian interaction profile kernel similarity for disease from

known lncRNA–disease associations [motivated by van Laarhoven et al.

(2011)]. The procedures of Gaussian interaction profile kernel similarity

have been illustrated in Figure 1. Firstly, we denoted the interaction

profile IP(d(i)) of disease d(i) as the binary vector encoding the presence

or absence of association between disease d(i) and each lncRNA in the

known disease–lncRNA association dataset, i.e. the ith row of the adja-

cency matrix A. Then, we introduced Gaussian kernel for the interaction

profiles of diseases. Kernel for disease d(i) and d(j) was defined as

follows and used as the similarity score between these two diseases.

KDðdðiÞ, dð jÞÞ ¼ expð��d k IPðdðiÞÞ � IPðdð jÞÞ k2Þ

where the parameter �d controls the kernel bandwidth. It was normally

defined as a new bandwidth parameter � 0d normalized by the average

number of associations with lncRNA per disease. Although this new

bandwidth parameter can be better selected through further cross valid-

ation, here for simplicity we set � 0d ¼ 1 according to the choice in the
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previous work (van Laarhoven et al., 2011). The formula for the calcu-

lation of �d is

�d ¼ �
0
d=ð

1

nd

Xnd
i¼1

IPðdðiÞ
�� ��2Þ

Finally, KD is denoted as Gaussian interaction profile kernel similarity

matrix for diseases, where the entity KD(i,j) in row i column j is the

Gaussian interaction profile kernel for disease d(i) and d(j). From rele-

vant research (Vanunu et al., 2010), we could obtain the conclusion that

disease similarity after logistic function transformation can improve pre-

dictive accuracy of disease-related problems. Therefore, we used the

logistic function in the previous study (Vanunu et al., 2010) as follows:

SDðdðiÞ, dð jÞÞ ¼
1

1þ ec�KDðdðiÞ, dð jÞÞþd

For the two parameters contained in this formula, we adopt the same

parameter selection as previous study (Vanunu et al., 2010), i.e.

c ¼ �15, d ¼ logð9999Þ. Disease similarity matrix SD will be used in

the optimal classifier construction in the following sections.

3.2 Gaussian interaction profile kernel similarity for

lncRNAs

Gaussian interaction profile kernel similarity matrix for lncRNAs, KL,

can be constructed in a similar way as follows:

KLðlðiÞ, lð jÞÞ ¼ expð��l k IPðlðiÞÞ � IPðlð jÞÞ k2Þ

where IPðlðiÞÞ for lncRNA l(i) is the binary vector encoding the presence

or absence of association between lncRNA l(i) and each disease and �l
controls the kernel bandwidth, which can be obtained as follows by

normalizing a new bandwidth parameter � 0l [� 0l ¼ 1, according to the

choice in the previous work (van Laarhoven et al., 2011)].

�l ¼ �
0
l=ð

1

nl

Xnl
i¼1

IPðlðiÞ
�� ��2Þ

Based on the forementioned lncRNA expression similarity and Gaussian

interaction profile kernel similarity, we constructed lncRNA integrated

similarity matrix SL, where the entity SL(i,j) in row i column j is inte-

grated similarity between lncRNA l(i) and l (j) defined as follows and ew

is the weight coefficient of lncRNA expression similarity.

SLði, jÞ ¼
ew�SPCði, jÞ þ ð1� ewÞ�KLði, jÞ bothl ðiÞ and lðjÞ are lincRNAs

KLði, jÞ otherwise

�

3.3 Laplacian Regularized Least Squares for

LncRNA–Disease Association

Based on the underlying assumption that similar diseases tend to be

associated with similar lncRNAs, here we developed the method of

LRLSLDA to predict the potential related lncRNAs for the disease of

interest. The flowchart of LRLSLDA has been shown in Figure 2, includ-

ing the steps of similarity calculation and Laplacian normalization, cost

function construction and optimal classifier function calculation, and

optimal classifier function combination. Based on the framework of

Laplacian Regularized Least Squares (LapRLS), aforementioned

assumption will be formulated into two classifiers in the disease space

and lncRNA space, respectively. Then these two classifiers will be com-

bined into a single classifier by a simple mean operation to give final

prediction about disease–lncRNA association probability. It is antici-

pated that this classifier would be a continuous classification function,

which could reflect the probability that each lncRNA is associated with

all the diseases of interest. Hence, following two criterions were used to

evaluate constructed classifier: (i) the classifier should comply with known

lncRNA–disease associations as accurately as possible; (ii) the classifier

should be smooth over disease space and lncRNA space, i.e. the scores

for the potential association between similar lncRNAs (diseases) and the

same disease (lncRNA) should be similar, which reflect aforementioned

basic assumption. Candidate lncRNA–disease pairs with high scores will

be expected to have a high priority for biological experiments validation.

In this way, we could dramatically reduce the costs and time for potential

lncRNA–disease association identification.

In the framework of LapRLS, Laplacian operation will be firstly

implemented to normalize the similar matrix used in the classifier con-

struction as follows:

LD ¼ ðDDÞ�1=2ðDD� SDÞðDDÞ�1=2

LL ¼ ðDLÞ�1=2ðDL� SLÞðDLÞ�1=2

where the diagonal matrices DD and DL are defined such that DD(i,i)

and DL(i,i) are the sum of the ith row of SD and SL, respectively.

Then, cost functions will be defined in lncRNA space and disease space,

respectively. The optimal classifier meeting above criterions will be

obtained by minimizing this cost function. In the lncRNA space, opti-

mal classifier can be obtained by solving the following optimization

problem:

min
FL
½ AT � FL
�� ��2

F
þ�L FL � LL � FLT

�� ��2
F
�

where �k kF is the Frobenius norm and �L is the trade-off parameter. We

solved this optimization problem by calculating the derivative of this

Fig. 1. The procedures of Gaussian interaction profile kernel similarity

calculation based on known disease–lncRNA association network have

been divided into three steps: constructing known disease–lncRNA asso-

ciation network; obtain interaction profiles of diseases and lncRNAs,

respectively; calculate Gaussian interaction profile kernel similarity for

diseases and lncRNAs, respectively. Similarity used in the table of bottom

panels is Gaussian interaction profile kernel similarity for diseases and

lncRNAs, respectively
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objective function (Belkin et al., 2006; Xia et al., 2010). The optimal

classification function can be obtained as follows:

FL� ¼ SLðSLþ �L � LL � SLÞAT

We can also obtain the optimal classification function in the disease space

in a similar way by solving the following optimization problem:

min
FD
½ A� FDk k2F þ �D FD � LD � FDT

�� ��2
F
�

FD� ¼ SDðSDþ �D � LD � SDÞA

where �D is also the trade-off parameter. According to the choice in the

previous work (van Laarhoven et al., 2011), we set �L ¼ 1, �D ¼ 1.

Finally, we combined the optimal classifiers in the lncRNA space and

disease space into a single classifier by a simple mean operation:

F � ¼ lw � FL�T þ ð1� lwÞ � FD�

where lw is denoted as the weight coefficient of the classification function

in the lncRNA space and the entity F�ði, jÞ in row i column j reflect the

probability that lncRNA l(j) is related to the disease d(i).

4 RESULTS

4.1 Leave-one-out cross validation

LOOCV was implemented on the known experimentally verified

lncRNA–disease associations to evaluate the performance of

LRLSLDA. Here, we combined the lncRNA expression similar-
ity and Gaussian interaction profile kernel similarity matrix for
lncRNAs into the integrated similarity by a simple mean oper-

ation according to the previous studies (Chen et al., 2012a, c) and
will discuss the parameter effect on the predictive performance in
the next section. For the weight coefficients in the final optimal

classifier function combination, we implemented similar average
operation for classifier combination according to previous suc-
cessful studies about drug-target prediction and disease-related

miRNA environmental factor (EF) interaction prediction (Chen
et al., 2012a; Xia et al., 2010). It has been observed from Figure 3
that combined classifier can significantly improve the predictive

accuracy of classifier in the single space. Also we will discuss
whether this parameter selection would have a great influence
on the predictive performance in the next section. To our know-

ledge, this is the first work making use of known lncRNA–
disease associations to predict potential ones. Therefore, no pre-
vious methods can be compared with our method. We will com-
pare LRLSLDA with the predictive result of classifiers in the

single space to show the reasonability of combining classifiers
in different spaces into final predictive results.
Because there were 167 diseases and 293 disease–lncRNA

associations in the known golden standard dataset, i.e. less
than two associations per disease, it is inappropriate and infeas-
ible to implement LOOCV for a given disease d. Further, taking

into account the fact that LRLSLDA is a global method (i.e. it
can prioritize candidate lncRNAs for all the disease simultan-
eously and can compare the scores of different lncRNA–disease

pairs), we implemented LOOCV for all the diseases simultan-
eously. We left out each known disease–lncRNA association in
turn as test sample and further evaluate how well this association

was ranked relative to the candidate samples. Here, all other
known disease–lncRNA associations were regarded as training
samples, and all the disease–lncRNA pairs without confirmed

associations were regarded as candidate samples. Receiver-
operating characteristics (ROC) curve was used to evaluate the
predictive performance, which plots true-positive rate (TPR, sen-

sitivity) versus false-positive rate (FPR, 1-specificity) at different
rank cutoffs. Here, sensitivity means the percentage of the left-
out associations obtaining the ranking higher than a given rank

cutoff; Specificity means the percentage of candidate associations
obtaining the ranking lower than this given rank cutoff. When
we vary the rank cutoffs of successful prediction, we can obtain

the corresponding TPR and FPR. In this way, ROC was drawn
and AUC was calculated.
The similarity measure defined in this article relies on

Gaussian interaction profile kernel similarity, which is calculated
from known disease–lncRNA associations. When LOOCV was
implemented, each known disease–lncRNA association was con-

sidered as test sample in turn. Therefore, we would obtain dif-
ferent similarity matrice because of different training samples in
the each step of LOOCV (training samples were different when

different known associations were considered as test samples,
hence obtaining different similarity matrice). Therefore, it is
necessary to recalculate Gaussian interaction profile kernel simi-

larity for disease and lncRNA (not a fixed similarity matrix in
the whole process of LOOCV) in the each step of LOOCV when
each known lncRNA–disease association is left out as test

sample. As a result, LRLSLDA achieved an AUC of 0.7760

Fig. 2. The flowchart of LRLSLDA is shown here, including the basic

steps to predict potential disease-related lncRNAs based on LRLSLDA
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and the comparison between LRLSLDA and the predictive
results in the single space (disease space or lncRNA space) was

shown in Figure 3. The conclusion can be reached that predictive

accuracy has been significantly improved by the operation of

combining the classifiers in different spaces. We further imple-

mented LOOCV based on the LRLSLDA without introducing

the information of expression profiles. The AUC of 0.7317 has

been obtained (Fig. 3), which was slightly lower than LRLSLDA
with expression information. From this comparison, we can

reach the following two conclusions. For one thing, the perform-

ance of LRLSLDA could be further improved by introducing

the information of expression profiles. For another, we still can

obtain the relative reliable predictive results even if the informa-

tion of expression profiles can not be obtained for lncRNAs of
interest. Considering that each disease is only associated with less

than two diseases on average in the known disease–lncRNA

associations, the performance of LRLSLDA is reliable and

would be further improved after obtaining more known

disease–lncRNAs associations.

4.2 The effect of weight coefficients on LRLSLDA

performance

There are two kinds of weight coefficients in LRLSLDA: com-
binatorial coefficients in integrated lncRNA similarity and the

final classifier, respectively.

In the previous researches of disease-related miRNA-EF inter-
actions prediction and drug target prediction, simple average was

adopted to combine different similarity measures of drug, pro-

tein target, miRNA and EF, respectively, where reliable perform-

ance have been obtained (Chen et al., 2012a, c). Even in the study

about drug target interactions prediction, the robustness of

predictive accuracy to weight parameters selection has been illu-

strated. No accurate and practical methods for similarity inte-

gration have been developed and applied well to bioinformatics

research so far. In the Supplementary Figure S1, we showed the

AUC values under different lncRNA similarity weights in the

framework of LOOCV. We again observed the predictive accur-

acy of LRLSLDA is robust to the selection of lncRNA similarity

weight coefficients.
Currently, there are no good methods for the selection of

weight coefficients to combine different classification functions

into the final optimal classification function. In the previous

studies of drug–target prediction and disease-related miRNA-

EF prediction (Chen et al., 2012a; Xia et al., 2010), reliable per-

formance has been obtained based on simple average operation

for classifier combination. Especially, it has been shown that

predictive accuracy of miREFScan in disease-related miRNA-

EF prediction is not sensitive to the selection of weight parameter

(Chen et al., 2012a). Here, we assigned 0.1–0.9 to weight coeffi-

cients and calculated corresponding AUC values in the frame-

work of LOOCV (Supplementary Fig. S2). It has been observed

that predictive performance of LRLSLDA is not sensitive to

weight coefficient selection. Also we can conclude that it is im-

proper to give too much weight to classifier function in the

lncRNA space. It is not difficult to understand this conclusion.

There were only 293 disease–lncRNA associations for 167 dis-

eases in the known golden standard dataset, i.e. less than two

associations per disease. When one association was left out as

test sample in the process of LOOCV, it is much likely that there

were no lncRNAs associated with this disease in the known

training samples. Therefore, only lncRNA similarity is not

enough and disease similarity must be introduced to make full

use of the information of similar diseases.

4.3 Compared with other methods

As mentioned above, there is no method to predict potential

lncRNA–disease associations in the previous studies. However,

there are some similar problems in other fields of computational

biology and many methods have been already developed to solve

these problems. Some of these methods can be applied to predict

lncRNA–disease associations. Taking into account the fact there

are less than two associations for each disease on average, it is

infeasible to implement LOOCV for a given disease, and

LOOCV must be implemented for all the diseases simultaneously

as we did before. Therefore, only global methods can be used in

LOOCV, which can prioritize candidate lncRNAs for all the

disease simultaneously, and compare the scores of different

lncRNA–disease pairs.
Hence, we compared LRLSLDA with three previous pub-

lished methods as follows in LOOCV based on the same dataset:

(i) RLS-kron (van Laarhoven et al., 2011), combining different

kernels based on Kronecker product in the drug–target inter-

action prediction; (ii) hypergeometric distribution method

(Jiang et al., 2010), predicting disease-related miRNAs based

on the hypergeometric distribution; (iii) network-consistency-

based inference (Chen and Zhang, 2013), inferring potential

disease–miRNA associations based on the idea of network con-

sistency. The comparison between LRLSLDA and three previ-

ous methods in the LOOCV was shown in Figure 4, which

Fig. 3. Comparison between LRLSLDA and the classifier in the single

space was shown, which was implemented based on LOOCV schema in

terms of ROC curve and AUC. The result demonstrates LRLSLDA has

a reliable performance for potential lncRNA–disease inference and shows

the benefit from combining the classifiers from different spaces into the

single one. We also implemented LOOCV based on the LRLSLDA with-

out introducing the information of expression profiles. A slightly lower

AUC has been obtained, which shows the benefit from the introduction

of expression profiles and relative reliable predictive ability even if the

information of expression profiles can not be obtained for lncRNAs of

interest
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significantly improved the performance of previous method by at
least 0.1199 in the term of AUC values and fully demonstrated

the superiority performance of LRLSLDA.

4.4 LOOCV in the new validation framework

Recently, Park and Marcotte (2012) have pointed out that the
flaw of evaluation procedure based on cross validation for the

pair-input computational prediction problems has affected a
number of previous studies. They have demonstrated that the
paired nature of inputs leads to a natural partitioning of test

pairs, and pair-input methods achieve significantly different pre-
dictive performances for distinct test classes (Park and Marcotte,

2012). They further performed experiments for protein–protein
interactions prediction based on seven state-of-the-art methods
and observed that the performance of each method differs sig-

nificantly in different test classes (Park and Marcotte, 2012).
According to the evaluation methods proposed in this article,

we classified test samples of lncRNA–disease associations into

four distinct classes: C1 is composed of the test samples sharing
both diseases and lncRNAs with the training samples; C2 is

composed of the test samples sharing only diseases with the
training samples; C3 is composed of the test samples sharing
only lncRNAs with the training samples; C4 is composed of

the test samples sharing neither diseases nor lncRNAs with the
training samples. To be honest, LRLSLDA strongly relies on the

topology structures in known disease–lncRNA association net-
work, so it can not be applied to predict test samples in C4. We
implemented LOOCV for the test samples in C1, C2 and C3,

respectively. The performance of LRLSLDA in these three
classes test samples have been shown in Figure 5 (AUC of
0.7880 in C1, 0.8071 in C2, 0.8736 in C3), which has illustrated

that LRLSLDA has a reliable predictive performance in different
test classes.

4.5 Case studies and novel lncRNA–disease association

prediction

We applied LRLSLDA to prioritize all the candidate lncRNAs

for each disease investigated in this article. Here, all the known

disease–lncRNA associations in the gold standard dataset

were used as training samples. Predictive results were publicly

released to benefit experimental validation from biologists

(Supplementary Table S3). It is anticipated that these potential

lncRNA–disease associations predicted by LRLSLDA could be

confirmed by biological experiments.
Recent results in biological experiments confirmed that

Alzheimer disease is related to gene RELN and its antisense

transcript HAR1A and HAR1B (Harries, 2012). These two

lncRNAs were both ranked in the top of predictive list for

Alzheimer disease (17th and 18th, respectively). Recently, Han

et al. (2012) confirmed lincRNA TUG1 is up-related in 44

patients with bladder cancer based on Real-Time qPCR. In the

potential bladder cancer–related lncRNAs list predicted by

LRLSLDA, TUG1 was ranked 18th.

Aforementioned lncRNAs all have known related diseases in

the golden standard dataset. One of advantages of LRLSLDA is

that it can predict potential related diseases for lncRNA of inter-

est, even if it does not have any related diseases in the training

dataset. Flockhart et al. (2012) identified the potential functional

role of lncRNA BRAF-regulated lncRNA 1 (BANCR) in mel-

anoma cell migration. BANCR has not been associated with any

diseases in our golden dataset. We ranked all the candidate dis-

eases for BANCR. In the predictive results, melanoma is ranked

10th out of all the 167 candidate diseases.
As mentioned above, LRLSLDA is a global ranking approach

that can prioritize potential lncRNA–disease associations for all

the diseases simultaneously. Therefore, we further applied our

method to simultaneously rank all the candidate lncRNA–

disease associations. We also publicly released predictive results

in the Supplementary Table S4. In this global ranking, potential

association between lncRNA NEAT1 and breast cancer was

ranked fourth out of 19413 candidate associations. Recent

study by Redvers et al. (2012) confirmed this potential associ-

ation. They implemented an integrated in vivo genomics screen

and revealed significant upregulation of NEAT1 in breast me-

tastasis tumors. This independent and high-ranking evidence

Fig. 5. Here, we implemented LOOCV for the test samples in C1, C2 and

C3, respectively, and the performance have been shown, with AUC of

0.7880 in C1, 0.8071 in C2, 0.8736 in C3. Results indicate that LRLSLDA

has a reliable predictive performance in different test classes

Fig. 4. Here, we compared the performance of LRLSLDA with three

previous state-of-the-art methods in LOOCV. It has been indicated that

LRLSLDA significantly improved previous methods LOOCV by at least

0.1199 in the term of AUC values
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further demonstrates the reliable performance of LRLSLDA and
gives a strong support to other predicted lncRNA–disease asso-
ciations (Supplementary Table S4).

5 DISCUSSION AND CONCLUSION

Disease–lncRNA association inference is important in the design

of specific molecular tools for human disease diagnosis, treat-
ment, prognosis and prevention. In this article, we proposed
the assumption that similar diseases tend to be associated

with functionally similar lncRNAs and further developed a
novel method of LRLSLDA in the framework of LapRLS.

LRLSLDA can effectively identify potential disease–lncRNA
associations on a large scale by integrating the information of
known disease–lncRNA associations and lncRNA expression

profiles. More importantly, LRLSLDA is a semisupervised
method that does not need the information of negative samples.
Also, it can prioritize lncRNA–disease pairs for all the diseases

simultaneously. The method has shown its reliable performance
in the term of LOOCV and significantly improved previous
methods. According to the evaluation methods proposed in a

recent article, we further demonstrated LRLSLDA can work
effectively in the different test samples of lncRNA–disease asso-
ciations. Therefore, we publicly released plenty of potential

lncRNA–disease pairs for biological experiments validation,
and some of potential associations have been confirmed by

recent results in biological experiments. As an effective and im-
portant biological tool, we anticipated LRLSLDA can benefit
early diagnosis and treatment of diseases and improvement of

the human health in the future.
The reliable performance of LRLSLDA could be largely

attributed to the following several factors, which are also the

reasons for which we integrate LapRLS and Gaussian kernel
for potential disease-related lncRNA prediction. Firstly, known
disease–lncRNA associations and lncRNA expression profiles

could be integrated to capture the potential associations between
disease and lncRNA. Especially, this method can be used to
predict potential disease–lncRNA associations sharing only dis-

eases or lncRNAs with the known associations in training data-
set. Secondly, the classifiers from different spaces would be
combined and the predictive ability could be significantly

improved in this way, which has been fully demonstrated from
the comparison between LRLSLDA and classifier in the single

space in Figure 3. More importantly, as a semi-supervised
method, the advantage of LRLSLDA over supervised methods
has been shown in many previous studies. Especially, semisuper-

vised method could be implemented without any negative
disease–lncRNA associations, which are difficult or even impos-
sible to obtain nowadays. Finally, as a global method,

LRLSLDA can predict the potential lncRNA–disease associ-
ations for all the diseases simultaneously. In conclusion,
LRLSLDA represents a novel, important and powerful tool in

biomedical research for disease treatment and drug discovery.
Some limitations also exist in the LRLSLDA. Firstly, many

parameters appear in our model and how to select the parameter

is not still solved well. Secondly, for the same lncRNA–disease
pair, two different scores from different spaces will be obtained.
How to directly obtain a single classifier or reasonably integrate

these two classifiers would be an important problem for future

research. Thirdly, introducing more reliable measure of disease
similarity and lncRNA similarity and developing more reliable

similarity integration method would improve the performance of
LRLSLDA. Especially, disease similarity in this model totally

relies on known disease–lncRNA association. We would con-

struct new similarity measures that do not rely on topology struc-
tures in the known association network and hence we can predict

potential associations sharing neither diseases nor lncRNAs with
known associations. Finally, available experimentally verified

disease–lncRNA associations are still comparatively rare. The

performance of LRLSLDA would be further improved when
more known associations can be obtained.
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