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ABSTRACT

Motivation: Over the past few years several pathway analysis

methods have been proposed for exploring and enhancing the

analysis of genome-wide association data. Hierarchical models have

been advocated as a way to integrate SNP and pathway effects in the

same model, but their computational complexity has prevented them

being applied on a genome-wide scale to date.

Methods: We present two novel methods for identifying associated

pathways. In the proposed hierarchical model, the SNP effects are

analytically integrated out of the analysis, allowing computationally

tractable model fitting to genome-wide data. The first method uses

Bayes factors for calculating the effect of the pathways, whereas the

second method uses a machine learning algorithm and adaptive lasso

for finding a sparse solution of associated pathways.

Results: The performance of the proposed methods was explored on

both simulated and real data. The results of the simulation study

showed that the methods outperformed some well-established asso-

ciation methods: the commonly used Fisher’s method for combining

P-values and also the recently published BGSA. The methods were

applied to two genome-wide association study datasets that aimed to

find the genetic structure of platelet function and body mass index,

respectively. The results of the analyses replicated the results of

previously published pathway analysis of these phenotypes but also

identified novel pathways that are potentially involved.

Availability: An R package is under preparation. In the meantime, the

scripts of the methods are available on request from the authors.
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Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

It is increasingly recognized that pathway analysis can support

exploration of genome-wide association study (GWAS) data by

incorporating the available biological knowledge of genes and
pathways. Pathway analysis has gained great popularity over

the past few years and several methods have been proposed

(Holmans et al., 2009; O’Dushlaine et al., 2009; Wang et al.,

2007; Yu et al., 2009).

One of the first proposed and most popular pathway ana-
lysis methods for GWAS data is gene set enrichment analysis
(GSEA). GSEA was originally proposed for pathway analysis

of gene expression microarray data and later adjusted by
Wang et al. (2007) for GWAS data. GSEA tests the null hypoth-
esis that the pathway genes (or SNPs) are no more associated

with the studied phenotype than the non-pathway genes (or
SNPs), and is an enrichment method in the terminology of
Goeman and Buhlmann (2007).
Other pathway analysis methods include Fisher’s method

(FM): its test statistic depends on the product of the pathway
gene (SNP) P-values. In addition, Yu et al. (2009) proposed the
adaptive rank truncated product method (ARTP) for pathway

analysis of GWAS data. The ARTP method is a generalization
of FM based on the product of the most significant pathway
gene (or SNP) P-values. The number of the smallest P-values

multiplied is found through a permutation procedure.
In addition, a number of online bioinformatics tools have

made their appearance over the recent years that test whether
the pathway in question contains more significant genes than

expected by chance, using either the hypergeometric test or
Fisher’s exact test.
Most of the current pathway analysis methods are frequentist

methods that depend on the results of single SNP analysis. In this
article, two novel methods are proposed that are based on a
hierarchical framework that models both pathway and SNP

level effects. As discussed by Wang et al. (2010), hierarchical
modelling is another form of pathway association testing.
Wang et al. (2010) pointed out that hierarchical modelling and

shrinkage techniques have not been widely used in pathway
analysis. On the other hand, Bayesian hierarchical modelling is
discussed as a powerful technique in decreasing the signal to
noise ratio in GWAS and for handling the problems of multiple

comparisons observed in several statistical applications, for
example, analyzing GWAS data (Chen and Witte, 2007; Hung
et al., 2004; Liu et al., 2005).

Few pathway analysis methods have been published that use
hierarchical modelling for identifying associated pathways. Two
are the BGSA method suggested by Shahbaba et al. (2012) and

the method proposed by Wang et al. (2011). BGSA is based on
a two-level hierarchical model, where in the first level
the unsquared Cochran–Armitage statistics of the lead SNP of

each gene are assumed to follow a normal distribution with mean
zero. A scaled-inverse-�2 distribution is assumed for the variance*To whom correspondence should be addressed.
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of the SNP parameters. On the second level, a mixture of scaled-
inverse-�2 distributions is assumed for the variance of the gene

parameters of each pathway. A P-value of association between

the tested pathway and the phenotype is computed using

Markov chain Monte Carlo.
Wang et al. (2011) proposed a mixed model that includes a

fixed effects component that represents the mean disease contri-

bution of a tested pathway and a random effects component that

represents how the association of the pathway gene members

with the disease varies around the pathway mean. As discussed

by those authors, the proposed model allows information to be

borrowed across genes in the same pathway. It further corrects

for LD between SNPs and for the presence of overlapping genes.
In contrast to the methods proposed by Shahbaba et al. (2012)

and Wang et al. (2011), the two methods proposed in this article

use the individual genotype data and do not depend on the re-

sults of single SNP analysis. Furthermore, in contrast to other

hierarchical models that incorporate either the SNP-pathway

membership or the gene-pathway membership in the second
stage of their multilevel models (Hung et al., 2004; Lebrec

et al., 2009), our framework models hundreds of SNPs and path-

ways instead of a small selection of them.

Furthermore, our methods do not depend on Markov chain
Monte Carlo techniques for identifying associated pathways. The

two methods differ in the prior distribution assumed for the

pathway parameters. The first method assumes a normal distri-

bution for the pathway parameters with mean zero and diagonal

variance–covariance matrix with equal entries. It uses Bayes fac-

tors to test whether the pathways are associated with the pheno-

type. The second method assumes a normal distribution with

mean zero and a diagonal variance–covariance matrix whose

entries are not necessarily equal. This method adapts an iterative

algorithm proposed by Wipf and Nagarajan (2008) that uses an
adaptive lasso algorithm that shrinks the diagonal entries to-

wards zero. In this article, this algorithm is adapted for finding

the set of associated pathways that explain the most variation of

the studied phenotype.
First, the two proposed methods were applied to simulated

data. Then, we applied the two proposed methods to two differ-

ent GWAS studies that have been previously described by

Evangelou et al. (2012). The first GWAS, which we refer to as

the Platelets GWAS, aims to find the genetic structure of platelet

function. These data were first presented by Jones et al. (2007,

2009). The second GWAS, which we refer to as the EPIC-

Norfolk GWAS, aims to find the genetic structure of body

mass index (BMI), as part of the EPIC-Norfolk study (Day

et al., 1999).

2 MATERIAL AND METHODS

2.1 Data

For the pathway analysis conducted in this article, 211 pathways from the

Kyoto Encyclopaedia of Genes and Genomes (KEGG) were downloaded

and tested (Kanehisa and Goto, 2000). The Platelets GWAS involves 500

individuals who took part in the studies of Jones et al. (2007, 2009). Four

endpoints were measured for the 500 individuals: p-selectin and fibrino-

gen responses to ADP and collagen agonists, respectively. The individuals

were also genotyped using the Illumina610 chip. By applying standard

quality control filters, only 480 individuals were retained for further

analysis. In addition, only SNPs with MAF 40.05, P-value of HWE

410�5 and proportion of missing values50.05 were retained for further

analysis. In total, 544 078 SNPs were retained for further analysis.

The EPIC-Norfolk GWAS involves 3559 individuals whose BMI was

measured. The BMI ranges between 16 and 48, with a mean of 28.5.

Individuals with a BMI 430 are defined to be obese. In the study,

there are 2035 controls and 1514 obese cases. The BMI of three individ-

uals was missing. The individuals were genotyped using the

Affymetrix500 chip. By applying standard quality control filters on the

SNPs, 382 037 SNPs were retained for further analysis.

For both studies, the SNPs of each study were assigned to genes ac-

cording to physical distance: a SNP was mapped to every gene whose

coding sequence had an overlap with a 10kb range around the SNP.

2.2 Model

In contrast to single SNP analysis in which each SNP is tested independ-

ently from the others, in a multi-SNP analysis a selection of SNPs is

tested for association. If the phenotype is a continuous random variable,

the association between the phenotype and the L tested SNPs is modelled

through a linear regression such that

y ¼ Gsþ �, � � Nð0, �2INÞ ð1Þ

where N is the number of individuals in the study. The vector s of size L

represents the SNP coefficients. The matrix G is the genotype matrix of

sizeN� L with entries 0, 1 and 2 representing the number of copies of the

minor allele of each SNP. The error " is assumed to follow a normal

distribution with mean zero and variance �2IN.

The hierarchical model adds a second level of linear regressions for the

SNP parameters s, which represent the pathway memberships of the

tested SNPs. The SNP parameters s are assumed to follow the linear

model

s ¼ P�þ u ð2Þ

where P is a pathway matrix of size L�M, andM is the total number of

pathways tested. The pathway matrix has entries 1 and 0 indicating

whether a SNP belongs to a pathway. If a SNP was mapped to multiple

genes, then this SNP was considered to be a member of all the pathways

that the genes were members of. In addition, if a SNP was mapped to

multiple genes that belonged to the same pathway, then no extra weight

was given to these SNPs. The b vector of size M represents the pathway

coefficients. The error u is assumed to follow a normal distribution with

mean zero and variance A�2. Here we assume for simplicity that the

hyper-parameter matrix A is a diagonal matrix with equal entries along

the diagonal, such that A ¼ aIL where a is a positive constant. This

matrix assumes that all SNP effects come from the same distribution

and that they are independent. Similarly to Guan and Stephens (2011),

we preferred to model the SNP effects as independent, as they reflect the

causal effects of the genotype matrix on the phenotype y, and they do not

necessarily follow the same correlation structure as that of the SNP

genotypes.

By combining Equations (1) and (2), the full model can be obtained

y ¼ GðP�þ uÞ þ � ¼ GP�þ Guþ � ¼ X�þ Zuþ � ð3Þ

where X equals the genotype matrix (Z¼G) multiplied by the path-

way matrix (P). The random variables " and u follow Nð0, �2INÞ and

Nð0,A�2Þ distributions, respectively.

The vector u represents the SNP parameters, which are treated as nuis-

ance parameters and integrated out from the analysis. By conditioning

on the pathway parameters b, the prior predictive distribution of y� X�

is a normal distribution with mean zero and covariance matrix V�2 ¼

ðZAZT þ INÞ�
2. The probability density function of y� X� is given by

pðyj�,A, �2Þ / ð�2Þ�
N
2 exp

�
�
ðy� X�ÞTV�1ðy� X�Þ

2�2

�
ð4Þ
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In other words, the phenotype y follows a normal distribution with

mean X� and variance V�2 ¼ ðZAZT þ INÞ�
2.

Two prior distributions are considered for the pathway coefficients b.
Each prior distribution is linked to a different procedure for identifying

the associated pathways. We propose a separate inference method for

each of the two prior distributions. The first method is based on Bayes

factors and the second on the iterative algorithm of Wipf and Nagarajan

(2008).

2.3 Normal/Bayes factors method

The first prior distribution considered is a normal distribution with

mean zero and variance B�2. The hyper-parameter matrix B is a

diagonal matrix with equal entries along the diagonal, such that

B ¼ bIM, where b is a positive constant. The diagonal matrix assumes

that pathway effects are independent and come from the same

distribution.

By assuming a scaled-inverse-�2 distribution with parameters �0 and

�20 for the error variance �2, the association of pathways with the pheno-

type can be analytically calculated using Bayes factors (BFs).

The predictive likelihood of y conditioned on the variance components

is a normal distribution with mean zero and covariance matrix

U�2 ¼ ðZAZT þ XBXT þ INÞ�
2 ð5Þ

By integrating out the variance components, the marginal likelihood of y

is a multivariate t-distribution with mean 0, degrees of freedom �0 and

variance �0
�0�2

U�20 (Newton et al., 2011).

The marginal distribution of y is used for testing the null

hypothesis H0: the qth pathway is not associated. This null hypothesis

is tested using BFs, the ratio of the probability of the data under a

model without the pathway in question over the probability of the full

model including all pathways. The logarithm of the BF for pathway q is

given by

lnðptðyj0, �0, �
2
0ðXð�qÞBX

T
ð�qÞ þ IN þ ZAZTÞÞÞ

� lnðptðyj0, �0, �
2
0 ðXBX

T þ IN þ ZAZTÞÞÞ
ð6Þ

where Xð�qÞ is the X matrix with the contribution of the qth pathway

removed. The pt denotes the probability density function of a random

variable with a multivariate t-distribution with �0 degrees of freedom,

mean equal to zero and variance �0
�0�2

�20 ðXBX
T þ IN þ ZAZTÞ under

the null model. The smaller the value of the BF, the greater the evidence

that the pathway should be kept in the model and the hypothesis H0

rejected.

2.4 Sparse normal/Adaptive lasso

The second prior distribution assumes that the pathway effects do not

necessarily have the same variance and it allows some of variances to be

zero. The prior distribution is a normal distribution with mean zero and

variance �, where � is a diagonal matrix with positive or zero entries

along the diagonal. The associated pathways are found using the iterative

algorithm proposed by Wipf and Nagarajan (2008), which solves an

adaptive lasso problem in each iteration. The adaptive lasso, like the

standard lasso (Tibshirani, 1996), shrinks most of the pathway coeffi-

cients to zero resulting in a sparse solution with only the pathways that

are significantly associated with the tested phenotype having non-zero

coefficients.

Wipf and Nagarajan (2008) proposed an algorithm that finds the

solution of the sparse regression problem using automatic relevance

determination (ARD)

y ¼ X�þ �,� � Nð0,�Þ, � � Nð0, �2Þ ð7Þ

where the hyper-parameter matrix � is a diagonal matrix with positive

or zero entries along the diagonal.

The diagonal entries of � can be estimated from the data by first

marginalizing over the coefficients b and then performing a type II max-

imum likelihood, which is equivalent to minimizing

Lð�Þ ¼ logj�yj þ yT��1y y, where �y ¼ �
2Iþ X�XT ð8Þ

where a flat hyper-prior is assumed for the diagonal entries of �. The

associated pathways correspond to the non-zero entries of �. A full

description of the iterative algorithm can be found in Wipf and

Nagarajan (2008). Compared with other EM-type or fixed point

algorithms that have been proposed for minimizing Equation (8), their

algorithm is less prone to get stuck in a local minimum.

In each iteration of the algorithm, an adaptive lasso problem is solved.

An adaptive lasso problem is similar to the original lasso problem

with the difference that individual adaptive weights are assigned to

each parameter. The weights of the adaptive lasso problem are updated

in each step of the algorithm ofWipf and Nagarajan (2008). The adaptive

lasso problem can be solved using the least angle regression procedure

as suggested by Zou (2006).

The probability density function presented in Equation (4) can be

formulated as in Equation (7) by rewriting it as

pðyj�,A, �2Þ / ð�2Þ�
N
2 exp

�
�
ðy� X�ÞTðV�

1
2Þ
TV�

1
2ðy� X�Þ

2�2

�

¼ ð�2Þ�
N
2 exp

�
ðy� � X��Þ

T
ðy� � X��Þ

2�2

�

The vector y� ¼ V�
1
2y follows a normal distribution with mean

X�� ¼ V�
1
2X� and variance �2IN, where the matrix V equals

ðZAZT þ INÞ as seen earlier. A square root of the matrix V�1 can be

calculated, for example, by its Cholesky decomposition. A sparse normal

prior distribution with mean zero and variance � is assumed for the b
coefficients, where � is a square diagonal matrix.

The iterative algorithm proposed by Wipf and Nagarajan (2008) can

therefore be applied to find a sparse solution for

y� ¼ X��þ �,� � Nð0,�Þ, � � Nð0, �2INÞ ð9Þ

The error variance �2 acts as the tuning parameter that controls

the shrinkage of the ARD. The smaller the value of �2, the greater the

shrinkage applied; therefore, fewer diagonal entries of � are non-zero.

The non-zero diagonal entries of � correspond to non-zero b coefficients

and associated pathways.

3 SIMULATION STUDY

The proposed methods were compared in a simulation study

with FM and BGSA (Shahbaba et al., 2012). As discussed by
Evangelou et al. (2012), FM is one of the most powerful enrich-

ment and association methods for pathway analysis. The FM
statistic is twice the negative of the logarithm of the product of

the SNP P-values within each pathway. Its significance is calcu-
lated using a �2 distribution with degrees of freedom equal to

twice the number of SNPs in the pathway. An additional aim

of the simulation study was to find the appropriate hyper-
parameters for the two proposed methods.
To design realistic simulation models, the Platelets GWAS

data were used. Both the genotype and pathway matrices include

90 061 SNPs in 4767 genes that are members of the 211 KEGG
pathways. For simplicity only the SNPs with no missing values

were tested in the simulation study, leaving 50 254 SNPs for
inclusion.

The simulated phenotypes were computed as

y ¼ XJ�J þ ZKuK þ � ð10Þ
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where X and b are restricted to a subset of J selected pathways,
and Z and u are restricted to a subset of K selected SNPs.
The selected SNPs and pathways were the only SNPs and

pathways assumed to have a non-zero effect on the simulated
phenotypes. These SNPs and pathways were selected from
analyses of the p-selectin response to collagen (PC) phenotype

in the Platelets GWAS, as described later in text. The variance of
" is set to the residual error of the linear regression given in
Equation (10) when fitted to real data. The pathway and SNP

parameters were also found through Equation (10) when fitted to
real data.
We chose the first 100 SNPs with the smallest individual

P-values of association with the PC phenotype as the subset of
K selected SNPs. The P-values of these SNPs ranged from 10�52

to 10�3.

In the first scenario of the simulation study, the J associated
pathways were selected using the Normal/Bayes factors method
(NBF) method. Two different hyper-parameter combinations

were tested. The hyper-parameter combinations used are
ða, b, �0, �

2Þ ¼ ð10�2, 10�2, 10, 0:10Þ and ð10�4, 10�4, 200, 2Þ,
respectively. The selected pathways in both cases had BFs �1.

The number of associated pathways for the two sets of hyper-
parameters was 24 and 8, respectively.
In the second scenario of the simulation study, the J associated

pathways were found using the Sparse normal/Adaptive lasso
(SNAL) method. In the first case of the second scenario, the
hyper-parameter matrix factor a was set to 10�2 and the

tuning parameter �2 to 0.05, whereas in the second case a was
10�4 and �2 0.5. Applying this model to the Platelets GWAS, 24
and 15 pathways were selected to have effects on the simulated

phenotypes in the two cases.
Two more scenarios were simulated. In the third scenario, two

cases were simulated in which the selected pathways had FM
P-values50.05 and50:05

211, which resulted in 39 and 10 pathways,

respectively. For both cases, the largest pathway (which contains
9397 SNPs) was considered to be associated, and it contained 19
associated SNPs. This is the largest number of associated SNPs

contained in a single pathway.
Similarly, in the fourth scenario, two cases were simulated. In

the first case, the selected pathways are the 201 pathways that

had BGSA P-values50.05 and in the second case the selected
pathways are 8 pathways with BGSA P-values50:05

211.
A scaled-inverse-�2 distribution with parameters (2,1) was

assumed for the SNP parameters u. This is in contrast to
Shahbaba et al. (2012), who considered an improper prior in
their simulation study. This prior cannot be used here because

there are genes in our dataset that had only two SNPs assigned to
them. Shahbaba et al. (2012) in their simulation study, excluded
pathways that had common genes and considered only genes

that had 43 SNPs assigned to them. On the other hand, we
used the same priors (and hyper-parameters) as the ones used
in the simulation study of Shahbaba et al. (2012) for the pathway

level statistics.
The performance of the methods was assessed by plotting

receiver operator characteristic (ROC) curves and calculating

the area under the ROC curves (AUC) (Fawcett, 2006). An
ROC curve is a graphical plot of sensitivity against specificity.
Both sensitivity and specificity were recorded for a range of BF

thresholds, �2 values and P-values. This enabled assessment of

the overall power of the methods without assuming specific
thresholds. Sensitivity is the true positive rate calculated as the

ratio of pathways found to be associated divided by the number

of true associated pathways. Specificity is one minus the false
positive rate (FPR), which is the ratio of false positive pathways

over the number of true non-associated pathways. The AUC

represents the probability that a random true associated path-

way has a lower score (i.e. P-value or BF) than a random non-
associated pathway. An AUC close to 1 indicates an optimal

method, whereas an AUC of 0.5 just random performance.

The AUC is calculated using the convex hull of the ROC
curve (Fawcett, 2006). Under each of the scenarios described,

50 simulated datasets were generated from the model in

Equation (10) and the AUCs of each of the methods were
estimated.

For NBF, a BF cut-off value has to be applied for finding the

pathways that are associated with the response; a set of values
between 10�7 and 1 was considered as possible cut-off values. As

the cut-off value increases, the number of associated pathways

increases as does the number of false positives. For the SNAL
method, the tuning parameter �2 also took values between 1 and

10�7. The smaller the value of �2, the smaller the shrinkage

effect, i.e. more pathways are found to be associated. Further,
for both FM and BGSA, the P-value cut-offs ranged between

10�7 and 1. All sets of BF thresholds, �2 values and P-values

were of size 50.
A number of different hyper-parameters were tested for the

two proposed methods. The values of the hyper-parameter

values a and b of the variance matrices A and B tested were
ð10�1, 10�2, 10�3, 10�4, 10�5, 10�6, 10�8Þ. The hyper-parameter

values of the scaled-inverse-�2 distribution were (10, 25, 50,

100, 200) for �0 and (0.25, 0.50, 1, 2) for �2. For each simulated
phenotype, the combination of hyper-parameters that gave the

highest AUC of the proposed framework was recorded.

4 RESULTS

4.1 Simulation study

The performance of the methods was tested on the simulated

responses created under the four tested scenarios. Table 1 gives

the mean and median AUCs for methods SNAL, NBF, FM and
BGSA across the four tested scenarios. As can be seen from the

table, SNAL and NBF perform better than both FM and BGSA,

with SNAL performing slightly better than NBF. The differences

between the two proposed methods and the FM and BGSA

Table 1. Mean and median AUCs (with their standard

deviations in parentheses) of the four tested methods

across the four tested scenarios of the simulation study

Method Mean AUC Median AUC

SNAL 0.7551 (0.1543) 0.8050 (0.1948)

NBF 0.7469 (0.1665) 0.7888 (0.2400)

FM 0.6971 (0.0644) 0.6932 (0.0766)

BGSA 0.6576 (0.1456) 0.6121 (0.1091)
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methods are statistically significant. Using paired t-tests, the four
methods were compared. FM is statistically superior to BGSA

with a P-value of order 10�9. Similarly SNAL and NBF are
statistically superior to FM, with P510�8. SNAL is statistically
superior to NBF with a P-value50.05 (P¼ 0.0043). The mean

and median AUCs of the four methods for each one of the tested
scenarios (and their subcases) are given in the Supplementary
Tables S3–S6.

As discussed in the previous section, the hyper-parameters
with the highest AUCs of the methods were recorded. The
hyper-parameters that achieved the maximum AUC most fre-

quently across all 50 simulations of phenotypes for each of the
four tested scenarios are ða, b, �0, �

2
0Þ ¼ ð10

�4, 10�6, 200, 0:25Þ for
NBF and a ¼ 10�4 for SNAL.
Figure 1 shows the ROC curves of the four tested methods for

simulated responses generated in the first case of the second

scenario. The selected pathways were chosen by SNAL with
the hyper-parameter a ¼ 10�4 and the tuning parameter
�2 ¼ 0:05. The plot includes the ROC curves of the four tested

methods and a diagonal line that represents the random model
that classifies a pathway as associated with a probability equal to
0.50. The further away an ROC curve is from the diagonal line,

the better the performance of the method is. As can be seen, the
ROC curves of FM and BGSA are close to the diagonal line,
whereas the ROC curves of the SNAL and of the NBF methods

are further away. The proposed Bayesian hierarchical framework
attains higher sensitivity compared with the other methods,
whereas its specificity is at the same level.

For a BF cut-off of 1, the FPR of the NBF method is �0.30,
whereas its true positive rate is �0.90. For an FPR �0.05, the
sensitivity of NBF is slightly higher than that of SNAL.

Differences across the selected pathways chosen by the FM,
SNAL and NBF methods were also observed. The average
number of SNPs within a KEGG pathway is equal to 723

SNPs, whereas the average number of SNPs within a pathway
from the ones that FM selected was 1252 (for the first case of

scenario 3) and 1854 (for the second case of scenario 3). This
phenomenon was not observed for either NBF or SNAL, where

the average number of SNPs in the selected pathways was
�500 SNPs.

Therefore, the performance of the four methods was further
tested for another scenario. The selected J pathways were

random pathways that either had 5300 SNPs or 4700 SNPs.
Table 2 shows the performance of the methods for the two

cases. As can be seen, the performance of FM drops significantly

as the pathway size decreases. In addition, BGSA is also affected
by the pathway size but less so than FM. On the other hand,

both the NBF and SNAL methods are less affected. Paired
t-tests were used to test the differences between the four methods

for each one of the two cases. FM is statistically superior to all

three other methods for the second case with P-values50.05. On
the other hand, for the first case, both NBF and SNAL are

significantly different from the other two methods with
P510�15. Unpaired t-tests were used to compare the differences

of each method for the two cases. Only the differences of SNAL

were not found significant, whereas for the other three methods
differences between the two cases were statistically significant.
SNAL generally outperforms the other methods, followed by

NBF. In addition, SNAL was not affected by the sizes of the

pathways, whereas the other three methods were found to be
affected by pathway size. FM had the greatest power in identify-

ing pathways that were considered to be large compared with

pathways that were smaller in size.

4.2 Platelets GWAS

The proposed Bayesian hierarchical framework was applied to
the Platelets GWAS. It was applied to find pathways associated

with the four endpoints that measure platelet function: p-selectin
and fibrinogen responses to both collagen and ADP agonists as

described by Jones et al. (2007, 2009).
As in the simulation study, the 211 KEGG pathways were

tested. The SNPs of the study were mapped to the pathways.
Only 90 061 SNPs of the study are members of the 211 KEGG

pathways. Any missing genotypes were replaced by 0, 1 or 2

using mean imputation. The frequencies of genotypes 0, 1 and
2 were calculated and any missing genotypes were replaced by 0,

1 or 2 with probabilities equal to their frequencies.
Following the aforementioned simulation study, thresholds

were chosen to give an FPR of 0.05. The NBF hyper-parameters
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Fig. 1. ROC curves of the four methods for different simulated

responses. The hyper-parameter combination of the NBF method is

ð10�4, 10�6, 200, 0:25Þ. The hyper-parameter a ¼ 10�4 for the SNAL

method. The simulated response was created in the first case of the

second scenario, i.e. the selected pathways were selected by SNAL

Table 2. Mean and median AUCs (with their standard deviations in

parentheses) of the four methods

Random/Pathway size Method Mean AUC Median AUC

� 300 NBF 0.5891 (0.0265) 0.5843 (0.0155)

SNAL 0.5940 (0.0388) 0.5925 (0.0420)

FM 0.5074 (0.0147) 0.5000 (0.0000)

BGSA 0.5197 (0.0232) 0.5065 (0.0097)

� 700 NBF 0.6094 (0.0431) 0.6101 (0.0400)

SNAL 0.5803 (0.0472) 0.5667 (0.0367)

FM 0.6692 (0.0439) 0.6755 (0.0440)

BGSA 0.5553 (0.0295) 0.5556 (0.0315)

Note: The selected pathways correspond to random pathways that either contain

5300 SNPs or4700 SNPs.
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used are ða, bÞ ¼ ð10�4, 10�6Þ and ð�0, �
2
0Þ ¼ ð200, 0:25Þ, and for

the SNAL method the hyper-parameter a equals 10�4.
The associated pathways identified by NBF are the ones with

BFs �0.95. The tuning parameter �2 of the SNAL method was

set equal to 0.5. The results of applying the methods on the

four phenotypes of platelet function can be found in the

Supplementary Tables S8–S11.

The KEGG pathways with the smallest BFs are Phagosome

for PC, Tight junction for PA, Salivary secretion for FC and

Leucocyte transendothelial migration for FA. There are a

number of pathways that were found to be associated with41

phenotype. For example, the Viral myocarditis pathway was

found to be associated with the PC and FC phenotypes. In add-

ition, the Melanogenesis pathway was found to be associated

with PC, PA and FC phenotypes. Tight junction was further

found to be associated with both PA and FA phenotypes.

SNAL identified on average, a smaller number of associated

pathways than the NBF method. Similarly to NBF, SNAL

identified pathways that were associated with at least two of the

phenotypes. For example, the Glycolysis/Glycogenesis pathway as

associated with PA and FA phenotypes, the pathway Vitamin b6

as associated with PC and PA phenotypes. In addition, the path-

ways of Glycosaminoglycan degradation and Glycosphingolipid

biosynthesis were found to be associated with PC and FC.
There are pathways that were identified by both methods as

associated. The five pathways identified by SNAL as associated

with FA phenotype, were all included in the list of pathways with

BFs50.95. For the other three phenotypes, the proportions of

pathways found by SNAL and NBF are466%.
Basal cell carcinoma was found to be associated with pheno-

types FA, FC and PC, and Renal cell carcinoma was found to be

associated with phenotype FC. Basal cell carcinoma and Renal

cell carcinoma pathways were found to be associated with all

four endpoints by either method, either by both of the methods

or by one of them.

4.3 EPIC-Norfolk GWAS

The pathway matrix of the EPIC-Norfolk GWAS has size

59 327� 211. Any missing genotype values were imputed using

mean imputation as the number of missing genotype values was

small. Similarly with the Platelets GWAS, a simulation study was

performed for identifying the hyper-parameters of the two meth-

ods that resulted in an FDR of 0.05 in the simulation. The

appropriate hyper-parameter combination for the NBF method

is ða, b, �0, �
2
0Þ ¼ ð10

�4, 10�5, 200, 0:25Þ and a ¼ 10�4 for the

SNAL method. Pathways with BFs50.765 were considered to

be associated, and the tuning parameter �2 was set equal to 1.4.
NBF identified 18 pathways as associated with BMI, whereas

SNAL identified 55 pathways (Supplementary Table S12).

Amongst them 17 of these pathways were identified by both

methods. Some of the pathways found to be associated with

BMI are Cell cycle, Steroid biosynthesis, SNARE interactions

in vesicular transport, Viral myocarditis, Fc epsilon RI signalling

pathway, TGF-b pathway, Haematopoietic cell lineage, Glioma,

Melanogenesis and Jak-STAT signalling pathway. Pathways

related with glycolysis were also identified as, for example,

Glycolysis/Gluconeogenesis, Other glycan degradation,

Glycosaminoglycan biosynthesis and Glycerolipid metabolism.

The KEGGHaematopoietic cell lineage identified by Liu et al.

(2010) as associated was found associated by both SNAL and

NBF. The KEGG pathways Type 2 diabetes mellitus, PPAR

signalling pathway, Fc epsilon RI signalling pathway identified

by either or both NBF and SNAL as associated are members of

the list of pathways related to obesity published by Park et al.

(2011).
Amongst the pathways not reported previously for association

with BMI or obesity are KEGG SNARE interactions in vesicu-

lar transport and KEGG Jak-STAT signalling pathway.

SNARE interactions are biologically related with the adipocyte

as a secretory organ, as was discussed by Bradley et al. (2001).
Furthermore, obesity was analyzed as a binary phenotype,

with 1 if BMI was430 and 0 if BMI was �30. Both NBF and

SNAL were applied to the binary version of BMI, retaining the

linear model for the purpose of testing association. The results of

this application are presented in Supplementary Table S13. The

associated pathway with the smallest BF is KEGG Jak-STAT

signalling pathway; surprisingly this is not the reported pathway

with the strongest association when BMI was analyzed as a

quantitative random variable. Most of the KEGG pathways

identified were also identified when the quantitative BMI was

analyzed. The KEGG pathways not reported previously are

ErbB signalling pathway, Gap junction, Alzheimer’s disease

and Shigellosis.

The performance of the four methods for analyzing binary

data was also tested through a simulation study. The results of

this study are given in Supplementary Table S7.

5 IDENTIFICATION OF ASSOCIATED SNPs

Although our emphasis is on identifying associated pathways,

our methods can also be applied to improve detection of asso-

ciated SNPs while taking pathway membership into account. As

was discussed in Section 2, the SNP parameters are treated as

nuisance parameters and are integrated out of the analysis, for

computing the pathway effects (b). Alternatively, the pathway

effects can be considered as nuisance parameters and integrated

out of the model given in Equation (3). By integrating out the

pathway effects, the SNPs associated with the tested phenotype

can be identified.

The two proposed methods can be used to identify the asso-

ciated SNPs. For example, the SNP BFs of NBF can be com-

puted as

lnðptðyj0, �0, �
2
0ðXð�i ÞBX

T
ð�i Þ þ IN þ Zð�i ÞAZ

T
ð�iÞÞÞÞ

� lnðptðyj0, �0, �
2
0ðXBX

T þ IN þ ZAZTÞÞÞ
ð11Þ

where Zð�iÞ equals the genotype matrix with its ith column (i.e. the

contribution of the ith SNP) removed. The Xð�iÞ matrix equals

the Zð�i Þ times the pathway matrix (P) with the contribution

of its ith SNP (row) removed. The difference between a SNP

BF and a pathway BF is that now the effect of the SNP is

removed from both the genotype and pathway matrices.
NBF was applied to identify SNPs associated with platelet

function. The results of the analysis are in agreement with pre-

viously published results that identified the GP6 gene as strongly

associated with platelet function (Jones et al., 2007, 2009).

No other SNPs were identified as significantly associated.
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NBF was also applied to the EPIC-Norfolk GWAS for iden-

tifying associated SNPs. The five SNPs with the smallest BFs are

rs12488868, rs2952271, rs3393, rs8076465 and rs10887578. SNP

rs12488868 lies close to ROBO1 gene on chromosome 3, the

second and fourth SNPs lie on chromosome 17 close to gene

PRKAR1A and SNP rs10887578 lies close to GRID1 gene

(chromosome 10). All of the aforementioned genes have been

reported as associated with BMI. SNP rs3393 lies close to

ADORA3 gene (chromosome 1) and that has not been reported

previously as associated with BMI. Gene ADORA3 is an adeno-

sine A3 receptor involved in a number of intracellular signalling

pathways and physiological functions. It is related with both

neuroprotective and neurodegenerative effects as well as with

cell proliferation and death.

6 DISCUSSION

In this article, a Bayesian hierarchical framework is proposed

that incorporates pathway membership of SNPs through a

two-level hierarchical model for identifying pathways associated

with a phenotype. The phenotype of an individual is modelled to

depend on both, its genotype and on a common contribution

from alleles in each pathway. The SNP effects, over the

common contribution from pathways they are members of, are

assumed to be distributed identically and independently. These

SNP effects are considered nuisance parameters and integrated

out of the analysis so that the pathways associated with the dis-

ease can be identified. Intuitively, as is typical for random effects

models, integration over SNP effect implies a correlation struc-

ture in the noise that is dependent on genotypes: individuals with

similar genotypes show similar deviations from expected values

of the regression model.
Within this hierarchical setting, we proposed two methods for

selecting pathways as predictor variables for the phenotype. The

NBF and the SNAL methods test the predictive power of a

pathway, and hence its association with the phenotype. NBF

uses the BF of the model that drops the pathway of interest

over the full model that includes all pathways [see Equation

(6)]. An alternative way to test for association was to compute

the BF of the model with no pathways included over the one that

includes the pathway of interest, which shows similar, slightly

inferior, performance as FM (data not shown) and has not

been further considered here. Alternatively, a full model selection

with a combinatorial search over all possible sets of pathways

could be performed but would be computationally demanding

and has also not been considered here.
On the other hand, SNAL balances sparsity of predictors with

explanatory power. The iterative algorithmproposed byWipf and

Nagarajan (2008), as used in SNAL, applies ARD, which achieves

sparsity that lies between that achieved by l0 and l1 norm regular-

ization [see Wipf and Nagarajan (2008) for details]. That is, it

provides sparser results than l1 norm regularization (as imple-

mented, e.g. by the lasso), but is not as computationally demand-

ing as l0 norm regularization, which requires a combinatorial

search through all sets of predictors. Therefore, SNAL provides

the best compromise between the ideal of a systematic combina-

torial search for the best set of pathways and computational

feasibility.

The simulation study showed that both SNAL and NBF are
able to identify pathways associated with the phenotype.
Further, the performance of NBF improves with increasing path-

way size, whereas that of SNAL is unaffected by the size of
the pathways. This can be explained by the fact that some
of the smaller pathways are subsets of larger pathways.

Therefore, the predictors of the model are correlated, and NBF
finds sparser solutions with good predictive behaviour by drop-
ping some of these pathways.

NBF has the advantage over SNAL to be easily parallelized.
The computing time of SNAL crucially depends on the algo-
rithm used for a subroutine solving an l1 norm regularization

problem. We used the least angle regression algorithm in this
study. Depending on the number of predictors, other algorithms,
for example, based on coordinate descents (Friedman et al.,

2010), could perform well.
The two methods were applied to the data of two GWAS on

the genetic structure of platelets function and body mass index.

Through simulation, suitable hyper-parameters of NBF and
SNAL were found, as well as the appropriate BF cut-off and
tuning parameter �2 that gave an FPR of 0.05. As we pointed

out in Section 2.4, the smaller the value of �2 the more shrinkage
is applied and the fewer associated pathways are found. The
shrinkage parameter �2 of SNAL, when applied to the BMI

dataset, was found to be 1.4, larger than the one of the
Platelets GWAS of 0.5. As discussed earlier, this is probably
due to the variation of the studied phenotype and the number

of correlated variables within the model. SNAL identified more
pathways for BMI than NBF, whereas NBF found more path-
ways for platelet function than SNAL.

The results of the simulations showed that the methods out-
perform both FM and BGSA. BGSA is one of the recently pub-
lished methods for pathway analysis that uses hierarchical

modelling for identifying associated pathways. Shahbaba et al.
(2012) compared BGSA with the well-known pathway enrich-
ment methods ALIGATOR (Holmans et al., 2009) and GSEA.

The results of their analysis showed that the BGSA outperforms
both methods.
In addition, we have recently published a comparison of

current pathway analysis methods (Evangelou et al., 2012).

Three well-known association methods were adapted to test
the competitive null hypothesis that the pathway genes are no

more associated than the non-pathway genes. The three adapted
association methods, tail strength measure, FM and ARTP, were
compared with competitive methods, hypergeometric test and

GSEA. The results of the analysis suggested that ARTP and
FM should be preferred for both competitive and association
testing. It should be noted that association methods have in prin-

ciple better performance than competitive methods, as their
tested null hypothesis is more stringent (Evangelou et al.,
2012). These results led us to compare our new methods with

FM and BGSA.
Although the proposed methods are formulated in a Bayesian

framework, an advantage is their implementation without time-
consuming Monte Carlo simulation and their ability to deal with

both large numbers of tested SNPs and pathways. They are also
easily adapted to include other functional information on the
SNPs in the design matrix P. This is comparable with the

work of Chen and Witte (2007) but with the difference that
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our methods can handle larger numbers of SNPs and any indi-
vidual level covariates. This is potentially important when deal-
ing with structured populations or when allowing for
environmental exposures.

We have considered a two-level model with SNPs assigned to
pathways, but further levels of grouping SNPs, for example in
genes, can be easily included potentially improving power by

borrowing more information. This approach might be useful
when dealing with rare variants that individually contribute
little information. Further extensions of our approach are pos-

sible to allow for structure within the pathway database, such as
the hierarchical organization of the Gene Ontology (The Gene
Ontology Consortium, 2000). Finally, proper modelling of non-

linear responses, including ascertained case/control status, will be
an important future direction, although we believe that linear
modelling yields reasonable power for the small genetic effects
typically seen for complex traits.
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