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Abstract

Motivation: In cancer genomics research, one important problem is that the solid tissue sample ob-

tained from clinical settings is always a mixture of cancer and normal cells. The sample mixture

brings complication in data analysis and results in biased findings if not correctly accounted for.

Estimating tumor purity is of great interest, and a number of methods have been developed using

gene expression, copy number variation or point mutation data.

Results: We discover that in cancer samples, the distributions of data from Illumina Infinium 450 k

methylation microarray are highly correlated with tumor purities. We develop a simple but effect-

ive method to estimate purities from the microarray data. Analyses of the Cancer Genome Atlas

lung cancer data demonstrate favorable performance of the proposed method.

Availability and implementation: The method is implemented in InfiniumPurify, which is freely

available at https://bitbucket.org/zhengxiaoqi/infiniumpurify.

Contact: xqzheng@shnu.edu.cn or hao.wu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances of high-throughput technologies have revolutionized the

cancer genomics research. Tremendous efforts have been made to

study the genomic characteristics of different types of cancers, for ex-

ample by large consortiums like The Cancer Genome Atlas (TCGA).

Results from these studies contribute significantly to the understanding

of cancer etiologies and the discovery of diagnostic biomarkers and

therapeutic targets. In cancer research, one important problem cannot

be overlooked is that the solid tissue sample obtained from clinical set-

tings is always a mixture of cancer and normal cells. The mixture

brings complication to data analysis and results in biased and even er-

roneous findings if not correctly accounted for (Olshen et al., 2011).

The problem of estimating ‘tumor purity’, or the proportion of

cancer cells from a mixed tissue, has been of great interests. A num-

ber of statistical methods and software tools were developed over

the last several years, based on data for gene expression (Ahn et al.,

2013; Clarke et al., 2010; Yoshihara et al., 2013) or copy number

variations and point mutations (Bao et al., 2014; Carter et al., 2012;

Roth et al., 2014; Su et al., 2012). In particular, ABSOLUTE (Carter

et al., 2012) is a statistical method for inferring tumor purity and ab-

solute copy number from a mixed sample based on SNP array data.

It takes the estimated copy ratios as input and jointly estimates pur-

ity and ploidy by maximizing the whole data likelihood.

ABSOLUTE has been applied to most of the TCGA samples, and its

purity estimates have become the de facto gold standards provided

by TCGA. Nevertheless, many of the existing methods still require

data from purified samples or significant prior biological know-

ledge, which could be difficult to obtain in clinical settings due to

the heterogeneity of cancer. The limitations significantly undermine

the practical usefulness of the existing methods.
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In this work, we discover through extensive real data exploration

that DNA methylation data from Illumina Infinium 450 k micro-

array are informative for tumor purities. DNA methylation is an im-

portant epigenetic modification of DNA molecule with essential role

in many basic biological processes. It often shows abnormality in

various types of cancers (Irizarry et al., 2009). An important feature

of DNA methylation is that a majority of the genome are either fully

methylated or unmethylated (Lister et al., 2009). From a mixed

tumor tissue, genomic regions that are differentially methylated be-

tween cancer and normal will likely show mid-level methylation. So

the distribution of mid-level methylation provides information for

the tumor purity. Although there are several reports on the existence

of intermediately methylated regions (IMR) even from pure sample

(Elliott et al., 2015; Landau et al., 2014; Stadler et al., 2011), our

real data observations show that there are much more IMRs from

mixed samples, so that the tumor purity can still be inferred from

IMRs with carefully designed algorithm.

A recently developed method MethylPurify estimates tumor pur-

ity from bisulfite-sequencing (BS-seq) data (Zheng et al., 2014). The

method uses the methylation information from single sequence read

and performs estimation through a two-component mixture model

using EM algorithm. An important advantage of the method is that

it does not require data from reference samples, so it has a wider ap-

plication in clinical settings. However, because of the high cost of

BS-seq experiment, application of the method is still rather limited.

In large-scale population level studies, for example the epigenome-

wide association study (epiGWAS), microarray technology such as

Illumina Infinium 450 k microarray is still widely applied. In this

work, we seek to understand whether the tumor purity can be esti-

mated from methylation microarray data. We discover that there exist

probes, mostly with intermediate methylation levels, that are inform-

ative for inferring tumor purity. We develop a method to estimate

tumor purity from Illumina Infinium 450 k microarray and then apply

the method on the TCGA lung adenocarcinoma (LUAD) data. Results

show that the method can accurately predict the tumor purity levels.

2 Methods

We first provide a formal justification of the validity of our ap-

proach. Denote the proportion of cancer cells in solid tumor be a.

Because of the differential methylation between cancer and normal

samples, from methylation microarray there will be a number of

probes located in the differentially methylated regions (DMRs).

These probes are referred to as differentially methylated probes

(DMPs) hereafter.

Within DMRs genome-wide, assume the true methylation levels

from the pure cancer/normal cells follow two distinct, unimodal dis-

tributions with mode lk, where k¼0/1 represent hypo- and hyper-

methylation. In other words, we assume that the higher methylation

levels (regardless of its sample of origin) in all DMRs follow a distri-

bution with mode l1, and the lower methylation levels follow a dis-

tribution with mode l0. Then in the mixed sample, since the

difference between l0 and l1 will reasonably large, beta values (b)

from DMPs will show mid-level methylation if a is not too close to 0

or 1. In addition, they will follow a bimodal distribution with two

modes located at al0 þ ð1� aÞl1 and al1 þ ð1� aÞl0, respectively.

The locations of two modes, which are functions of a, can then be

used to estimate a. The essence of the proposed method is to identify

DMPs and then use the distribution of their beta values to estimate

tumor purity. We design following estimation procedure. For illus-

tration purpose, we use TCGA LUAD data as an example.

The algorithm is summarized in Supplementary Figure S1. The

first step of the algorithm is to select DMPs. Since according to the

aforementioned model, only data from DMPs provide information

for tumor purity. Including non-DMPs will weaken the signal to

noise ratios. We argue that a CpG site is only informative for tumor

purity estimation when it exhibits stable methylation differences be-

tween pure normal and tumor cells and has relatively large variance

among tumor samples due to different normal cell contaminations.

So we select probes with following two characteristics as DMPs:

(i) they show differential methylations among cancers and normal

and (ii) their beta values have large variance in tumor samples. To

do so, we first conduct a non-parametric Wilcoxon Rank-Sum test

on each probe between the tumor and normal and select probes with

P value less than a pre-defined threshold as candidate DMPs. Next

for all candidate DMPs, we compute their variances of the beta val-

ues from all cancer samples and filter out the ones with very small

variances. This step is necessary because we observe from real data

that there are non-trial number (�20–30%) of candidate DMPs

with very small variances cross cancers. This is perhaps caused by

technical artifacts such as probe effects, since different tumor puri-

ties from cancer should result in relatively large variance for DMPs.

We exclude these probes and use the rest as true DMPs for next step

of the algorithm.

With DMPs available, the beta values from DMPs within a data-

set follow a bimodal distribution and the location of the modes will

be used to estimate purity. To increase the signal to noise ratio in

data, we use the following procedure to convert the bimodal into a

unimodal distribution. We first determine the hypo-/hyper-

methylation status for all selected DMPs through comparing their

mean beta values of DMPs from two groups. DMPs with higher

mean beta values in cancer groups are deemed hyper-methylated in

cancer and vice versa. Next, we transform all beta values for DMPs

according to their methylation status. The beta values for hypo-

methylated probes will be changed to 1� b, and there will be no

change for hyper-methylated probe. We assume that approximately

l0 þ l1¼1. This assumption is valid based on real data observation

from both microarray and BS-seq data. Under this assumption, the

transformed beta values for all DMPs will follow a unimodal distri-

bution with mode located at al1 þ ð1� aÞl0, denote such value as

mc. To estimate mc, we compute the probability density of all trans-

formed DMP beta values using kernel density estimation. The mode

of the distribution is deemed estimate of mc.

The estimated mc is related but not exactly equal to the

tumor purity. Consider tumor sample i, we have

mci ¼ ail1 þ ð1� aiÞl0 ¼ l0 þ ðl1 � l0Þai. Here we implicitly

assume that l0 and l1 take the same values from all samples,

which is reasonable. Given the size of the genome, it is conceivable

that the modes of methylation level distributions from cancer/nor-

mal within DMRs are very similar from different patients. The

model suggests that there is a linear relationship between mci and ai,

and the coefficients depend on l0 and l1. Instead of making assump-

tions on l0 and l1, we take a supervised learning approach to esti-

mate ai. To be specific, we obtain the purity estimates from

ABSOLUTE for the LUAD samples, use them as true ai and then fit

following linear regression model: ai ¼ b0 þ b1mci þ �i. The esti-

mated model (regression coefficients) can then be used to convert

mci to ai.

The method is implemented in software InfiniumPurify, which is

freely available at https://bitbucket.org/zhengxiaoqi/infiniumpurify.

InfiniumPurify provides excellent computational performance.

Processing and estimating the purity of all 466 samples in LUAD

data only takes 24 min on a single PC.
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3 Results

We obtain LUAD data from TCGA, which profiled 466 resected

LUADs and 32 matched normal samples using messenger RNA,

microRNA and DNA sequencing integrated with copy number,

methylation and proteomic analyses (Cancer Genome Atlas

Research, 2014). The tumor purity estimates from ABSOLUTE are

readily available for 197 samples.

We first look at the distribution of beta values from tumor tis-

sues and normal controls. Figure 1A and B shows the beta value dis-

tributions for cancer and normal samples, respectively. One can

observe a clear difference between tumor and normal samples in

their global methylation distributions, in particular the number of

intermediate methylated probes. Even though there are non-trivial

numbers of probes with intermediate methylation levels from both

samples, the cancer samples have much more such probes, evidenced

by the bump around the middle methylation levels. Figure 1C com-

pares the percentage of probes with intermediate methylation levels

in all tumor and normal samples. Clearly the percentages of such

probes are much greater for tumor samples. These results validate

our claim that there are more intermediate methylation regions in

cancer samples and demonstrate the possibility to use some probes

from these regions to infer tumor purity.

We next apply the proposed procedure to select DMPs between

tumor and normal samples. We use a rather stringent cutoff (P

value¼1e-19) as threshold to select candidate DMPs because results

show that only a small number of most informative DMPs are

enough to accurately determine the tumor purity. We also tried

other P-value cutoffs and final results from those are shown in

Supplementary Table S1. There are a total of 1257 probes selected

after this step. Variance of methylation levels of these candidate

DMPs in tumor samples are much greater than those in normal sam-

ples in general (Fig. 1D). However, there are still some probes with

small variances, likely caused by artifacts. We only keep probes with

variance greater than 0.005 in tumor samples as the final DMPs.

After this step, a total 957 probes are selected as DMPs (699 hyper-

methylation and 258 hypo-methylation), which accounts for

0.197% of all probes. Figure 1E shows the distribution of untrans-

formed beta values of DMPs from one randomly selected tumor

samples. The beta values are mostly mid-level because there are no

spikes at close to 0 or 1, unlike the distributions shown in Figure 1A

or B. On average, 87.0% of the selected DMPs are from intermedi-

ate methylation regrions (methylation levels between 0.2 and 0.8)

for all tumor samples. This validate our claim that some probes

from intermediate methylation level regions are informative for pur-

ity. Furthermore, the distribution clearly show two modes. The bi-

modal distributions demonstrate our theory the distributions of beta

values from the tumor samples are affected by the sample purity,

which furture validate our approach of using such distributions to

estimate purities.

Next we apply the proposed procedure to estimate purity from

all tumor samples. Figure 2A shows the scatter plot of the estimated

mc and the purity estimates from ABSOLUTE. The Pearson correl-

ation is very high at 0.831. In spite of the high correlation, one can

see the scales of these estimates are different. This indicates that the

mc values cannot be directly used as the purity estimates. The rea-

sons for different scales can be complicated, involving the variances

of beta value distribution, microarray measurement errors from dif-

ferent artifacts, or different stages of tumorigenesis in genetics

(ABSOLUTE) or epigenetics (InfiniumPurify). It will be very difficult

to figure out and correct all the artifact. That is the reason why we

design the last step of the algorithm, which is to use a supervised

training approach to convert the mc values to purity.

We use a 10-fold cross validation to verify the approach. To be

specific, we divide all 466 tumor samples into 10 subsets. Nine of

them are used as training data and then the result is validated in the

10th one. In each training step, the algorithm is applied to obtain

the estimated linear regression coefficients b0 and b1. We then esti-

mate mc values from the test data and apply the linear model to

transform them into purity levels. Figure 2B shows the results from

cross validation, e.g. the predicted purity levels versus the

ABSOLUTE estimates from the test data. Again, the correlation is

very high at 0.829. These results strongly support our proposed ap-

proach and show that using methylation microarray data for esti-

mating tumor purity provides very accurate results, and the

accuracy is comparable to those from ABSOLUTE.

To evaluate the effect of DMP selection on final results, we try

using different P-value cutoffs for Wilcoxon Rank-Sum test. Results

are shown in Supplementary Table S1. We find that using a looser

cutoff and including many probes DMPs will hurt the final results.

Fig. 1. (A) Distribution of beta values from tumor samples. (B) Distribution of

beta values from normal samples. (C) Boxplot comparing percentages of

probes with beta values between 0.2 and 0.8, for all tumor and normal sam-

ples. (D) Variances in beta values of candidate DMPs in tumor and normal

samples. (E) Distributions of beta values of DMPs, from a tumor sample

Fig. 2. Tumor purity estimation results from TCGA LUAD data. (A) Scatter plot

of mc versus ABSOLUTE estimations. (B) Estimation from InfiniumPurify ver-

sus ABSOLUTE, from 10-fold cross validation
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For example using 1e-10 as cutoff chooses close to 45 000 DMPs

and the final purity estimations has a correlation of 0.14 with

ABSOLUTE results. On the other hand, using 1e-20 as cutoff and a

little more than 100 DMPs produces a correlation of 0.80. These

results suggest that it is better to be more conservative on DMPs

selection. Overall, using 1000 or so DMPs gives the best results and

using two to four thousands provide slightly worse but comparable

results.

To test the robustness of our method, we further apply

InfiniumPurify to several other tumor types from TCGA, including

lung squamous cell carcinoma, colorectal adenocarcinoma, breast

cancer, head and neck squamous cell carcinoma and glioblastoma

multiforme. Results from these samples are consistent with that

from LUAD data and show strong correlation (over 0.8 on average)

with ABSOLUTE estimates. These further demonstrate that

InfiniumPurify provides consistent results and can serve as an alternate

for ABSOLUTE in estimating tumor purity (Supplementary Fig. S2).

Moreover, regression coefficients (b0 and b1) are quite similar across

different cancer types, implying that InfiniumPurify could poten-

tially infer purity of cancer types without ABSOLUTE estimates by

borrowing existing regression coefficients.

We also compare our method with two other exising tumor pur-

ify estimation tools based on copy number variance data, i.e.

AbsCN-seq (Bao et al., 2014) and THetE2 (Oesper et al., 2014).

However, the published purity estimates from AbsCN-seq and

THetE2 are rather limited, and we are only about to find a few sam-

ples with both AbsCN-seq/THetE2 estimates and 450 K array

(which are necessary for our method): two samples for AbsCN-seq

and four samples for THetE2. The purity estimates for these samples

are provided in Supplementary Tables S2 and S3. In general, results

show that the estimates from InfiniumPurify have strong correl-

ations with both AbsCN-seq and THetE2, further demonstrating

that InfiniumPurify is in good agreement with copy number varia-

tion (CNV)-based methods even though it uses completely different

biological infromation and data type.

4 Conclusion

In this work, we discover that the methylation microarray data from

tumor samples contain important information for tumor purity. In

particular, the shape of the beta values distribution is strongly influ-

enced by the purity. We explained the phenomenon using a statis-

tical model and show that the distributions can be utilized to

estimate tumor purity. In essence, beta values of informative probes

(DMPs) follow a bimodal distribution, and the locations of the

modes are related to the tumor purity. By obtaining the modes of

these beta values, tumor purities can be estimated from a linear

model. We design an algorithm InfiniumPurify for purity estimation

and show that it provides good results from several sets of TCGA

data.

There are several advantages of InfiniumPurify compared with

existing tumor purity estimation methods. First it does not require

data from reference panels, which could be difficult to obtain in clin-

ical settings due to the heterogeneity of cancer. Second, it is very

cost effective compared with base resolution methylation data such

as whole-genome BS-seq. Moreover, since the DNA samples are

much easier to collect compared with mRNA, the purity estimation

based on methylation data will provide a more practical mean in

clinical settings. From large cancer-related epiGWAS studies, the

purity estimation can be obtained as a by-product from the methyla-

tion microarrays. Finally, ABSOLUTE usually provides several

solutions corresponding to local maxima of the likelihood.

Prediction results from InfiniumPurify can help researches make a

final decision.

We use ABSOLUTE estimates as benchmark for model training

and results comparison because of the following reasons. First,

ABSOLUTE is one of the earliest and arguably the most influential

tools for tumor purity estimations. It is widely used as a gold stand-

ard to evaluate new purity estimation methods, for example

AbsCN-seq and THetE2. Second, it provides tumor purity estimates

for several types of tumors and thousands of samples, which can fa-

cilitate large-scale comparison. Third, InfiniumPurify is designed

and tested using data from TCGA samples, and ABSOLUTE is the

official tumor purity predictor for TCGA consortium. The fact that

InfiniumPurify estimates are highly correlated with ABSOLUTE esti-

mates, albeit using a very different data type and computational

model, further justifies the accuracy of ABSOLUTE estimates

independently.

We compared our results with several CNV-based methods and

show good agreements in purity estimation. However, although

both CNV and methylation contain information for cancer purity,

they do not have to be correlated in the raw data level (Feber et al.,

2014; Houseman et al., 2009). Both types of methods use genome-

wide distributions of quantities (CNV or intermediate methylated

probes) to estimate purity, the CNV and methylation could be

completely unrelated at finer scales such as within a few hundred

base pairs.

It is important to note that InfiniumPurify does not take ploidy

information of tumor cells into consideration, which could slightly

bias our prediction. However, since the prediction is based on rela-

tively large number of DMPs across the genome and a majority of

them will not have copy number variation, we expect the aberrant

copy numbers would not significantly change the overall result.

The selection of DMPs plays an important role in the method. In

its current form, InfiniumPurify only works when the number sam-

ples is reasonably large. Fortunately, in TCGA, most important can-

cer types have large sample size. It will be interesting and useful to

explore whether it is possible to combine data from different cancers

and construct ‘universal’ DMPs. Moreover, InfiniumPurify is only

focused on estimating tumor purity. Decoupling signals from mixed

sample to estimate the methylation levels from cancer/normal is our

research plan in the near future.

InfiniumPurify is specifically designed for data from Illumina

Infinium 450 k arrays, which is the most widely used platform for

DNA methylation. It is conceivable that the same principle and

methods can be applied to data from other platforms.

In this work, we present a simple but effective method to esti-

mate tumor purity from methylation microarray data. The method

can serve as an alternative for existing methods with similar goals.

Although the method is focused on tumor tissues, it can potentially

be applied to other highly heterogeneous samples such as blood or

brain. Furthermore, it will be very interesting to combine methyla-

tion with other genetic and genomic data such as gene expression

and genetic variants and build a joint model for tumor purity estima-

tion. Such model will have potential to significantly improve the es-

timation accuracy.
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