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Abstract

Motivation: Next-generation sequencing generates large amounts of data affected by errors in the

form of substitutions, insertions or deletions of bases. Error correction based on the high-coverage

information, typically improves de novo assembly. Most existing tools can correct substitution

errors only; some support insertions and deletions, but accuracy in many cases is low.

Results: We present Karect, a novel error correction technique based on multiple alignment. Our

approach supports substitution, insertion and deletion errors. It can handle non-uniform coverage

as well as moderately covered areas of the sequenced genome. Experiments with data from

Illumina, 454 FLX and Ion Torrent sequencing machines demonstrate that Karect is more accurate

than previous methods, both in terms of correcting individual-bases errors (up to 10% increase in

accuracy gain) and post de novo assembly quality (up to 10% increase in NGA50). We also intro-

duce an improved framework for evaluating the quality of error correction.

Availability and implementation: Karect is available at: http://aminallam.github.io/karect.

Contact: amin.allam@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing (NGS) technologies generate at decreas-

ing costs large amounts of data for tasks such as de novo genome as-

sembly, resequencing, single-nucleotide polymorphism discovery,

DNA–protein interaction discovery and identification of chromo-

somal rearrangements (Ilie and Molnar, 2013; Ilie et al., 2011).

Reads produced by NGS technologies suffer from sequencing errors

in the form of substitutions, insertions and deletions of bases, which

complicate further processing. Table 1 summarizes the types of

errors in recent NGS technologies.

Error correction methods utilize the high data coverage to cor-

rect the erroneous bases in reads. Existing methods are classified in

five categories: (i) k-spectrum-based methods, such as Lighter (Song

et al., 2014), Blue (Greenfield et al., 2014), Trowel (Lim et al.,

2014), HECTOR (Wirawan et al., 2014), BLESS (Heo et al., 2014),

Musket (Liu et al., 2013), Reptile (Yang et al., 2010), Quake (Kelley

et al., 2010), Hammer (Medvedev et al., 2011) and the works of

Chaisson et al. (2004), Pevzner et al. (2001), Qu et al. (2009),

Wijaya et al. (2009), Yang et al. (2011) and Le et al. (2013) that de-

compose reads into the set of all k-mers. Error correction is based

on the k-mer frequencies. Variants of these methods are used as pre-

processing stages in several assemblers, such as SOAPdenovo (Li

et al., 2010), ALLPATHS-LG (Gnerre et al., 2011), SGA (Simpson

and Durbin, 2012) and SPAdes (Bankevich et al., 2012; Nikolenko

et al., 2013). (ii) Suffix array/tree-based methods, such as SHREC

(Schroder et al., 2009), HSHREC (Salmela, 2010) and HiTEC (Ilie

et al., 2011), are generalizations of k-spectrum methods that support

multiple k values. They build a suffix array/tree of all read suffixes

and correct errors using the k-mer frequency weights associated

with the suffix tree nodes, whereas RACER (Ilie and Molnar, 2013)
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is based on the same concepts, without explicitly using a suffix

array. Fiona (Schulz et al., 2014) utilizes partial suffix trees along

with statistical methods. (iii) Multiple sequence alignment (MSA)-

based methods consider each read r as reference and perform mul-

tiple alignment of reads that share at least one k-mer with r. Coral

(Salmela and Schroder, 2011) creates a consensus sequence after

each alignment with r. DAGCon (Chin et al., 2013) uses a directed

acyclic graph instead of a consensus sequence. ECHO (Kao et al.,

2011) computes consensus bases expectation maximization algo-

rithm that by performing pairwise alignment among reads sharing at

least one k-mer. MuffinKmeans (Alic et al., 2014) groups reads

based on spectral clustering before applying MSA. (iv) Filtering

methods, such as Diginorm (Brown et al., 2012), exclude a substan-

tial number of reads classified as erroneous based on k-mer frequen-

cies. (v) Hybrid methods, such as LoRDEC (Salmela and Rivals,

2014), Proovread (Hackl et al., 2014), LSC (Au et al., 2012) and

PBcR (Koren et al., 2012), specifically target the correction of

Pacific Biosciences reads, which are very long and chimeric, using

Illumina reads.

Read error correction has two major key challenges: (i) correct-

ing reads associated with low-covered regions of the genome; reads

having high error rate and reads that can be mapped to inexact re-

peat regions. (ii) Handling insertion and deletion errors (Most meth-

ods consider only substitution errors. At the time of writing this

article, Blue, Fiona, HECTOR, MuffinKmeans, DAGCon, Coral

and HSHREC support insertion and deletion errors. The current im-

plementation of BLESS supports substitution errors only. Hybrid

methods target specifically Pacific Biosciences reads.). This is im-

portant since sequencing machines that produce long reads, which

are useful for obtaining high-quality assemblies, suffer from such

errors (Table 1).

We propose Karect (KAUST assembly read error correction

tool). Karect belongs to the MSA category. It considers each read r

as reference, performs multiple alignment for a set of reads similar

to r and stores the accumulated results in a partial order graph

(POG; Lee et al., 2002). Compared with existing approaches, Karect

introduces novel methods to select an optimized set of reads similar

to r; represent reads in the graph; compute weights for the graph

edges and construct corrected reads.

Karect has the following advantages: (i) it supports substitution

errors (called mismatches), insertion and deletion errors (called

indels) and is compatible with most NGS technologies. (ii) It is fast,

supports parallel execution on multi-core CPUs and can work with

limited memory. (iii) It is effective against low-coverage regions,

high error-rate regions and inexact repeat regions. (iv) Experiments

on data from several genomes sequenced by various sequencing

technologies show that Karect consistently outperforms existing

techniques in terms of both individual-bases error correction (up to

10% increase in accuracy gain) and post de novo assembly quality

(up to 10% increase in NGA50).

This article also introduces an improved framework for evaluat-

ing the quality of error correction methods.

2 Methods

The general framework of the introduced error correction mechan-

ism is described in Algorithm CORRECTERRORS. The novel aspects

of the algorithm are explained in the following subsections. Our

framework uses POGs to accumulate partial alignment results.

POGs are directed acyclic graphs that represent multiple alignment

information of a set of sequences. POGs are used in various bio-

informatics applications, including protein alignment (Lee et al.,

2002) and the DAGCon module within the HGAP assembler (Chin

et al., 2013).

2.1 Selecting candidate reads
Let R be the set of reads from the sequencing machine. We consider

each r 2 R as reference read and select a set Cr � R of candidate

reads to align with r (line 3 in Algorithm CORRECTERRORS). Ideally,

Cr should contain all reads that have significant overlap with r.

However, this would result in very high computational cost during

the alignment phase. Therefore, existing error correction techniques

rely on heuristics to select a small set of candidate reads. For ex-

ample, Coral (Salmela and Schroder, 2011) selects reads that share

with r at least an exact k-mer. Unfortunately, this heuristic is too re-

strictive and may incorrectly discard many useful reads.

Karect employs an improved heuristic that becomes progres-

sively less restrictive by allowing mismatches/indels. It generates all

k-mers (Default k ranges from 27 to 42 based on number of reads.)

of the reference r and each candidate read and splits each k-mer in

three equal parts of length l ¼ k=3. Let ri be a k-mer of r; an ex-

ample for ri ¼ AAACCCTTT is shown in Figure 1. Let Cri be the set of

candidate reads containing a k-mer that matches ri. To construct

Cri, four types of matches are used: type (a): Karect first initializes

Table 1. NGS error types

Brand Read length Throughput Dominant error type

Illumina Small Very high Substitutions

SOLiD Small High Substitutions

454 FLX Moderate Moderate Insertions, deletions

Ion Torrent Moderate High Insertions, deletions

Pacific Biosciences Very long High Insertions, chimeric Reads

Read lengths are as follows: small � 36–200 bp, moderate � 200–700 bp,

very long � 1000–10 000 bp. Throughput is the number of reads produced

over unit of time.

Fig. 1. Selecting candidate reads to align with r (i.e. the reference read being

corrected). Assume k¼9. Each small rectangle represents a sequence of size

l¼3. White rectangles correspond to error-free matches, whereas gray rect-

angles allow up to d¼2 errors. The figure depicts examples of k-mers that

must be contained in candidate reads of match type (a), (b), (c) and (d). These

k-mers match the underlined k-mer of the read r
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Cri to reads that share with r exactly k-mer ri (Fig. 1a). Type (b): If

less that m type (a) reads are found (m is a user-defined constraint

[default m ¼ maxð30;minð150; 0:6�estimated coverageÞÞ.]),
Karect adds to Cri reads that may contain up to d mismatches/indels

in the l-prefix or l-suffix of k-mer ri (Fig. 1b), where d is a user-

defined parameter (default d¼2). To count the mismatches or

indels, the Hamming or edit distance is used, respectively. Type (c):

If jCrij < m Karect generates two smaller k0-mers of ri, where k0 ¼ 2l

and searches for exact k0-mer matches (Fig. 1c). Type (d): If

jCrij < m, Karect searches for reads that contain up to d mis-

matches/indels in the l-prefix or l-suffix of the k0-mer (Fig. 1d).

To reduce the effect of bias towards specific k-mers, Cri

is allowed to include at most m reads sharing the same k-mer or

k0-mer. Cri reads are added to Cr, and the process is repeated

for other k-mers of r. For more details refer to the Supplementary

Document.

2.2 Alignment and normalization of candidate reads
Our goal is to correct reference read r. Karect aligns each read c in

the candidate set Cr, against r (line 5 in Algorithm CORRECTERRORS).

The result includes the start and end of c or r (semi-global align-

ment) to allow the alignment of overlaps. We use a variant of the

Needleman and Wunsch (1970) algorithm; refer to the

Supplementary Document for details.

To exclude candidate reads sequenced from different genome

regions, an alignment is considered valid only if the overlap exceeds

a threshold (Default s1 ¼ maxðminð0:7 � avgReadLen; 35Þ;
0:2�refReadLenÞ:) s1 and the number of mismatches/indels within

the overlap does not exceed a threshold (Default s2 ¼ 25% of the

overlap.) s2. This rudimentary filter may still accept some reads

from irrelevant genome regions. To further minimize this problem,

Karect assigns a weight wc to each read (refer to Section 2.5).

Consider reference read r ¼ CAA and candidate read c1 ¼ GAAA.

r can be transformed to c1 by substituting C with G at position 1 and

inserting A at position 4. Substitutions are modeled as deletions fol-

lowed by insertions. Therefore, the alignment corresponds to

del(C,1); ins(G,1); ins(A,4). Now consider another candidate read

c2 ¼ AAA. r can be transformed to c2 by the following operations:

del(C,1); ins(A,1). Observe that, inserting an A at position 1 gener-

ates the same string as inserting A at position 4. Therefore, an

equivalent representation for the alignment is del(C,1); ins(A,4). We

call this the normalized form of the alignment (line 6 in Algorithm

CORRECTERRORS), where normalization means that operations are

shifted as far as possible to the right. Normalization allows better

grouping of operations of a set of candidate reads, which enables

Karect to correct reference reads with high accuracy. In the previous

example, after normalization it is revealed that, to correct r, we

must insert an A at position 4, with high probability. The concept of

normalization is also used in DAGCon (Chin et al., 2013), but the

resulting representation is suboptimal; the details are explained in

the Supplementary Document. Note that normalization is not

required if the sequencing technology generates only substitution

errors.

2.3 Storing alignments in the POG
Each normalized alignment is stored in a POG Gr associated with

the reference read r (line 7 in Algorithm CORRECTERRORS). Initially,

Gr represents only r. The candidate read alignments are then added

incrementally in Gr in a manner similar to DAGCon, with the differ-

ence that similar out-nodes (i.e. nodes connected by edges coming

out from the same node) are merged instantly; this saves time and

space. Also, in contrast to DAGCon, similar in-nodes (i.e. nodes

connected by edges going to the same node) are not merged, since

this is not required by our extraction algorithm; this also saves com-

putational time. Figure 2 illustrates an example of aligning four can-

didate reads c1; . . . ; c4 to reference read r. The value on each edge

corresponds to the number of alignments passing through that edge.

We are going to modify these values in Section 2.5.

For sequencing technologies that generate only substitution

errors, instead of a POG we use an array of size jrj to accumulate

alignment weights.

2.4 Extracting corrected read from the POG
Given POG Gr for a reference read r, the corrected read r0 corres-

ponds to a path within Gr (line 8 in Algorithm CORRECTERRORS).

There are many ways to select such a path. For instance, it can be

the path that maximizes the sum of edge scores, but the quality of

error correction is expected to be low, because the heuristic favors

longer paths. As another example, DAGCon assigns each node a

score based on the weights of the out-edges and local coverage and

selects the path that maximizes the sum of node scores.

We propose a novel approach. First, we normalize all edge

weights such that the sum of the out-edge weights of any node is 1

(Fig. 3). The rationale is that, after normalization, edge weights will

reflect the transition probability between nodes. Then, the problem

is mapped to the classic problem of finding the most reliable path in

a network (Petrovic and Jovanovic, 1979), which is the path that

maximizes the product of edge weights. Since POGs are directed

Fig. 2. Example POG. The first row shows the initial POG for reference read r.

In the second row, c1 introduces an insertion and a substitution. Next, c2 in-

cludes a deletion, an insertion and a substitution and so on. At each row, the

newly introduced changes are shown in bold

Fig. 3. Normalized POG of Figure 2. The extracted path is shown in bold
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acyclic graphs, the score of the best path can be found by dynamic

programming using the following recursive rule:

pWðsÞ ¼ 1

pWðuÞ ¼ maxv2VðGrÞfpWðvÞ �wðv;uÞg
(1)

The score of the best path is pW(t) where s and t are unique start

and end nodes, VðGrÞ is the set of nodes in the POG, wðv; uÞ is the

normalized edge weight between nodes v; u 2 VðGrÞ or 0 if they are

not directly connected. The corrected read r0 corresponds to the

nodes of the best path.

For sequencing technologies that generate only substitution errors,

r0 is computed as the consensus (i.e. the sequence containing the most

frequent base in each position) in a gap-free multiple alignment.

2.5 Handling high-error regions
For simplicity, in Figure 2, we assumed weight wc¼1 for each read

c. An aligned read increases the value of all relevant edges by wc. To

accommodate for the fact that some of the aligned reads may be

sequenced from a different region of the genome, for each read c we

calculate wc as follows:

wc ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
overlapError=ðoverlapSize �maxErrorRateÞ

q
(2)

where overlapError is the edit distance between the overlapping re-

gions of the two reads (or the Hamming distance if only substitution

errors are considered), overlapSize is the size of the aligned reference

read overlap and maxErrorRate is a constant (default is 0.25).

Intuitively, the equation favors very similar reads that belong with

high probability to the same genome region, to less similar ones that

are still probable to be from the same region but highly affected by

sequencing errors. This configuration enables our approach to han-

dle high-error regions better than previous approaches. If quality

values from the sequencing machine are available, we set edge

weights to wc � ð1� 10�0:1qci Þ, where qci is the quality value associ-

ated with the destination base at position i.

2.6 Handling coverage variability
Let there be two regions in the genome that are very similar (e.g. they

differ by only a few bases). Assume that coverage is not uniform, which

is the typical case for NGS technologies and let one of these regions be

more covered than the other. For example, assume genome region

AAAAAAA is covered by 50 reads, whereas region AAACAAA is covered

by only 20 reads. The POGs resulting from the methodology described

above, will be biased towards converting all reads from the lesser cov-

ered region, to match those of the higher covered one; obviously this is

wrong. To minimize this problem, if an original edge weight in the

POG exceeds a threshold (Default s3¼minð100;0:42 � estCoverageÞ.
The estimated coverage is multiplied by 1/2 for diploid genomes to get

the coverage of a single chromosome copy; refer to the Supplementary

Document for details.) s3, Karect eliminates all other out-edges from its

source node before extracting the corrected read. By original edge, we

mean an edge in the initial POG of the reference read r being corrected,

such as the topmost POG in Figure 2.

3 Results

We compare the error correction quality of Karect against the state-of-

the-art tools for substitution errors, namely Lighter (Song et al., 2014),

Trowel (Lim et al., 2014), BLESS (Heo et al., 2014), Musket (Liu et al.,

2013), RACER (Ilie and Molnar, 2013), SGA (Simpson and Durbin,

2012), Quake (Kelley et al., 2010), Reptile (Yang et al., 2010) and

Diginorm (Brown et al., 2012). We also compare against the top per-

forming tools that support insertion and deletion errors, namely Blue

(Greenfield et al., 2014), Fiona (Schulz et al., 2014), DAGCon (Chin

et al., 2013), Coral (Salmela and Schroder, 2011), MuffinKmeans (Alic

et al., 2014) and HSHREC (Salmela, 2010). We employ a Linux ma-

chine with 2�6-core Intel CPUs at 2.67GHz and 192GB RAM.

3.1 Datasets
We use data from the 454, Ion Torrent and Illumina sequencing ma-

chines; Table 2 lists the details. (i) The 454 datasets consist of frag-

ment and paired-end libraries of Helicobacter pylori, Zymomonas

mobilis and Escherichia coli. The same datasets were also used by

Finotello et al. (2012), but in their study, they used only the paired-

end library for Z.mobilis, whereas we use the fragment library, too,

to increase coverage. Also, we discard a portion of the reads for

H.pylori, to obtain moderate coverage. (ii) The Ion Torrent dataset

is a fragment library of E.coli. (iii) The Illumina datasets consist of

paired-end libraries of Staphylococcus aureus, Human Chromosome

14 and Caenorhabditis elegans. They appear in various previous

studies such as GAGE (Salzberg et al., 2012) and the works of Heo

et al. (2014), Kleftogiannis et al. (2013), Liu et al. (2013) and Ilie

and Molnar (2013). All datasets exhibit non-uniform coverage along

the genome, which poses a major challenge for error correction; the

relevant statistics appear in the Supplementary Document. We use

Table 2. Description of the datasets

Dataset Sequencing Accession Reference Genome Read Number Number of Coverage Aligned

machine number genome length length of reads base pairs ð�Þ bases (%)

h.pylori.454a 454 FLX SRR023794, SRR023796 NC_017355.1 1 588 278 233 279 235 65 048 583 40.96 95.22

z.mobilis.454a 454 FLX SRR017972, SRR029606 NC_006526.2 2 056 363 190 210 814 40 087 238 19.49 96.05

e.coli.454b 454 Titanium Roche NC_000913.3 4 641 652 216 439 155 94 874 123 20.44 99.14

e.coli.ionc Ion Torrent B22-730 NC_010473.1 4 686 137 326 492 537 160 671 071 34.29 99.06

s.aureus.ill Illumina SRR022868 - GAGE NC_010079.1 2 903 081 101 1 294 104 130 704 504 45.02 78.19

human.c14.ill Illumina GAGE NC_000014.8 88 289 540 101 36 504 800 3 686 984 800 41.76 95.10

c.elegans.illd Illumina SRR065390 wormbase 100 286 401 100 67 617 092 6 761 709 200 67.42 90.72

We used the GAGE reference of s.aureus.ill, which includes two plasmid sequences in addition to NC_010079.1. For the 454 and Ion Torrent datasets, we re-

port the average read length, since reads do not have the same length.
aAvailable from NCBI SRA: http://www.ncbi.nlm.nih.gov/sra.
bAvailable from Roche: http://www.medcomp.medicina.unipd.it/Ecoli_dataset/.
cAvailable from Ion Torrent, under name B22-730: http://ioncommunity.lifetechnologies.com/welcome.
dc.elegans.ill reference is available at: ftp://ftp.wormbase.org/pub/wormbase/species/c_elegans/sequence/genomic/c_elegans.PRJNA13758.WS241.genomic.fa.gz.
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the Roche tools to filter 454 and Ion Torrent data and employ

QUAST (Gurevich et al., 2013) to evaluate the resulting assemblies.

Additional datasets for ultra-high coverage datasets and RNA-Seq

data appear in the Supplementary Document.

3.2 Novel quality evaluation framework
Two main metrics have been used in previous work to evaluate the

quality of error correction. The first one considers individual bases

and differentiates correct base-operations from incorrect ones (Liu

et al., 2013; Salmela and Schroder, 2011; Yang et al., 2013). The se-

cond metric is applied on the granularity of entire reads and differ-

entiates correct reads from incorrect ones (Ilie and Molnar, 2013;

Ilie et al., 2011; Schroder et al., 2009). Although each metric has its

tradeoffs (Ilie and Molnar, 2013; Liu et al., 2013), depending on the

biological application, both are useful. For example, in the case of

single-nucleotide polymorphism discovery, the base-level metric is

more appropriate, whereas in the case of de novo assembly, the

read-level metric is more suitable. For completeness, in this article,

we report results for both metrics. However, the instantiations of

the metrics in previous work have drawbacks. Below we propose im-

proved versions for both metrics.

In the following, we define true positive (TP) an instance that was

wrong initially but became correct after the application of the error

correction algorithm, denoted as: TP :¼ wrong! correct. In a

similar way, we define true negative TN :¼correct! correct; false

positive FP :¼ correct! wrong and false negative FN :¼
wrong! wrong. We use the common definitions of Recall ¼
TP=ðTPþ FNÞ; Precision ¼ TP=ðTPþ FPÞ; FScore ¼ 2 � Precision�
Recall=ðPrecisionþ RecallÞ and Gain ¼ ðTP� FPÞ=ðTPþ FNÞ.

3.2.1 Individual base-operations metric

The metric lists the edit operations to transform the original and cor-

rected read to the reference region, respectively, and counts the

differences (Yang et al., 2013). It works when only substitution errors

are considered, but it is not well defined in the presence of insertions

and deletions (Heo et al., 2014), because in this case there are multiple

ways to list the edit operations. We propose an alternative definition

based on the actual distance, instead of the list of edit operations.

Let o and c be the original and corrected read, respectively. The

distance between them is the number of bases that were wrong in o

but got corrected in c (i.e. true positives TP), plus the number of

bases that were correct in o but got wrongfully altered in c (i.e. false

positives FP); formally Dðo; cÞ ¼ TPþ FP. D is the Hamming dis-

tance for substitution-only errors or the edit distance, otherwise; in

both cases, D can be computed unambiguously. Let Po be the set of

several genome regions where o can be mapped with minimum dis-

tance, and pc be the member of Po that has the smallest distance to

c; formally pc ¼ argminp2Po
Dðp; cÞ. Using the same methodology as

above, we define Dðo;pcÞ ¼ TPþ FN and Dðc; pcÞ ¼ FPþ FN.

Solving the system of equations results in FN ¼ 1
2 ðDðo; pcÞ�

Dðo; cÞ þDðc; pcÞÞ; TP ¼ Dðo; pcÞ � FN and FP ¼ Dðo; cÞ � TP.

3.2.2 Entire reads metric

We align the original read o with the reference genome and, similar to

the previous section, we obtain the set Po of (possible many) genome

regions where o can be mapped with minimum distance D. Let c be

the corrected read after applying the correction algorithm on o. o and

c are considered correct if they match exactly any region p 2 Po, else

they are considered wrong. On the basis of this definition, we use the

formulas from Section 3.2 to calculate TP, FP and TN.

3.3 Correction quality
We evaluate Karect against existing tools in terms of recall, preci-

sion, Fscore and gain, using both the individual base operations and

the entire reads metrics; Tables 3 and 4 summarize the results. For

each dataset, the best result of each column is shown in bold. We

Table 3. Quality of error correction on datasets containing insertion and deletion errors

Dataset Error Base-operations (%) Whole reads (%) Time Memory

Correction Recall Precision FScore Gain Recall Precision FScore Gain (min) (GB)

h.pylori.454 Karect 95.85 99.77 97.77 95.63 97.33 99.94 98.62 97.28 1.13 1.47

DAGCon 96.85 97.70 97.27 94.57 97.45 99.42 98.42 96.88 1.83 —

Fiona 88.43 97.22 92.62 85.90 82.94 99.99 90.67 82.94 2.68 0.81

Blue 90.93 75.41 82.44 61.28 53.63 99.81 69.77 53.52 1.77 0.62

Coral 87.66 68.03 76.60 46.46 62.66 64.68 63.65 28.44 16.77 3.69

MuffinKmeans 77.42 81.62 79.47 59.99 65.30 91.54 76.22 59.26 6.63 0.80

HSHREC 70.34 69.67 70.00 39.72 63.23 98.63 77.06 62.35 9.57 13.03

z.mobilis.454 Karect 95.02 99.61 97.26 94.64 93.60 99.87 96.63 93.48 1.17 0.92

DAGCon 96.85 91.11 93.89 87.40 94.30 98.61 96.41 92.97 1.50 —

Fiona 90.66 95.78 93.15 86.67 82.77 99.84 90.51 82.64 2.28 0.97

Blue 89.33 77.17 82.80 62.90 55.20 99.86 71.10 55.12 1.17 0.32

Coral 88.50 74.00 80.61 57.41 66.29 72.36 69.19 40.97 3.88 3.41

MuffinKmeans 60.33 79.32 68.53 44.60 51.38 92.01 65.94 46.91 4.92 0.97

HSHREC 73.42 86.71 79.51 62.17 73.83 98.87 84.53 72.98 5.58 8.39

e.coli.ion Karect 96.27 99.24 97.73 95.53 89.62 99.74 94.41 89.39 4.23 3.61

DAGCon 97.92 95.25 96.57 93.03 91.34 99.06 95.04 90.47 5.98 —

Fiona 84.80 98.45 91.12 83.47 71.88 99.89 83.60 71.80 4.75 1.34

Blue 89.03 77.33 82.77 62.93 48.06 99.68 64.85 47.91 6.25 1.15

Coral 87.41 86.51 86.96 73.78 63.86 89.81 74.65 56.62 51.15 5.26

MuffinKmeans 72.15 69.74 70.92 40.84 49.28 92.57 64.32 45.33 15.13 2.19

HSHREC 69.54 86.32 77.02 58.52 57.45 99.60 72.87 57.22 20.33 14.36

We compare against tools which support these types of errors. All programs use 12 threads. More datasets appear in the Supplementary Document.
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use the default parameters for all tools. If some parameter does not

have default value, we select the value suggested by the examples

associated with that tool. Since DAGCon is not a stand-alone error

correction tool (it is a component inside HGAP assembler), we run it

by selecting candidate reads as proposed in Section 2.1, then align

them using edit distance and pass alignments to DAGCon. We disable

trimming in all tools, except Quake. We run Quake such that it out-

puts corrected and uncorrected reads. Diginorm is not included in the

tables, because it filters rather than correcting reads. More details

about the setup are given in the Supplementary Document. Karect

consistently outperforms existing methods for most datasets (up to

10% increase in accuracy gain). Summary of these results using sum-

of-ranks approach appear in the Supplementary Document. We also

test Karect with ultra-high coverage datasets and RNA-Seq data. The

results appear in the Supplementary Document.

3.4 De novo assembly
We evaluate the effect of error correction on de novo assembly

using the following top performing assemblers: Celera (Miller

et al., 2008) and Newbler (from Roche company) for the 454

and Ion Torrent datasets; and Velvet (Zerbino and Birney, 2008),

SGA (Simpson and Durbin, 2012) and Celera for the Illumina

datasets. Celera requires read quality values as input. Since Fiona,

DAGCon and HSHREC do not output such information, we

manually set their quality values to ‘I’. Newbler is tested both

with and without quality values as input; the later case is denoted

by Newbler (NQ). We do not test Newbler with diginorm, since

diginorm alters the read headers in a way that Newbler is unable

to detect paired reads. SGA is run after filtering out its initial

error correction stage. More details about the setup are included

in the Supplementary Document. Assemblies are evaluated using

QUAST (Gurevich et al., 2013). All contigs/scaffolds are split

such that each of them aligns to the reference genome; contigs/

scaffolds with less than 500 bp are excluded. For both contigs

and scaffolds, we report the standard metrics: NGA50, LGA50,

coverage, error rate, and number of global and local misassem-

blies and unaligned sequences; we report also N symbols rate for

scaffolds; refer to Gurevich et al. (2013) for details.

Table 4. Quality of error correction on datasets containing substitution errors (Illumina)

Dataset Error Base-operations (%) Whole reads (%) Time Memory

correction Recall Precision FScore Gain Recall Precision FScore Gain (min) (GB)

s.aureus.ill Karect 99.54 99.93 99.73 99.46 98.87 99.99 99.42 98.86 3.25 2.58

Fiona 83.31 99.38 90.64 82.79 83.56 99.94 91.02 83.51 5.48 1.25

BLESS 89.10 99.75 94.12 88.87 90.56 100.00 95.05 90.56 6.67 0.01

Blue 95.61 95.70 95.66 91.32 96.08 99.91 97.96 95.99 2.87 1.95

SGA 71.66 99.72 83.39 71.46 84.67 100.00 91.70 84.67 2.49 0.09

Musket 72.04 99.86 83.70 71.94 78.46 99.99 87.93 78.45 1.67 0.23

RACER 89.87 97.94 93.73 87.98 88.73 99.92 93.99 88.66 0.80 1.24

Trowel 46.89 71.95 56.77 28.60 40.11 92.37 55.94 36.80 0.13 0.47

Lighter 62.86 99.65 77.09 62.64 76.27 99.95 86.52 76.24 0.17 0.10

Coral 57.59 98.19 72.60 56.52 79.37 99.25 88.20 78.77 6.32 6.05

Quake 37.91 — — — 21.37 — — — 5.20 0.30

Reptile 8.90 86.83 16.14 7.55 8.26 96.36 15.21 7.94 9.67 2.21

MuffinKmeans 57.19 40.26 47.25 -27.68 52.39 94.24 67.35 49.19 56.65 2.50

human.c14.ill Karect 85.23 97.74 91.06 83.26 71.46 99.79 83.28 71.31 47.48 81.30

Fiona 80.49 94.95 87.13 76.21 68.62 99.66 81.28 68.39 113.80 28.91

BLESS 70.64 95.44 81.19 67.26 65.93 99.87 79.43 65.85 193.50 0.14

Blue 78.88 87.00 82.74 67.10 64.58 99.06 78.19 63.97 35.77 17.75

SGA 70.03 96.70 81.23 67.64 63.84 99.98 77.92 63.82 54.82 1.33

Musket 67.68 94.61 78.91 63.82 59.45 99.79 74.51 59.33 40.22 2.35

RACER 75.73 57.88 65.61 20.62 64.00 99.22 77.81 63.49 18.01 10.58

Trowel 55.74 92.50 69.56 51.22 46.19 99.86 63.17 46.13 13.60 19.48

Lighter 60.51 86.37 71.16 50.96 51.95 99.88 68.35 51.89 6.10 0.48

Coral 72.70 75.65 74.15 49.30 69.25 87.70 77.39 59.54 285.82 58.83

Quake 42.41 — — — 14.31 — — — 35.27 2.07

Reptile 4.04 17.74 6.58 �14.70 1.76 12.33 3.08 -10.78 414.62 9.98

c.elegans.ill Karect 88.69 98.77 93.46 87.58 86.23 99.89 92.56 86.14 102.93 147.83

Fiona 80.82 97.27 88.28 78.55 79.87 99.89 88.76 79.78 244.67 58.48

BLESS 78.82 98.54 87.58 77.65 81.55 99.98 89.83 81.54 328.35 0.17

Blue 82.26 74.11 77.97 53.53 81.28 98.29 88.98 79.87 40.57 16.58

SGA 77.03 99.04 86.66 76.28 79.55 100.00 88.61 79.55 81.15 2.27

Musket 59.65 95.89 73.55 57.09 70.03 99.91 82.34 69.97 42.60 2.82

RACER 80.63 66.52 72.90 40.04 80.14 99.80 88.89 79.97 34.75 12.38

Trowel 54.86 93.43 69.13 51.01 56.39 99.11 71.89 55.89 23.30 29.65

Lighter 51.63 83.96 63.94 41.77 56.35 99.96 72.07 56.33 10.95 0.53

Coral 70.22 74.98 72.52 46.78 75.87 83.78 79.63 61.18 632.25 85.62

Quake 42.41 — — — 14.37 — — — 40.95 2.15

All programs use 12 threads, except BLESS and Reptile use 1 thread. Reptile failed for c.elegans.ill. MuffinKmeans failed for human.c14.ill and c.elegans.ill.

We omitted some Quake results since trimming reduces correction quality, by treating each trimmed base or read as false positive or false negative.
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Table 5. Assembly of the E.coli 454 dataset (insertion and deletion errors)

Error

correction

Assembler Contigs Scaffolds

NGA50 LGA50 GM LM UA MM Cov NGA50 LGA50 GM LM UA MM Cov N

— Celera 472 473 4 3 11 0 12 99.93 1 750 103 2 4 21 0 11 99.94 46

Celera (sff) 639 160 3 4 13 1 13 99.86 2 346 056 1 4 18 1 13 99.86 56

Newbler 112 331 15 0 5 0 2 98.14 1 295 223 2 4 77 0 2 97.85 1982

Karect Celera 858 863 3 2 13 0 10 99.97 2 565 113 1 3 17 0 10 99.98 90

Newbler 112 524 14 0 10 0 9 98.20 1 109 133 2 6 80 0 9 97.80 2143

Newbler (NQ) 110 321 15 0 10 0 9 98.21 3 362 497 1 4 82 0 9 97.84 2004

DAGCon Celera 235 860 6 6 22 1 53 99.80 1 130 974 2 10 51 0 53 99.82 84

Newbler (NQ) 73 648 20 1 15 1 22 97.36 618 779 3 7 115 0 22 96.70 3368

Fiona Celera 682 339 3 2 10 0 11 99.95 2 569 644 1 2 17 0 11 99.96 15

Newbler (NQ) 117 500 13 0 7 1 9 98.12 962 800 2 5 79 0 9 97.85 1983

Blue Celera 780 219 3 2 9 0 10 99.97 2 345 312 1 4 15 0 10 99.98 5

Newbler 111 928 14 0 7 1 8 98.20 1 492 028 2 7 77 0 8 97.88 1897

Newbler (NQ) 112 390 14 0 9 1 8 98.21 923 165 2 8 76 0 8 97.87 2047

Coral Celera 473 444 5 4 12 0 171 99.90 1 809 222 2 7 22 0 166 99.95 66

Newbler 125 630 13 0 10 1 173 98.10 845 431 3 8 80 0 173 97.76 2128

Newbler (NQ) 112 408 13 0 8 0 172 98.09 923 986 2 6 81 0 172 97.79 2186

MuffinKmeans Celera 562 359 4 3 19 0 18 99.83 2 881 627 1 4 30 0 18 99.83 115

Newbler 103 722 15 0 11 1 13 98.07 942 705 2 5 85 0 12 97.69 2414

Newbler (NQ) 97 794 16 0 11 1 14 98.08 941 847 2 5 87 0 14 97.72 2429

HSHREC Celera 115 342 13 2 16 0 17 99.64 1 137 457 2 9 59 0 18 99.72 224

Newbler (NQ) 78 203 20 1 7 0 11 97.95 823 237 3 7 109 0 11 97.66 2733

Diginorm Celera 3354 387 3 11 0 20 84.20 73 273 20 246 872 0 26 84.70 13 889

Data are filtered using the Roche tools, except for Celera (sff). GM, global misassemblies; LM, local misassemblies; UA, unaligned contigs/scaffolds; MM, rate

of mismatches/indels per 100 kb; N, rate of N symbols per 100 kb; Cov, coverage (%). Newbler (NQ) means data are passed to Newbler without quality values.

Table 6. Assembly of the S.aureus Illumina dataset (only substitution errors)

Error correction Assembler Contigs Scaffolds

NGA50 LGA50 GM LM UA MM Cov NGA50 LGA50 GM LM UA MM Cov N

— Velvet 3024 295 10 0 2 9 93.88 3941 234 10 16 16 18 93.88 566

SGA 1491 565 5 0 0 1 85.86 1530 555 6 0 0 2 86.01 0

Celera 6644 135 6 4 1 20 91.92 8603 104 9 35 1 22 91.95 67

Karect Velvet 27 586 34 7 3 0 3 97.95 37 926 23 7 6 0 4 97.96 73

SGA 24 633 39 3 1 0 2 98.08 25 321 38 4 1 0 2 98.14 0

Celera 24 177 38 6 5 0 13 97.18 33 840 29 8 14 0 15 97.20 32

Fiona Velvet 20 239 47 5 3 0 8 97.79 26 282 35 7 6 0 12 97.81 116

SGA 15 721 58 2 2 0 4 97.69 15 861 57 3 2 0 4 97.71 0

Celera 16 003 56 8 3 0 21 96.95 23 109 42 9 15 0 24 96.97 50

BLESS Velvet 6823 128 10 0 1 6 97.24 8853 99 12 9 5 12 97.26 302

SGA 4676 190 2 0 0 1 95.91 4842 182 4 0 0 1 95.98 0

Celera 5397 169 9 2 1 18 91.11 8393 105 11 18 0 26 91.30 166

Blue Velvet 26 459 35 9 3 0 3 97.88 32 271 28 9 7 0 4 97.88 74

SGA 19 863 45 4 1 0 2 97.77 21 851 43 5 1 0 2 97.87 1

Celera 24 936 37 8 5 0 18 97.24 33 321 27 12 13 0 19 97.24 32

SGA Velvet 8610 104 5 1 0 2 97.42 9576 92 6 3 1 4 97.51 121

SGA 6767 131 3 1 0 1 96.89 6857 128 4 1 0 1 96.94 0

Celera 8408 98 7 4 0 22 94.89 12 393 72 7 27 0 25 94.92 77

Musket Velvet 13 862 68 6 2 0 5 97.63 17 295 51 7 14 0 8 97.64 161

SGA 9020 98 4 0 0 1 97.49 9314 97 5 0 0 2 97.52 0

Celera 12 366 73 13 3 0 10 96.25 18 811 49 11 17 0 15 96.30 90

RACER Velvet 7779 113 11 4 2 15 97.39 10 690 80 23 13 0 26 97.53 284

SGA 5754 157 6 0 3 3 96.43 5923 151 8 1 3 4 96.56 1

Celera 6839 129 23 4 3 26 93.30 11 918 77 31 21 2 32 93.43 147

Lighter Velvet 6399 138 9 1 1 7 97.08 8521 107 11 13 2 13 97.19 334

SGA 4386 203 2 0 0 3 95.74 4450 199 3 0 0 4 95.79 0

Celera 8293 106 9 3 0 14 93.65 12 022 76 12 17 0 18 93.74 91

Coral Velvet 17 801 49 10 7 2 19 97.50 22 173 41 10 11 3 15 97.49 82

SGA 14 286 64 4 2 1 10 97.37 14 702 62 6 4 1 10 97.37 3

Celera 15 767 55 10 6 2 28 96.00 20 301 44 13 18 2 29 96.02 34

GM, global misassemblies; LM, local misassemblies; UA, unaligned contigs/scaffolds; MM, rate of mismatches/indels per 100 kb; N, rate of N symbols per

100 kb; Cov, coverage (%). More methods appear in the Supplementary Document.
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Tables 5 and 6 summarize the results for the de novo assembly

of the E.coli 454 Titanium dataset (insertion and deletion errors)

and the S.aureus Illumina dataset (only substitution errors), respect-

ively. The best result of each column is shown in bold. Results for

the other datasets are included in the Supplementary Document.

The results demonstrate that, compared with existing error correct-

ing methods, Karect improves significantly the assembly quality (up

to 10% increase in NGA50). Summary of these results using sum-

of-ranks approach appear in the Supplementary Document.

4 Conclusion

We presented Karect, a novel error correction technique for NGS

data. Karect is based on multiple alignment, supports substitution,

insertion and deletion errors and handles effectively non-uniform

coverage as well as moderately covered areas. Extensive experimen-

tal evaluation demonstrates that Karect achieves superior error cor-

rection compared to existing state-of-the-art methods. Karect also

enables substantially improved assemblies, when used as preprocess-

ing step for modern assemblers.

Currently, we do not support Pacific Biosciences data, because

of chimeric reads; we are working on this issue.
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