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Abstract

Motivation: MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in

post-transcriptional regulations as well as other important biological processes. Recently, accumu-

lating evidences indicate that miRNAs are extensively involved in cancer. However, it is a big chal-

lenge to identify which miRNAs are related to which cancer considering the complex processes

involved in tumors, where one miRNA may target hundreds or even thousands of genes and one

gene may regulate multiple miRNAs. Despite integrative analysis of matched gene and miRNA ex-

pression data can help identify cancer-associated miRNAs, such kind of data is not commonly

available. On the other hand, there are huge amount of gene expression data that are publicly ac-

cessible. It will significantly improve the efficiency of characterizing miRNA’s function in cancer if

we can identify cancer miRNAs directly from gene expression data.

Results: We present a novel computational framework to identify the cancer-related miRNAs based

solely on gene expression profiles without requiring either miRNA expression data or the matched

gene and miRNA expression data. The results on multiple cancer datasets show that our proposed

method can effectively identify cancer-related miRNAs with higher precision compared with other

popular approaches. Furthermore, some of our novel predictions are validated by both differen-

tially expressed miRNAs and evidences from literature, implying the predictive power of our pro-

posed method. In addition, we construct a cancer-miRNA-pathway network, which can help explain

how miRNAs are involved in cancer.

Availability and implementation: The R code and data files for the proposed method are available

at http://comp-sysbio.org/miR_Path/

Contact: liukeq@gmail.com
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VC The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1226

Bioinformatics, 31(8), 2015, 1226–1234

doi: 10.1093/bioinformatics/btu811

Advance Access Publication Date: 12 December 2014

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/8/1226/212836 by guest on 24 April 2024

http://comp-sysbio.org/miR_Path/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu811/-/DC1
http://www.oxfordjournals.org/


1 Introduction

MicroRNAs (miRNAs), as a large family of gene regulators, are

involved in various biological processes, such as cell development,

proliferation, differentiation and apoptosis. Specifically, they play

essential roles in regulating gene expression after the genes are tran-

scribed (Bartel, 2004), where one miRNA may regulate multiple

genes. It was found that more than 60% of the protein-coding genes

in the human genome are regulated by miRNAs (Esteller, 2011).

Recently, accumulating evidences indicate that miRNAs are ex-

tensively involved in tumors (Calin and Croce, 2006). For example,

miR-21 induces invasion and metastatic capacity in colon cancer

cells (Asangani et al., 2008), while miR-155 up-regulation and let-

7a down-regulation can be used to predict the poor survival of lung

cancer patients (Yanaihara et al., 2006). In past years, the impact of

miRNAs on various cancers has been determined with biological ex-

periments (Croce, 2009; Hanahan and Weinberg, 2011).

Unfortunately, it is not feasible to detect all cancer associated

miRNAs in laboratory due to the wide range of biological processes

in which the miRNAs are involved. Recently, some computational

approaches have been proposed to predict cancer-related miRNAs.

For example, some statistical approaches have been developed to de-

tect miRNAs that are differentially expressed between normal and

cancer samples, and these miRNAs are considered related to cancer

(Kuo et al., 2012; Oulas et al., 2011). However, few of such miRNA

expression data are available compared with the huge amount of

mRNA expression data. Furthermore, the noise inherited in the ex-

pression data makes it difficult to detect the differentially expressed

miRNAs. Considering miRNAs are regulators of gene expression

and the aberrant gene expression might lead to certain diseases,

some methods have been proposed to predict disease associated

miRNAs based on the miRNA-gene regulation circuit (Chen et al.,

2012; Li et al., 2011). Nevertheless, it is not an easy task to identify

cancer-related miRNAs based only on their target genes as one

miRNA may target hundreds or even thousands of genes while one

gene may be regulated by multiple miRNAs (Lim et al., 2005).

Furthermore, the lack of context information about the regulation

also degrades the performance of such approaches. Under the cir-

cumstances, some approaches have been developed to predict can-

cer-related miRNAs by investigating matched gene and miRNA

expression data as well as miRNA-gene regulations (Wuchty et al.,

2013; Zhang et al., 2014). Unfortunately, the scarceness of matched

miRNA and gene expression datasets limits the application of this

promising approach.

Compared with the rare matched miRNA and gene expression

profiles, there are huge amounts of gene expression datasets that are

publicly available, which can help provide insights into the functions

of their miRNA regulators. In this work, we propose a novel compu-

tational framework to identify cancer associated miRNAs based on

their target genes’ expression profiles as well as the miRNA-gene

regulation network. Assuming that miRNAs are related to cancers

by regulating the pathways in which their target genes are located,

we respectively identify sets of miRNAs related to lung cancer, colon

cancer, breast cancer and gastric cancer. The benchmarking results

demonstrate the higher accuracy of our proposed method compared

with other popular approaches. The high consistency between re-

sults on independent distinct datasets for the same cancer type

implies the robustness of our proposed method. Furthermore, part

of our novel predictions are validated by both differentially ex-

pressed miRNAs and evidences from literature, indicating the pre-

dictive power of our approach. In addition, the pathways regulated

by cancer associated miRNAs can help explain how miRNAs are

involved in the initiation and progression of cancers.

2 Methods

2.1 Gene expression datasets
The gene expression datasets of four different types of cancers were

downloaded from NCBI Gene Expression Omnibus (GEO) (Edgar

et al., 2002), including lung cancer, colon cancer, gastric cancer and

breast cancer. In particular, to evaluate the efficiency and robustness

of our proposed approach, for each cancer type, we collected two in-

dependent datasets generated under the same platform. Table 1 lists

the detailed information corresponding to each dataset.

For each dataset, the probe-level gene expression data extracted

from the CEL files were normalized with the robust multi-array

average method (Irizarry et al., 2003). The probes were then

mapped to genes with the annotation files obtained from GEO. For

the gene that is associated with multiple probes, we assigned it the

probe with the largest variation across its expression profile.

2.2 miRNA target genes
We firstly collected the miRNA target genes predicted with different

tools, including PicTar (Krek et al., 2005), miRanda (version 3.0)

(John et al., 2004), microT (version 5.0) (Maragkakis et al., 2009)

and TargetScan (release 6.2) (Lewis et al., 2005). All the miRNAs

were downloaded from miRBase (version 16) (Griffiths-Jones et al.,

2006). Specifically, for one miRNA, we kept its target genes if they

were predicted by at least two tools. Note that some miRNAs will

not be considered if they do not have any target genes after the filter-

ing procedure. Then, we extended the miRNA–gene interactions by

including those deposited in TarBase (version 6.0) (Sethupathy

et al., 2006) that contains experimentally determined miRNA target

genes. As a result, we obtained a set of miRNA–gene interactions

involving 547 miRNAs and 6796 genes, where each miRNA targets

around 12 genes on average.

2.3 Tissue-specific miRNA expression profiles
The expression profiles of 345 miRNAs across 40 normal human tis-

sues were obtained from the supplementary files of the paper by

Liang et al. (2007). The tissue specificity score of a miRNA mi in tis-

sue tj was defined as follows (Lee et al., 2008):

Tsij ¼ ðn� 1ÞEij

, Xn

k¼1;k 6¼j

Eik; (1)

where Eij denotes the expression of mi in tj and the same for Eik, and

n is the total number of tissues in which mi is expressed. If Tsij is

above a certain threshold (e.g. 1.5 here), the miRNA mi will be re-

garded as specifically expressed in tissue tj. In particular, if a

miRNA was found to be specifically expressed in multiple tissues

with the tissue specificity score defined above, only the one in which

the miRNA has the highest abundance will be regarded as the tissue

that the miRNA is specifically expressed in. In other words, each

miRNA will be regarded as only specifically expressed in one tissue

if its tissue specificity score is above the threshold.

2.4 Cellular pathways
The predefined biological pathways were obtained from the

Molecular Signatures Database (Liberzon et al., 2011), which is a

large collection of annotated functional gene sets. We chose the ca-

nonical pathways from the curated (c2) gene sets in MsigDB V3.0,

which contains 880 metabolic and signaling pathways collected

from the online databases, such as BioCarta (www.biocarta.com),

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa

et al., 2008) and Reactome (Matthews et al., 2009).
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2.5 Identifying cancer-related miRNAs
Figure 1 depicts the flowchart of our proposed framework to iden-

tify cancer-related miRNAs based on gene expression profiles. First,

for each miRNA, we identified its target gene sets that are possibly

related to cancer. Second, the dysfunctional pathways that are asso-

ciated with cancer were detected, and those miRNA target genes en-

riched pathways were picked up. Finally, the miRNAs regulating the

above-identified pathways were ranked and those highly ranked

miRNAs are more likely to be related to cancer. The details were ad-

dressed as follows.

In general, each miRNA regulates multiple genes, where the

regulation relationships are largely dependent on temporal condi-

tions. To reduce false positives, we assumed that given a miRNA,

the expression of its target genes should fluctuate in a concert way.

Therefore, given a miRNA, we clustered all its possible target genes

into different groups according to their Pearson’s correlation coeffi-

cients calculated based on their expression profiles. In the clustering

procedure, the hierarchical clustering was employed, where genes

with correlation coefficient above 0.7 were clustered into one group

while those genes that cannot be grouped into any clusters were dis-

carded. Specifically, we only kept those clusters with size larger than

three. Note that it is possible to get different number of target gene

clusters for distinct miRNAs. For each gene cluster, we further as-

sessed its discriminative ability of separating the cancers from con-

trols with support vector machines (SVMs), where the LIBSVM

toolbox implemented in R e1071 package was adopted. The classifi-

cation capacity of each cluster was evaluated by the area under

ROC curve (AUC) score with 5-fold cross validation, where all sam-

ples were randomly split into five equal-size subsets without overlap

and four subsets were used as training set while the rest one as test

set. To evaluate the performance of each cluster in a robust way, the

5-fold cross-validation procedure was repeated for 100 times and

the mean of the AUC scores was regarded as its final score, where

the pROC package in R was utilized to calculate the AUC score.

Consequently, those gene clusters with AUC scores larger than 0.8

were considered related to cancer, and one miRNA will be regarded

as cancer miRNAs if at least one of its target clusters has good dis-

criminative capability of separating cancers from controls. The ap-

proach identifying cancer miRNAs based on its target gene clusters

was called miR_Clust here.

Generally, the cancers are caused due to the dysfunction

of cellular pathways instead of the mutation of single genes

(Liu et al., 2012). To identify those dysregulated pathways

underlying cancers, we defined the pathway’s activity score P as

follows:

P ¼
Xn

i¼1

ti

,
n; (2)

where n represents the number of genes in each pathway, ti denotes

the t-score associated with the ith gene within the pathway, and the

t-score was obtained with the student’s t-test by comparing the gene

expression profiles for cancers against those for controls. Moreover,

the statistical significance of each pathway was evaluated with per-

mutation test, where the same number of genes as that in each path-

way was randomly selected and the pathway activity score was

calculated for this set of random genes. The permutation test was re-

peated for 1000 times and the ratio of random gene sets with activ-

ity score larger than the one for the pathway was regarded as the

probability of observing the pathway randomly, i.e. P-value. As a re-

sult, the pathways with P-values<0.01 were selected as the dysfunc-

tional pathways in cancer. Given a dysfunctional pathway and a

gene cluster targeted by one miRNA, the enrichment significance

(P-value) of the pathway over the gene cluster can be calculated as

follows:

PðX�xÞ ¼ 1�
Xx�1

k¼0

M
k

� �
N �M
n� k

� �
N
n

� � ; (3)

where N is the number of genes in the expression data, M is the

number of genes in the pathway, n is the number of genes in one

cluster, and k is the number of common entries between pathway

and cluster. If P-value is <0.05, the dysfunctional pathway was con-

sidered regulated by the corresponding miRNA, and the miRNA is

accordingly regarded as cancer miRNA. This procedure was re-

peated for all the target clusters of each miRNA. Note that, for each

miRNA, we identified the enriched pathways for every target cluster

instead of the pool of all target clusters as the genes in the same clus-

ter tend to be co-expressed. It was well recognized that the genes be-

longing to the same pathway tend to be co-expressed and it is

reasonable to assume the genes in one cluster are more likely to be

within the same pathway compared with those not in the same clus-

ter (Zhao et al., 2008). Furthermore, the enrichment analysis on the

pool of all genes together will cause bias toward large pathways. As

a result, for each miRNA, we may obtain a set of dysfunctional

pathways regulated by the miRNA. This approach for identifying

cancer miRNAs based on the dysfunctional pathways was called

miR_Path in this work.

In addition, we ranked the miRNAs by designing a score to

evaluate the association between miRNAs and cancer based on their

regulated pathways. For each miRNA, the score Ms was defined as

follows:

Ms ¼

Xn

i¼1

Hi � Pi

n
; (4)

where Hi ¼ �log ðqiÞ, qi denotes the P-value of pathway i obtained

with the hypergeometric test, Pi denotes the pathway activity score,

and n represents the number of all pathways regulated by the

miRNA. In the case of one pathway enriched in multiple target clus-

ters for one miRNA, the minimum P-value will be used for qi.

Table 1. Eight gene expression datasets for four different types of

cancers

Cancer GEO accession

number

Number of

samples

(disease/control)

Platform

Lung

cancer

GSE7670

(Su et al., 2007)

54 (27/27) GPL96

GSE10072

(Landi et al., 2008)

107 (58/49) GPL96

Breast

cancer

GSE15852

(Pau Ni et al., 2010)

40 (20/20) GPL96

GSE20437

(Graham et al., 2010)

18 (9/9) GPL96

Colon

cancer

GSE9348

(Hong et al., 2010)

82 (70/12) GPL570

GSE20916

(Skrzypczak et al., 2010)

69 (45/24) GPL570

Gastric

cancer

GSE13911

(D’Errico et al., 2009)

69 (38/31) GPL570

GSE19826

(Wang et al., 2012)

27 (12/15) GPL570
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With the score defined above, we can rank miRNAs for each

cancer type and those highly ranked miRNAs are supposed to be

more likely related to cancer.

3 Results

3.1 Identification of cancer-related miRNAs
For the four different types of cancers considered here, we identified

the possible miRNAs associated with them with miR_Path and

miR_Clust. Furthermore, we also proposed one alternative and in-

tuitive approach, namely miR_DG, to identify cancer miRNAs

based on their target genes. In miR_DG, we assumed one miRNA to

be associated with cancer if its target genes are significantly enriched

in those that are differentially expressed between cancers and con-

trols. The differentially expressed genes were detected with student’s

t-test with correction for multiple testing by Benjamini–Hochberg

procedure (P-value cutoff of 0.05), and the hypergeometric test was

used for enrichment analysis of miRNAs’ target genes over those dif-

ferentially expressed genes with a threshold of 0.1. In this work, the

miR_DG approach was used as the baseline approach when com-

paring the performance of distinct approaches.

We also compared our methods with three other popular

approaches developed to predict cancer miRNAs, where no miRNA

expression data were considered. The IMRE approach inferred

miRNA expression levels from mRNA expression data based on puta-

tive miRNA targets, and those up-regulated or down-regulated

miRNAs in cancer were identified and regarded related to cancer

(Kuo et al., 2012). The FCS approach prioritized the cancer miRNAs

by measuring functional similarity between miRNA target genes and

known cancer genes (Li et al., 2011). Zhang’s pipeline identified can-

cer miRNAs based on the miRNA-gene regulations, where the

miRNAs that regulated the top 30% genes differentially expressed be-

tween normal and control samples were regarded as cancer miRNAs

(Zhang et al., 2014). In this work, for fair comparison, the top ranked

same number of miRNAs as those predicted by miR_Path were picked

up for these three approaches. The detailed miRNAs predicted by the

six approaches can be found in Supplementary Material S1.

Table 2 summarizes the performance of distinct approaches on

datasets for lung cancer, colon cancer, gastric cancer and breast can-

cer, and the manually curated miRNA-disease associations obtained

from the HMDD database(Lu et al., 2008) (downloaded in January

2012) were used as the gold standard. From Table 2, we can see our

proposed miR_Path and miR_Clust perform very well with compar-

able overall F1 score about 0.4 across distinct cancers, while

miR_Path performs best with respect to precision. The most intuitive

and widely used miR_DG approach performs worst possibly due to

the inherited noise in the existing miRNA–gene interactions, whereas

the clustering step in our approach can efficiently filter out those noisy

interactions and uncover true signals. From the results, we can also

see that our proposed miR_Path and miR_Clust significantly outper-

form the other three popular approaches, which illustrates the good

predictive power of our approach. The good performance of

miR_Path demonstrates that instead of their direct target genes, the

pathways regulated by miRNAs can better characterize miRNAs’

function as well as their relationship to cancer.

To evaluate the robustness of our proposed approach, for each

cancer type, we identified their associated miRNAs in two independ-

ent datasets from different laboratories but generated under the

same platform. From the results shown in Table 2, we can see that

our proposed approach has similar performance on distinct datasets

for the same cancer type, indicating the robustness of our proposed

approach. Furthermore, for each cancer type, we compared the

miRNAs identified in two different datasets as summarized in

Table 3. We used the following measure Cm to evaluate distinct

approaches, Cm ¼ ma \mb=min ðma;mbÞ, where ma and mb, re-

spectively, represents the identified miRNAs from the two datasets

of the same cancer type. As demonstrated by the results shown in

Table 3, more than 60% of the miRNAs identified by miR_Path and

miR_Clust were conserved between different datasets of the same

cancer type, implying these miRNAs are indeed related to cancers.

The miRNAs identified by miR_Clust are more conserved com-

pared with those by miR_Path possibly due to the incompleteness of

the pathway knowledge. Actually, the target gene clusters we identi-

fied here can be regarded as pathways to some extent. However,

only a very small part of the miRNAs found by miR_DG were con-

served across datasets. The overlap of our identified cancer miRNAs

between distinct datasets also demonstrates that our approach is in-

deed robust for identifying cancer miRNAs.

Considering some miRNAs are more conserved and well studied,

there is possible bias in the miRNA-gene regulations, which might

lead to the high overlap of certain miRNAs in the above results. To

see whether this is the case, we permutated the miRNA–gene inter-

action network for 1000 times while preserving the degrees of both

miRNAs and genes, and we predicted cancer miRNAs based on the

generated random interactions to see whether we can get cancer

miRNAs and high conserved overlap by chance. We calculated P-

value for random miRNAs as the probability of observing them

with higher F1 score than our predicted miRNAs, and the P-value

for conserved miRNAs as the probability of finding random miRNAs

that have higher overlap between two datasets than our predicted

Fig. 1. The flowchart of the framework for identifying cancer-related miRNAs

based on gene expression profiles
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miRNAs (details can be found in Supplementary Material S2).

The low P-values for both cancer miRNAs and their conservation

indicate the statistical significance of our proposed approach.

Since the common miRNAs predicted from two independent

datasets for the same cancer type are more convincible, we will focus

on those common miRNAs hereinafter. For each cancer type, we

ranked their related miRNAs according to the miRNA scores (Ms).

In particular, the miRNAs with Ms large than the mean of all pre-

dicted miRNAs were selected as the top ranked miRNAs (HRmiRs).

Note that the HRmiRs are a subset of the common miRNAs identi-

fied from two datasets. The HRmiRs identified for the four cancer

types can be found in Supplementary Material S3. Figure 2 shows

the precision of HRmiRs, predicted miRNAs conserved between

two independent datasets (OmiRs) and all identified miRNAs

(AmiRs) by miR_Path for the four cancer types, where the cancer

miRNAs from HMDD were used as gold standards. Not surpris-

ingly, the HRmiRs achieve the highest precision among the three

sets of miRNAs, indicating that the miRNAs with higher Ms are

more likely to be related to cancers. Among the HRmiRs, we noticed

that most of them are related to cancer although some of them are

not specifically associated with certain cancer type. For example,

among the 41 HRmiRs identified from the colon cancer datasets, 19

miRNAs are reported related to at least one cancer type according

to HMDD except the 18 colon cancer miRNAs (Supplementary

Material S3). In other words, about 90% (37/41) of the HRmiRs are

known to be related to cancer. These results demonstrate that

HRmiRs are indeed related to cancer and provide insights into the

molecular underpinnings of cancer from another perspective.

From the results, we can clearly see that our proposed miR_path

can identify cancer miRNAs with high precision even without the

presence of miRNA expression data, confirming again the efficiency

of the proposed approach.

3.2 Validation of predicted cancer miRNAs
Except for the gold stand cancer-miRNA associations deposited in

HMDD, to validate our predictions, we retrieved four independent

miRNA expression datasets for the four cancers, where the miRNAs

that were differentially expressed between normal and cancer

samples were considered related to cancer. If our predicted cancer

miRNAs are also differentially expressed miRNAs (DemiRs), they

are more likely related to cancer, which can validate our predictions

to some extent. Table 4 summarizes the number of miRNAs identi-

fied by our approach and those DemiRs as well as their overlaps,

where the DemiRs were detected with paired student’s t-test (P-

value cutoff of 0.05) and the predicted miRNAs are those over-

lapped between two datasets for the same cancer type. From the re-

sults, we can see that most of our predictions can be validated by

DemiRs in lung cancer and breast cancer. For gastric cancer, about

half of the DemiRs can be found by our approach. All these results

demonstrate that our predictions are convincible, and the results

also indicate the high precision of miR_path, which is consistent

with the benchmark results described above.

Moreover, we also verified our predictions by querying PubMed,

and found that some of our predictions have already been reported

in literature. For example, for the GSE13911 and GSE19826 data-

sets of gastric cancer, we respectively identified 16 and 13 miRNAs

that are not recorded related to gastric cancer according to HMDD

but were DemiRs. By searching PubMed, we found that some of

these miRNAs have already been reported to affect gastric cancer in

literature. For example, miR-29c was found to be significantly

down-regulated in advanced gastric carcinoma and play a role of

tumor-suppresser through its target gene RCC2 to confer a growth

Table 2. The performance of different approaches over eight cancer datasets

Index Methods Lung cancer Colon cancer Gastric cancer Breast cancer

GSE7670 GSE10072 GSE9348 GSE20916 GSE13911 GSE19826 GSE15852 GSE20437

Precision miR_Path 0.36 0.4 0.36 0.34 0.39 0.4 0.45 0.41

miR_Clust 0.35 0.39 0.33 0.33 0.37 0.36 0.26 0.25

Zhang’s 0.31 0.31 0.29 0.26 0.37 0.38 0.51 0.41

IMRE 0.19 0.19 0.21 0.23 0.26 0.2 0.12 0.23

FCS 0.28 0.27 0.29 0.25 0.37 0.37 0.3 0.34

miR_DG 0.27 0.32 0.29 0.21 0.27 0.25 0.25 0.14

Recall miR_Path 0.47 0.39 0.29 0.4 0.45 0.45 0.14 0.24

miR_Clust 0.54 0.45 0.33 0.47 0.48 0.49 0.63 0.63

Zhang’s 0.39 0.29 0.23 0.31 0.43 0.42 0.12 0.2

IMRE 0.24 0.18 0.17 0.27 0.3 0.22 0.04 0.15

FCS 0.37 0.26 0.23 0.3 0.43 0.41 0.1 0.23

miR_DG 0.09 0.07 0.05 0.03 0.05 0.09 0.01 0.02

F1 miR_Path 0.41 0.39 0.32 0.37 0.42 0.43 0.22 0.32

miR_Clust 0.43 0.42 0.33 0.39 0.42 0.41 0.42 0.42

Zhang’s 0.34 0.3 0.25 0.28 0.4 0.4 0.2 0.27

IMRE 0.21 0.19 0.19 0.25 0.28 0.21 0.06 0.18

FCS 0.32 0.27 0.26 0.27 0.4 0.39 0.15 0.27

miR_DG 0.13 0.12 0.08 0.06 0.09 0.13 0.01 0.04

Note. The numbers in bold denote the best ones with respect to corresponding indices.

Table 3. The number of identified miRNAs that are conserved

across distinct datasets for the same cancer type

Cancer Index miR_Path miR_clust miR_DG

Lung cancer #miRNA 88 120 5

Cm 0.77 0.86 0.22

Colon cancer #miRNA 83 110 1

Cm 0.82 0.87 0.07

Gastric cancer #miRNA 127 163 3

Cm 0.72 0.79 0.14

Breast cancer #miRNA 29 393 0

Cm 0.62 1.00 0.00
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advantage on gastric tumor cells (Matsuo et al., 2013), and miR-26a

was strongly down-regulated and inhibited cell proliferation in gas-

tric cancer (Deng et al., 2013a, b).

These evidences imply that our novel predictions may be indeed

related to gastric cancer.

3.3 Cancer-miRNA association network
Based on the HRmiRs identified for each cancer type, we further

constructed a cancer-miRNA association network as shown in

Figure 3, where a cancer type will be linked to one miRNA if this

miRNA is predicted to be related to the cancer type by miR_Path.

The association network gives a clear global view about the relation-

ship between miRNAs and cancers, from which we can see that

some miRNAs are associated with a specific type of cancer while

some others are related to at least two cancer types.

Focusing on the miRNAs that are specifically associated with

certain types of cancer, we verified these cancer type-specific

miRNAs by checking whether these miRNAs are specifically ex-

pressed in the tissues that the specific cancer origins from. With the

miRNA expression data across 40 normal human tissues (Liang

et al., 2007), we identified 16 miRNAs for colon, 15 for lung, 21 for

stomach and 6 for breast (Supplementary Material S4), where these

miRNAs are both specifically expressed in the corresponding tissues

and predicted to be related to cancer. In addition, query results from

PubMed indicate that most of these tissue-specific miRNAs have al-

ready been reported related to the corresponding cancer types. For

example, mir-195 was found to be significantly down-regulated in

gastric cancers and treatment with mir-195 strikingly suppressed the

growth of gastric cancer cell (Deng et al., 2013a, b), and mir-195

can be used as the prognosis biomarker of gastric cancer (Brenner

et al., 2011; Wu et al., 2011). The abnormal expression of mir-137

has been found involved in the progression and metastasis of colo-

rectal cancer and acts as a tumor suppressor in colon cancer

(Balaguer et al., 2010; Chen et al., 2013). More evidence about the

association between tissue-specific miRNAs and cancer types can be

found in Table 5. The tissue specificity of cancer type-specific

miRNAs implies that these miRNAs are indeed related to specific

cancer types, which will otherwise not be found without the cancer-

miRNA association network. The consistence between tissue-spe-

cific miRNAs and cancer type-specific miRNAs confirm again that

our identified miRNAs are indeed related to cancers.

3.4 Cancer-miRNA-pathway association network
In the cancer-miRNA association network, there are some miRNAs

that are associated with multiple cancers. These multiple-cancers asso-

ciated miRNAs may regulate the common biological processes across

diverse cancer types and therefore play important roles in cancer

initiation and progression. Next, we focused on the 47 miRNAs that

are associated with at least two cancer types as well as the pathways

they regulate by extending the cancer-miRNA network to a cancer-

miRNA-pathway network (CMP network) as shown in Figure 4,

where only three outstanding miRNAs families (let-7, miR-200 and

miR-29) and some related miRNAs (miR-16, miR-524-5p and miR-

520d-5p) were shown for clearness. The complete network can be

found in Supplementary Material S5. In Figure 4, we only showed the

KEGG pathways that have been well categorized.

In the network, the let-7 family is notably associated with mul-

tiple cancer types, and has been found to acts as tumor suppressors

for lung and colon cancer (Akao et al., 2006; Shell et al., 2007;

Takamizawa et al., 2004). The members of the let-7 family are mas-

ter regulators of cell proliferation pathways by targeting RAS and

MYC oncogenes (Johnson et al., 2005; Sampson et al., 2007). It is

found that the epithelial cells undergo abnormal cell divisions when

Fig. 2. Precision of miRNAs identified to be associated with different cancer

types. HRmiRs: top ranked miRNAs; OmiRs: overlapping miRNAs identified

from two datasets; AmiRs: all miRNAs identified to be related to certain can-

cer type

Table 4. The number of predicted cancer miRNAs that are differen-

tially expressed

Cancer miRNA dataset miRNAs Methods

miR_Path miR_Clust

Lung cancer GSE18692 Predicted 88 120

DemiRs 162 162

Overlapa 58 (67%) 92 (77%)

Colon cancer GSE56350 Predicted 83 110

DemiRs 104 104

Overlapa 19 (23%) 23 (21%)

Gastric cancer GSE28700 Predicted 127 163

DemiRs 57 57

Overlapa 25 (20%) 36 (22%)

Breast cancer GSE45666 Predicted 29 393

DemiRs 133 133

Overlapa 24 (83%) 86 (22%)

aThe number in the bracket denotes the percentage of predicted miRNAs

that can be validated by DemiRs.

Fig. 3. The cancer-miRNA association network. In the network, the miRNAs in

the inner circle are predicted related to at least two cancer types
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let-7 is inactivated (Lu et al., 2005), indicating the lower expression

level of let-7 in tumor during cancer development. As shown in the

CMP network, the let-7 family acts as tumor suppressor by regulat-

ing some important cancer-related pathways, such as P53 signaling

pathway, E2F mediated regulation of DNA replication pathway,

cell cycle mitotic pathway and DNA repair pathway. The miR-200

family was found to regulate the epithelial–mesenchymal transition

and tumor metastasis by targeting the mRNA of E-cadherin tran-

scriptional repressors ZEB1 and ZEB2, two important transcrip-

tional repressors of the cell adherence and polarity (Aigner et al.,

2007; Comijn et al., 2001). The three members, i.e. miR-29a, miR-

29b and miR-29c of the miR-29 family are known as anti-oncomirs.

They can impact epigenetic alteration in tumor cells (Fabbri et al.,

2007) by reverting DNA methylation through their direct targets,

DNA methyltransferases 3A (Dnmt3a) and 3B (Dnmt3b), in lung

cancer tissues. It has been found that the overexpression of miR-29a

significantly reduces the invasiveness and proliferation phenotypes

in lung cancer cell lines (Muniyappa et al., 2009). Another study in-

dicates that miR-29 family can up-regulate P53 by targeting P85

and CDC42 (Park et al., 2009). In the CMP network, the miR-29

family regulates the PDGF pathway. PDGF regulates diverse differ-

entiation and proliferation pathways and promotes tumor growth

via autocrine stimulation of malignant cells, and PDGF receptors

were found to be critical for the PI3K/AKT activation and negatively

regulated by mTOR (Wu et al., 2008). It can be seen that the path-

ways regulated by miR-29 family can help interpret how it is

involved in the development of cancer.

Among the miRNAs, miR-16 was predicted to be associated with

all four types of cancers. miR-16 is among the miRNAs that were

firstly found to be associated with cancer development in chronic

lymphocytic leukemia (Calin et al., 2002), where miR-16 acts as a

tumor suppressor and was found to be deleted or down-regulated in

tumor cells (Calin et al., 2005). As shown in the CMP network, miR-

16 regulates the P53 signaling pathway and the E2F mediated regula-

tion of DNA replication pathway, indicating the important roles of

miR-16 in cancer. miR-524-5p was not only found to regulate the

WNT pathway but also regulate two APC-related pathways in the

CMP network, indicating the important role of miR-524-5p in tumor.

miR-520d-5p was found to regulate the Notch signaling pathway

which in turn regulates b-catenin to cooperate with the WNT path-

way while tumor formation (Klaus and Birchmeier, 2008). It can be

seen that the cross-talks between above miRNAs and pathways help

us understand how the miRNAs are involved in the tumor process.

We also noticed that miR-548c-3p was predicted to be associ-

ated with three types of cancers although it is not reported to be

related to any type of cancer in HMDD. In the CMP network, miR-

548c-3p was found to regulate the cell cycle related pathways, DNA

repair pathway and the stabilization of P53 pathway. Recently,

miR-548c-3p was identified as a mediator of the expression of topo-

isomerase IIa (TOP2A) that plays critical roles in maintaining DNA

topology after replication (Srikantan et al., 2011). miR-548c-3p

represses the expression of TOP2A by binding to its 30 UTR region

in a competition with Human antigen R (HuR) that is an RNA-

binding protein stabilizing and modulating the translation of its tar-

get mRNAs. Recently, HuR was found to be commonly overex-

pressed in cancers (Abdelmohsen and Gorospe, 2010; Dixon et al.,

2001; Lopez de Silanes et al., 2005). Therefore, we assumed that

miR-548c-3p is related to cancer by regulating TOP2A through the

competition with HuR, where the dysregulation of TOP2A

will affect the DNA stabilization. Our prediction is also

supported by a recent study that reports mir-548c-3p was signifi-

cantly down-regulated in different pathological grades of hepatocel-

lular carcinoma (Noh et al., 2013).

In summary, the CMP network constructed here provides in-

sights into the molecular underpinnings of cancer and can help to in-

terpret how the miRNAs are involved in the pathogenesis of cancers

through the cellular pathways that they regulate.

4 Discussion

The miRNAs are important regulators of gene expression, the aber-

rant function of which may drive the initiation and development of

cancer. However, the global cancer-miRNA association landscape is

far from complete and only a limited number of miRNAs are known

Table 5. Evidences for tissue-specific miRNAs that are related to

the tissues in which the cancer initiates

Cancer miRNAs Evidence (PMID)

Lung

cancer

miR-365 23507558, 22185756

let-7a 23566834, 23349018,

21622546, 21097396

miR-32 22349819

Colon

cancer

miR-137 23275153, 23201162, 22895557,

20682795,19659786

miR-181b 23719259, 18172508, 18079988

miR-367 23393343

Gastric

cancer

miR-195 23333942, 22046085, 21987613

miR-196a 24527072

miR-203 23790975, 21454413, 21063914

miR-206 23751352, 23348698

miR-372 23242208, 22027184

miR-93 22842726

miR-9 23383271, 22703336, 21931274,

21225631, 20102618

miR-497 21258880

miR-143 23932921, 21874264, 19439999

Breast

cancer

miR-148b 25051376, 23233531

miR-218 22705304, 21385904

miR-223 25004125, 24400121

miR-27a 25223182, 24632568, 24191129

Fig. 4. The CMP network. The pathways are colored according to their biolo-

gical categories annotated in KEGG
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related to cancer, which hinders the development of miRNA based

therapeutic strategies. In literature, some computational approaches

have been developed to detect which miRNAs are associated with

which cancer types, among which the integrative analysis of

matched gene and miRNA expression profiles is one of the most

promising approaches. Unfortunately, the matched gene and

miRNA expression profiles are not commonly available. On the

other hand, the large amount of public accessible gene expression

data provides an alternative way to investigate the associations be-

tween miRNAs and cancers. In general, the existing approaches util-

ize the predicted miRNA-gene regulations to identify the cancer

associated miRNAs, whereas the noise in the regulation relationship

as well as the lack of the context information about these regula-

tions may degrade the performance of those promising approaches.

In this work, we developed a novel framework to identify cancer

miRNAs based on gene expression data and miRNA-gene regulations.

Unlike existing approaches, we proposed a new technique to filter out

those noisy and false regulations based on gene expression data, and

detected cancer miRNAs. The benchmark results on four distinct can-

cer datasets demonstrate the predictive power of our proposed

method, and the good performance on multiple independent datasets

for the same cancer type indicates the robustness of the proposed ap-

proach. Furthermore, among our predicted cancer miRNAs, some of

them have been reported in literature and some are found to be differ-

entially expressed based on independent miRNA expression datasets,

which validate our predictions to some extent. With a cancer-miRNA

association network constructed here, we also detected some pan-

cancer miRNAs and cancer type-specific miRNAs, thereby providing

insights into the mechanism of cancers. In particular, we identified the

pathways regulated by cancer miRNAs, which can help explain how

miRNAs are involved in cancers.

The good performance of our proposed approach attributes to the

removal of noisy interactions between miRNAs and genes. In this work,

we detected the context specific target genes of miRNAs with the as-

sumption that they will fluctuate together if they were regulated by the

same miRNA(s). However, that is not the case if two genes are, respect-

ively, regulated by two sets of miRNAs while share few miRNAs, where

we can only detect the major regulators of these genes. The integrative

analysis of matched miRNA and gene expressions has shown to be

promising approach in determining the miRNA-gene regulations. We

believe the performance of our proposed approach will be significantly

improved if such kind of data could be integrated in our framework in

the future. In addition, we only considered around 500 miRNAs here,

but there are more than 2000 human mature miRNAs recorded in

miRBase now. Our approach can be easily extended to the new

miRNAs as long as their target genes are available. With more informa-

tion about miRNAs as well as their target genes emerging, more cancer

miRNAs are believed to be discovered in the future.
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