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Abstract

Motivation: Single-cell RNA-sequencing technology allows detection of gene expression at the sin-

gle-cell level. One typical feature of the data is a bimodality in the cellular distribution even for

highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard

and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequenc-

ing are not able to capture this property.

Results: We introduce a beta-Poisson mixture model that can capture the bimodality of the single-

cell gene expression distribution. We further integrate the model into the generalized linear model

framework in order to perform differential expression analyses. The whole analytical procedure is

called BPSC. The results from several real single-cell RNA-seq datasets indicate that �90% of the

transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better

than the fit of the standard gamma-Poisson model in>80% of the transcripts. Moreover, in differ-

ential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a

conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST,

two recent methods specifically designed for single-cell RNA-seq data.

Availability and Implementation: An R package BPSC for model fitting and differential expression

analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/

nghiavtr/BPSC.

Contact: yudi.pawitan@ki.se or mattias.rantalainen@ki.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression at single-cell level is a stochastic process affected by

extrinsic and intrinsic noise. The extrinsic noise comes from the en-

vironment outside the cell such as hormones or drugs. The intrinsic

noise involves intra-cellular factors such as transcription rate (burst

frequency), the number of mRNAs (burst size) and degradation rate

(Wills et al., 2013). Previous studies (Daigle et al., 2015; Sanchez

et al., 2013; Shahrezaei and Swain, 2008) have introduced different

models to capture the stochastic process due to the intrinsic noise. In

general there are two main approaches to measure expression of

genes in a single cell (i) targeted and (ii) whole transcriptome-based.

The former—e.g. using qPCR or immunohistochemistry—is used to
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investigate a limited number of genes, while the latter exploits the

single-cell RNA sequencing (scRNA-seq) technology to estimate

abundances of genes/transcripts of the whole transcriptome. In this

study, we focus on modeling gene expression from scRNA-seq

studies.

Gene expression of traditional bulk-cell RNA sequencing is the

integration of gene expression from multiple single cells; the distri-

bution is commonly modelled by the gamma-Poisson mixture

model, or equivalently, the negative-binomial distribution. This

model cannot capture the bimodality of gene expression in single-

cell data (Shalek et al., 2013). Recently Wills et al. (2013) briefly

introduced the beta-Poisson model to capture the bimodality as well

as the long-tailed behavior in the distribution. As an attractive fea-

ture, unlike the purely empirical gamma-Poisson model for bulk-

RNA, the beta-Poisson model parameters introduce one biological

interpretation in terms of burst size and burst frequency of the cell-

level expression. However, due to computational problems with the

beta-Poisson model, Wills et al. used an alternative discrete Poisson

mixture, a less-parameterized version of the beta-Poisson model, to

extract the information of the burst size and frequency. The model

was applied for modelling of gene-level expression in qPCR-based

datasets. Furthermore, no details of evaluation of modeling perform-

ance were reported. Another attempt of using the beta distribution

to capture bimodality property of single-cell gene expression was

introduced in the BATBayes model (Velten et al., 2015). However,

in this approach, instead of integrating it with the Poisson distribu-

tion, the beta distribution was combined with binomial distribution

to mimic the partitioning process of RNA molecules into transcripts.

Here we develop BPSC, an analysis tool based on the beta-

Poisson model for the single-cell gene expression data, and imple-

ment and apply it to several scRNA-seq datasets. BPSC addresses

practical and realistic issues such as non-integer expression values or

low expression values. Theoretically it is suitable for both tran-

script-level and gene-level expression, which is usually higher than

the transcript-level expression. It is worth noting that the term ‘tran-

script’ herein includes both isoform and other types of splicing vari-

ants. The beta-Poisson model allows for control of the expression

drop-off caused by technical noises or sequencing sensitivity. BPSC

includes a generalized linear model (GLM) based on the beta-

Poisson model to perform differential expression analyses of single-

cell RNA-seq data. Experiments using simulated and real datasets

show that BPSC performs well against edgeR, an established method

for bulk-cell RNA-seq, and against MAST and scde, two recent dif-

ferential-expression analysis methods designed for single-cell RNA-

seq.

2 Beta-Poisson model

The beta-Poisson model captures the burst frequency and burst size

through the shape and scale parameters a and b, respectively. Large

a indicates high burst frequency; large b means large burst size

(Wills et al., 2013). Instead of using a range [a, b], we consider the

beta distribution in [0, 1] and scale it by k in order to avoid optimiz-

ing two boundary parameters a and b. We then extend the model

with more parameters to increase its flexibility. We start with the

simplest model with three parameters, then describe its extensions

with four and five parameters.

2.1 Three-parameter beta-Poisson model
The simplest beta-Poisson model is a mixture of Poisson distribu-

tions with mean v¼ ku, where k is a scale parameter, and u has a

beta distribution with parameters (a,b). Thus, the probability distri-

bution function (pdf) can be computed as follows:

PðX � xÞ ¼
ðk

0

PðX � xjvÞf ðvÞdv: (1)

Using f(v)dv¼ f(u)du, we first replace v by u to get

PðX � xÞ ¼
ð1

0

PðX � xjkuÞf ðuÞdu

¼ 1

Bða; bÞ

ð1

0

PðX � xjkuÞua�1ð1� uÞb�1du (2)

Changing the variable t � 2u� 1, so that u¼ (tþ1)/2 and

dt¼2du, with some algebra we have:

PðX � xÞ ¼ 1

Bða;bÞ
1

2aþb�1

ð1

�1

PðX

� xj kðt þ 1Þ
2
Þð1þ tÞa�1ð1� tÞb�1dt (3)

The integral (3) can be easily and rapidly computed by using the

Gauss-Jacobi quadrature method (Hildebrand, 2013). Thus, similar

to the discrete Poisson mixture model (Wills et al., 2013), our first

model requires only three parameters. However, in practice, this

model proves inadequate for modeling single-cell transcript expres-

sion data. Therefore, we extended the model in the following

sections.

2.2 Four-parameter beta-Poisson model
The simple beta-Poisson model has a serious weakness in that

its sample space contains non-negative integers only. Because of

various preprocessing steps of the sequence data, expression values

are generally not discrete counts. Transcript expression is typically

estimated in the form of normalized indices such as fragments

per kilo-base per million reads (FPKM) or counts-per-million

reads (cpm). Figure 1a shows an example that the expression values

(in FPKM) of a transcript are not discrete and small (mostly<2.0).

As displayed in the middle plot, this makes the three-parameter

beta-Poisson model fail to capture the distribution. To address

this problem, we introduce an extra parameter as follows. First

we denote the three-parameter beta-Poisson model in a simpler

form as

BP3ðxja; b; k1Þ ¼ Poissonðxjk1Betaða;bÞÞ: (4)

In this formula, we use k1 in place of k in formula (1). Then, de-

fine the four-parameter beta-Poisson model with the extra param-

eter k2 as

BP4ðxja; b; k1; k2Þ � k2BP3ðxja;b; k1Þ: (5)

In practice we expect the parameter k2 to be a small positive

value less than one, so that the BP4 model allows fractional values in

its sample space. The pdf of the four-parameter beta-Poisson model

can be computed using the following connection:

BP4ðxja; b; k1; k2Þ ¼ BP3ð
x

k2
ja;b; k1Þ (6)

The transcript expression in Figure 1a is now successfully mod-

elled by BP4 as presented in top-right plot of the panel. In this BP4

model, the goodness-of-fit v2 is 5.79 with 4 degrees of freedom

(P-value¼0.21), indicating the BP4 model fits well and better than

the BP3 model.
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2.3 Five-parameter beta-Poisson model
Interestingly, even without any explicit parameter, the four-param-

eter model is able to some extent capture the bimodality in the ex-

pression distribution due to a large proportion of unexpressed cells.

This is illustrated in Figure 1b, where the standard gamma-Poisson

fails. To show more formally that the four-parameter model is often

adequate for the data, we will compare it to a final extension that

explicitly models the proportion of cells with zero expression. Zero

expression is expected to represent a true underlying biology for a

fraction of the cells, although it might also be due to technical rea-

sons such as the detection limit of sequencing machine. Figure S1 in

Supplementary file presents an example when the four-parameter

model does not capture the distribution of expression data because

of the large proportion of cells with zero expression.

The five-parameter beta-Poisson model adds an extra parameter

p0 capturing the proportion of cells with zero expression. The pdf of

this model is given by a mixture model

BP5ðxja; b; k1; k2;p0Þ ¼ p0Iðx ¼ 0Þ þ ð1� p0ÞBP4ðxja; b; k1; k2ÞÞ;
(7)

where I(x¼0) is the indicator function. Transcripts that fail the BP4

model can be successfully modelled by the five-parameter model, as

shown in Figure S1 in Supplementary file.

To summarize, in the original beta-Poisson model (Wills et al.,

2013), the two parameters of the beta distribution a and b represent

the burst frequency and burst size in the transcription process. In

our models, these burst parameters can be estimated by scaling a
and b with k1 for the three-parameter model, and further modified

by k2 for the four-parameter and five-parameter models. The fifth

parameter p0 controls the proportion of non-expressing cells.

3 Parameter estimation

For each transcript, our objective is to estimate the parameters of

the beta-Poisson model given the expression data from n cells. From

the pdf of the model, in principle we can compute the log-likelihood

given the data

logLðhÞ ¼
X

x

nðxÞlogðpðxjhÞÞ;

where h is the vector of parameters, n(x) is the number of cells with

expression equal to x, and p(xjh) is the probability of x. For the

three-parameter model h ¼ ða; b; k1Þ. To speed up the computation,

we partition the data into K bins, so the log-likelihood is

logLðhÞ ¼
XK

k¼1

nklogðpðkjhÞÞ;

where nk is the number of cells in the kth bin, and p(kjh) is the prob-

ability of the kth bin. The latter is computed from the pdf of the

model. To assess the estimated model we compute a goodness-of-fit

test, described in more detail in Section 3.2.

In practice we need to fit the model separately to each of >20

000 transcripts, thus requiring a fast, robust and reliable procedure.

We select K¼10 to obtain a fast performance, while flexible enough

to capture a variety of shapes in the data distribution. To make the

procedure robust to outliers, we exclude cells from the top 2.5% ex-

pression from each transcript. The break points are selected to create

approximately equal-sized bins. If the data are highly skewed or

have a very long tail, we get the break points with equal-sized bins

in a log2 scale; this is the case if most of the expression values are

small but there exists a few high values so that the default break

points in the original scale cannot properly capture information of

the distribution. The optimization is implemented using the optim(.)

function in the R software.

3.1 Initial values for model optimization
One important step to achieve a fast and reliable estimation is the se-

lection of starting values. Here we use the method-of-moments esti-

mates from the observed data. We first focus on the starting value

estimation for the three-parameter model, then extend it to the other

models. Let E(X) and Var(X) be the marginal mean and variance of

transcript-expression X. Then we have the following results:

VarðXjvÞ ¼ EðXjvÞ ¼ k1u

EðXÞ ¼ EðEðXjvÞÞ ¼ k1
a

aþ b

(8)

VarðXÞ ¼ EðVarðXjvÞÞ þVarðEðXjvÞÞ

¼ k1
a

aþ b
þ k2

1

ab

ðaþ bÞ2ðaþ bþ 1Þ
:

(9)

Given k1, we can estimate a and b by inverting (8) and (9) to get

a ¼ EðXÞ
k1

EðXÞðk1 � EðXÞÞ
VarðXÞ � EðXÞ � 1

� �

b ¼ a
k1 � EðXÞ

EðXÞ ;

and use the observed sample mean and sample variance for E(X)

and Var(X), respectively.

We select the initial estimate of k1 to be the maximum of the

data points. The starting value of k2 in the four-parameter model is

set to be 0.1�median if the median expression value <1.0 (thus at

least half of the cells have fractional expression value), otherwise

k2¼1.0. Then, we scale the expression values by dividing them with

k2 before estimating the initial values of the other parameters.

The initial value of mixture parameter p0 of the five-parameter

(a)

(b)
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Fig. 1. (a) displays the expression distribution (in FPKM scale) of a low expres-

sion transcript (the left-most and white distributions) and its beta-Poisson

models (the grey distributions) BP3 and BP4. Due to low and non-integer ex-

pression values, the BP3 cannot capture the expression distribution of the

transcript, but the BP4 model can. The grey plots of (b) compare the perform-

ance of the gamma-Poisson (GP) model and the BP4 model in capturing a dis-

tribution with a large proportion of unexpressed cells. The real data are from

the MDA-MB-231 dataset
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beta-Poisson model is set to zero. Alternatively, we could fit a model

to non-zero expressed values only; this approach leads to longer

overall time and generally produces similar final estimates.

3.2 Model evaluation
In order to evaluate how well the model fits the data, the observed

and the expected frequencies from the model are compared using

the goodness-of-fit statistic

T ¼
XK

k¼1

nklog
nk

ek
;

where nk is the observed frequency of the kth bin and ek is the ex-

pected frequency. Asymptotically, under the null hypothesis that the

model fits the data, T has a v2 distribution with (K – p – 1) degrees

of freedom, where p is the number of parameters. However, because

of small samples, many bins at the tail of the distribution always

have low expected frequencies, so the asymptotic distribution is not

appropriate.

We use a Monte-Carlo method to generate a more appropriate

null distribution as follows: first 1000 random datasets are created,

each containing n values from the estimated beta-Poisson model.

Then we apply the estimation procedure to each random dataset

and compute T* as the goodness-of-fit statistic above. The collection

of 1000 T*s represents the Monte-Carlo null distribution, and the

P-value is computed as the proportion of T*s greater than the

observed T. We declare a transcript is well-fitted by the beta-Poisson

model if its P-value �0.05. An example of the Monte-Carlo null dis-

tribution is shown in Figure S2 in Supplementary report.

4 Differential expression analysis

In this section we integrate the beta-Poisson model into the general-

ized linear model (GLM) framework, so we can easily perform dif-

ferential expression analyses. In general, given response variable

Y ¼ yi; i ¼ 1; ::; n and explanatory variable X ¼ xj; j ¼ 1; ::; k, a

GLM consists of a linear predictor

gi ¼ b0 þ b1x1i þ � � � þ bkxki (10)

where the dependence of the expectation of the response variable

li¼E(yi) on the linear predictor is set by a link function g(li)¼ gi. In

this study, the distribution of the response variables is a beta-

Poisson model and we use the log-link function. In order to estimate

the model parameters we use the iterative weighted least-squares

(IWLS) algorithm (Pawitan, 2013), which only requires a variance

function that specifies the relationship between the mean and

variance.

For the BP3 model, using /1 ¼ a
aþb and /2 ¼ b

aðaþbþ1Þ , from for-

mula (8) and (9), with some algebra we have:

l � EðXÞ ¼ k1/1

VarðXÞ ¼ k1/1 þ k2
1/

2
1/2

¼ lþ l2/2:

(11)

Similarly, we extend the variance function for BP4 with the add-

itional parameter k2 as follows:

l � EðXÞ ¼ k1k2/1

VarðXÞ ¼ k1k
2
2/1 þ k2

1k
2
2/

2
1/2

¼ lk2 þ l2/2:

(12)

In group comparisons, we assume the mean l varies across

groups, but the shape parameters k2 and /2 are fixed and estimated

from control group. In our implementation we utilize the glm(.)

function in R software for fitting the GLM based on the BP4 model

with variance function defined by (12). The whole analytic proced-

ure including the differential-expression analysis will be called the

BPSC, which is also the name of the resulting R package made avail-

able at https://github.com/nghiavtr/BPSC.

5 Datasets

5.1 Real datasets
The first dataset in this study including 384 cells from a triple-nega-

tive breast cancer cell line (MDA-MB-231), half of which were

treated with metformin. The cells were captured using the Fluidigm

C1 system on a 96-well format. Two independent cell culture

batches were used from which 2 � 96 untreated cells were captured,

and similarly 2 � 96 treated cells. Sequencing libraries were pre-

pared using the standard Fluidigm protocol based on SMARTer

chemistry and Illumina Nextera XT kit. Library sizes of samples are

in a range of 1–10 million.

The second dataset consists of 96 cells from HTC116 cell-line

extracted from a public dataset (Wu et al., 2014). These single-cell

RNA-seq libraries were also prepared with SMARTer cDNA synthe-

sis using the C1 microfluidic system (Fluidigm), based on Nextera li-

brary construction (Illumina). The 96 libraries, divided into two

pooled samples of 48 libraries, were put in two lanes for a Illumina

HiSeq sequencing. More details about this dataset are given in the

original paper (Wu et al., 2014). Library sizes in this dataset vary

from 0.1 to 4 million.

There are various available transcript expression estimation

methods that can be used for RNA-seq datasets. In this study, we se-

lected a widely-used method Cufflinks (Trapnell et al., 2010) to esti-

mate transcript expression in the MDA-MB-231 dataset, and

Sailfish (Patro et al., 2014) to quickly extract transcript expression

in the HTC116 dataset. The reference annotation was obtained

from the most recent hg19 Homo sapiens reference built from

UCSC data sources and extracted from igenomes website http://sup

port.illumina.com/sequencing/sequencing_software/igenome.html

(in folder archive-2014-06-02-13-47-56).

For the distribution analysis, the MDA-MB-231 dataset contains

21 728 transcripts from 165 cells from the control group and the

HTC116 dataset consists of 23 889 transcripts from 96 cells. The

cells from treated group were excluded in order to avoid the con-

founding effects of the metformin treatment.

For differential expression analysis, the MDA-MB-231 dataset

includes also transcript-level expression of 162 cells from the treated

group. Moreover, we use Htseq software (Anders et al., 2015) to

generate gene-level expression of the MDA-MB-231 dataset. This

dataset consists of 12 079 genes in total.

5.2 Simulated datasets
We use two simulation settings to evaluate and compare the per-

formance of BPSC in differential expression analyses. In each set-

ting, the data consist of two equal-sized groups with 100 samples in

each group and a total of 10 000 genes measured per sample. Five

percent of the genes are set to be differentially expressed (DE) with

fold-change 4.0, half of which are upregulated and the rest

downregulated.

The first setup bcSim simulates bulk-cell RNA-seq data. We use

the simulation design of a recent study (Law et al., 2014) to create a

Beta-Poisson model for scRNA-seq 2131
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bulk-cell RNA-seq dataset. In brief, a baseline distribution from the

real dataset is used to generate relative proportion of expected

counts of genes. To create biological variation of DE genes, we

multiply their proportions by the fold-change. Then the proportion

multiplies by library size to obtain expected count of gene. In this

simulation, the library sizes of the samples are randomly selected in

a range from 2 to 20 million. An inverse-chi-squared distribution is

used to create dispersions in the simulation (Law et al., 2014). After

that, the counts of genes are generated from the gamma-Poisson

model with the specified mean and dispersion.

The second simulation setup scSim is designed to mimic a single-

cell RNA-seq dataset. We use the well fitted four-parameter

beta-Poisson models from HTC116 (Monte-Carlo P-value �5%) as

baseline distributions for the gene expression of the dataset. For

each gene, the expression across samples in the control group and

the treated group is generated from the same beta-Poisson model.

To create biological effects for the DE genes, we multiply the param-

eter k1 of one group by the fold-change, while the other parameters

are kept fixed. We also scale the gene expression to the predefined li-

brary sizes of the cells, which are randomly sampled from a range of

1–3 million. This range is taken from the HTC116 dataset.

In the analyses, we filter out genes whose total reads across all

samples <10. We generate 100 replications for each setting, and the

final results are based on these replications.

6 Results and discussion

6.1 Model fitting
The analysis results for the two real datasets are summarized in

Table 1. In general, these two datasets have similar performances,

where �90% of transcripts are successfully modeled (Monte-Carlo

P-value �5%) by the BP4 and BP5 models. This proportion increases

to 94% if we set the P-value threshold to 1% (data not shown). It is

worth noting that the BP4 model is only slightly worse than the BP5

model. As illustrated in Figure 1b, the BP4 model is already able to

capture the proportion of unexpressed cells, so it appears sufficient

for practical applications. The BP5 model may need to be utilized

only for the failed BP4 models to improve overall performances. The

poor performances of the BP3 model in both datasets demonstrate

the important effect of the k2 fractional-scaling parameter in the BP4

model.

To demonstrate the value of the beta-Poisson model, we also

compare its performance to the traditional gamma-Poisson (GP)

model through their Akaike information criterion (AIC) scores. As

shown in Figure 1b the beta-Poisson model performs much better

than the gamma-Poisson model for transcripts with many unex-

pressed cells. To have a more even comparison, hence harder for the

beta-Poisson model, we compare the simplest model BP3 and GP on

a subset of high-abundance transcripts which are defined by the

transcripts that have top 10% sums of expression across cells. From

Table 2, for more than 80% of the transcripts in both datasets, the

AIC of the BP model (AICBP) is less than the AIC of the GP model

(AICGP), indicating the BP model has better performance than the

GP model. Figure 2 shows the scatterplot of the AIC scores from the

two models applied to the MDA-MB-231 dataset. A great majority

of the points falls below the line of identity, indicating that the BP

model has lower AIC than the GP model.

To capture the improvement, we also compare the AIC of the

BP3 model with the AIC of the GP model up to a constant difference,

i.e. we count the transcripts satisfying the condition

AICBP þ c < AICGP, where c¼0, 2, 5 in Table 2. The proportion is

�60% when we allow an AIC difference of 5.

To investigate why the BP model still sometimes fails to fit the

data, we bin the expression values of the MDA-MB-231 data into a

high resolution histogram with 100 equal-size breaks. Then a hier-

archical clustering is applied to investigate transcript similarities,

and we identify 4 groups categorizing the failed models. These

groups are shown in Figure S3 in Supplementary report. Most of the

failed models are in groups 1 and 3, where the right tail of the distri-

bution is marked by several extreme values. These values will be

investigated further in our future study.

To assess the sensitivity of the beta-Poisson model (BP4 model)

to sample size, we simulate datasets from scSim setup with different

numbers of cells 100, 50, 25 and 20. The results (Fig. S4 in

Supplementary report) show that the proportion of genes that fits

the beta-Poisson model (P-value �0.05) is higher than 85% for the

dataset with at least 25 cells. Therefore, we recommend that BPSC

should be applied for datasets with at least 25 cells. Besides, due to

the requirements for computing the goodness-of-fit statistic, the

Table 1. Proportion of transcripts that fits the beta-Poisson model

(P-value� 0.05)

BP3 BP4 BP5

MDA-MB-231 0.31 0.87 0.90

HTC116 0.37 0.88 0.91
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Fig. 2. BP3 model versus GP model in AIC scores from MDA-MB-231 dataset.

In more than 80% of the transcripts, the AIC of the BP model (AICBP) is less

than the AIC of the GP model (AICGP)

Table 2. Comparisons between BP3 and the standard gamma-

Poisson model , where c represents the level of improvement in

the AIC score.

c 0 2 5

MDA-MB-231 0.82 0.73 0.59

HTC116 0.88 0.78 0.60

The entries in the table are the proportion of transcripts where

AICBP þ c < AICGP, where c represents the level of improvement in the AIC

score.
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number of bins K also should be greater than pþ1. For example,

number of bins K of the BP4 model is at least 6 for practical use.

Differential expression analysis
To evaluate the performance of BPSC for differential expression

analysis, we use the four-parameter beta-Poisson model combined

with the generalized linear model. We compare the results to edgeR-

glm of the edgeR software version 3.10.2 (McCarthy et al., 2012;

Robinson et al., 2010) as a representative of methods for bulk-cell

RNA-seq data analyses based on the negative-binomial distribution

or equivalently the gamma-Poisson distribution. The edgeR software

is applied on the read-count dataset as the input requirements of the

software, and a normalization step is integrated inside the software.

We use the protocol in a recent study (Anders et al., 2013) for

edgeR-glm implementation. We also compare BPSC to MAST ver-

sion 1.0.1 (Finak et al., 2015), a recent method for differential ex-

pression analysis in scRNA-seq data. In brief, MAST proposes to

use a hurdle model (Finak et al., 2015) to capture bimodality of

gene expression, then apply likelihood ratio to test for differential

expression.

BPSC works on the data normalized to library sizes from cpm

function of the edgeR software (in the simulated datasets) or directly

on the FPKM data (in the real datasets). In the original study,

MAST was input from log2(TPMþ1) expression matrix. Herein,

TPM (or transcripts per million) indicates normalized expression

data. In our implementation, we replace TPM by FPKM for the real

dataset and cpm for simulated datasets. Default parameter settings

of the software are applied. Finally, we extract the P-values from

each method and report the false discovery rates (Pawitan et al.,

2005), called estimated FDR. In simulated datasets, we are also able

to calculate the true FDR by comparing the top genes ranked by the

P-values to the true status of DE genes. These FDR values are

ranked in increasing order and used for method comparison in

Figure 3. In this figure, the method with a lower FDR at a certain

number of top genes (transcripts) is better.

We first compare BPSC, MAST and edgeR in the two simulation

setups: bcSim and scSim. The bcSim uses the gamma-Poisson model

to generate a traditional bulk-cell RNA-seq dataset, while scSim

simulate a single-cell RNA-seq dataset from the beta-Poisson model.

We report the average FDR values of 100 simulations, and for visual

purposes we present the top 1000 genes for comparison. For the

bcSim setting, Figure 3a shows that BPSC, MAST and edgeR have

similar performances, both in terms of estimated FDR (left) and true

FDR (right). The estimated FDRs from BPSC and MAST are close to

the true FDR when the true value <0.2, and they slightly under-esti-

mate when the value FDR>0.2. These results indicate that BPSC is

also able to work well on the conventional bulk-cell RNA-seq data

in this experiment.

Figure 3b shows that BPSC outperforms MAST and edgeR in

both the true FDR (right) and estimated FDR (left). Moreover,

Figure S5 of Supplementary report, a zoomed-out of Figure 3 with

more genes and a larger FDR range, shows BPSC and MAST are

more reliable than edgeR in the scSim setting: there is a large dis-

crepancy between the estimated FDR and the true FDR curves of the

edgeR method, which is in contrast to the curves from BPSC. Since

we have shown above that the beta-Poisson model fits the single-cell

data well, this is an indication that edgeR may not be suitable for

single-cell RNA-seq data.

For the MDA-MB-231 dataset, in Figure 3c (left plot) BPSC

shows lower FDR than both MAST and edgeR. Moreover, in the

zoomed-out version (Fig. S5c of Supplementary report), the pattern

is quite similar to the scSim simulation, so the most likely explan-

ation is that the beta-poisson model is more appropriate than the

gamma-poisson model in this single-cell RNA-seq dataset. Figure 3c

(right plot) shows that the analyses at transcript-level and at gene-

level expression produce similar results.

Table 3 presents the top 10 DE transcripts discovered by BPSC.

The FDR values of these transcripts from the edgeR method in the

last column expresses that they are also well differentially expressed

by the method. Next we investigate the affected biological pathways

using the Reactome tool (Croft et al., 2014) and the website of

human gene database http://www.genecards.org. Many of the top

DE genes (RPS17, RPL28, EIF6 and EIF5AL1) are involved in the

mRNA translation processes, such as the eukaryotic translation ini-

tiation, eukaryotic translation elongation and eukaryotic translation

termination. Since it is known that metformin can induce the down-

regulation of translation of some mRNAs (Larsson et al., 2012), the

perturbation of metformin in this study may have a similar effect.

We also discover two DE genes PRDX2 and PRDX3. These genes

encode for peroxiredoxin (Prdx) proteins and are involved in the de-

toxification of reactive-oxygen-species pathway, which is previously

shown to protect a breast cancer cell-line against doxorubicin-medi-

ated toxicity (McDonald et al., 2014). A full biological analysis of

the results is out of the scope of this current methodological study

and will be done separately.
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Fig. 3. False discovery rates evaluated in (a) bcSim, (b) scSim and (c) MDA-

MB-231 datasets using BPSC, MAST and edgeR methods. In each plot, the

horizontal axis indicates the number of top ranked genes/transcripts obtained

by the methods. The vertical axis presents corresponding FDR values of

gene/transcripts in the horizontal axis. In simulated datasets, the FDR value is

the average from 100 simulations. In (a) and (b), the left plots present esti-

mated FDR, while the right ones display the true FDR of the simulated data-

sets. (c) The estimated FDR of the transcript-level (left) and the gene-level

(right) expression datasets
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We also compare BPSC to scde (Kharchenko et al., 2014) version

1.99.0, a recent method for differential expression analysis of single-

cell RNA-seq data using a Bayesian approach. Due to the heavy

computation of the scde software (see more details in Fig. S6 of

Supplementary report), we keep the same number of cells in each

group, but reduce the number of genes down to 3000 genes in both

simulated bulk-cell and single-cell RNAseq datasets. Similar to

edgeR, the scde uses read counts as input. Default parameter settings

of the software are applied. Since the scde does not report P-values

but use Z-scores for the differential expression analysis, we do not

compare the methods in terms of estimated FDR. Instead, as sug-

gested by the software tutorials, we use the top genes ranked by the

absolute of their Z-scores, then compute the true FDR for

comparison.

We run the simulation 10 times (low number due to computa-

tional demands of scde), and the average results are shown in

Figure 4. The left panel shows that all methods are successful in the

bulk-cell simulation setting (bcSim) and achieve the same FDR.

However, for the single-cell setting (scSim), the BPSC method has

better performance as compared to the scde, as shown in right panel

of figure. Table 4 briefly summarizes the performance of the meth-

ods on differential expression analysis for different benchmarks.

7 Conclusions

We have presented a model for gene expression of single-cell RNA-

seq data based on the beta-Poisson mixture model. Experiments

with real datasets show that our approach is able to correctly model

a great majority of the transcripts. We also introduce an application

of the model for differential expression analysis through a combin-

ation with the generalized linear model. The results of differential

expression analysis in both simulated and real single-cell RNA-seq

datasets demonstrate that the proposed method performs well

against a traditional method commonly used in bulk-cell RNA-seq

data and recent methods designed for differential expression analysis

in single-cell RNA-seq dataset. The success of the model helps

understand further the transcription mechanism of gene expression

in single-cell level and opens opportunities for better analyses of sin-

gle-cell RNA-seq data.
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