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Abstract

Motivation: Identifying the critical state or pre-transition state just before the occurrence of a phase

transition is a challenging task, because the state of the system may show little apparent change

before this critical transition during the gradual parameter variations. Such dynamics of phase tran-

sition is generally composed of three stages, i.e. before-transition state, pre-transition state and

after-transition state, which can be considered as three different Markov processes.

Results: By exploring the rich dynamical information provided by high-throughput data, we pre-

sent a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect

the switching point of the two Markov processes from the before-transition state (a stationary

Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying

the pre-transition state or early-warning signals of the phase transition. To validate the effective-

ness, we apply this method to detect the signals of the imminent phase transitions of complex sys-

tems based on the simulated datasets, and further identify the pre-transition states as well as their

critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation,

MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular

carcinoma. Both functional and pathway enrichment analyses validate the computational results.

Availability and implementation: The source code and some supporting files are available at

https://github.com/rabbitpei/HMM_based-method.

Contacts: lnchen@sibs.ac.cn or liyj@scut.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

There exist abrupt state changes in many biological processes, in

particular, during the progression of complex diseases. For instance,

in chronic diseases such as cancer, the malignant deterioration might

take place merely within a few months, while the illness might pro-

gress gradually and be protracted for years before the onset of such

transitions (He et al., 2012; Litt et al. 2001; Liu et al., 2001;

McSharry et al., 2003; Paek et al., 2005; Roberto et al., 2003;

Scheffer et al., 2009; Venegas et al., 2005). In other words, there

exists a sudden catastrophic shift during the process of gradual

health deterioration that results in a drastic transition from a normal

state to a disease state. However, it is a difficult task to detect the

critical state just before the phase transition of the system from the

observed data due to the lack of apparent state change before the
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transition. As shown in Figure 1a, generally disease progression can

be modeled into three states or stages: (i) a normal state (or the be-

fore-transition state) with the high resilience and robustness to per-

turbations; (ii) a pre-disease state (or the pre-transition state) with

the low resilience and sensitive to perturbations, which is the critical

state just before the phase transition (Achiron et al., 2010; Chen

et al., 2012); and (iii) a disease state (or the after-transition state),

representing a seriously deteriorated stage possibly with high resili-

ence and robustness (Liu et al., 2012). It has been shown that even

though there are no significant differences between the before-tran-

sition state and the pre-transition state in terms of static features

(e.g. average values of state variables), there are significant differ-

ences between them in terms of dynamic features (e.g. deviations

and correlations of state variables) as described in (Liu et al.,

2014a). Specifically, a dominant group or dynamical network bio-

markers (DNBs) appears among the observed variables when the

system state approaches the pre-transition state, satisfying the fol-

lowing three conditions, i.e. high correlations between the variables

among this group, low correlations between this group and other

variables and high standard deviations of the variables among this

group (Chen et al., 2012; Liu et al., 2012, 2013a, b, 2014b, 2015; Li

et al., 2013; Tan et al., 2015; Zeng et al., 2014). These theoretical

results indicate that the pre-transition state and the before-transition

state are dynamically different, but are statically similar. Thus, the

dynamics of these two states can be considered as two different

Markov processes, which can be explored to detect the critical state

or the pre-transition state from the observed data. Actually, the

whole phase transition dynamics can be represented as three differ-

ent Markov processes, i.e. one stationary Markov process for the be-

fore-transition state due to its relatively stable dynamics insensitive

to parameter changes (stationary feature), one time-varying Markov

process for the pre-transition state due to its strong fluctuated dy-

namics sensitive to the parameter changes (time-varying feature),

and another stationary Markov process for the after-transition state

due to their relatively stable dynamics insensitive to parameter

changes (stationary feature) (Fig. 1b).

In this work, by exploiting the different dynamical features be-

tween the before-transition and pre-transition states, we developed a

novel computational method based on hidden Markov model

(HMM) for identifying the pre-transition state before the critical

point is reached during the biological process of complex diseases.

Specifically, to identify the pre-transition state is then equivalent to

detect the switching point from one stationary Markov process to

one time-varying Markov process (Fig. 1b). Utilizing the time-course

or stage-course data, we presented the computational method and

algorithm on estimating the inconsistence index of the switching or

end point of the stationary Markov process at each candidate sam-

pling point. Our study indicates that such novel index, which meas-

ures the inconsistence between observed samples and a stationary

Markov process described by a trained HMM, is a model-free ap-

proach that can be theoretically applied to diseases or biological sys-

tems with clear transition events.

To demonstrate the effectiveness of our method, we applied the

algorithm to a simulated regulatory network, and three real data-

sets, i.e. the microarray dataset of acute lung injury with carbonyl

chloride inhalation exposure (GSE2565), the microarray dataset of

MCF-7 human breast cancer caused by heregulin (HRG)

(GSE13009) and the microarray dataset of HCV-induced dysplasia

and hepatocellular carcinoma (HCC) (GSE6764). The pre-transition

states were successfully identified for both numerical simulated

dataset and real datasets, and the functional and pathway analyses

also validated our theoretical detections on the early-warning signals

of the imminent critical transitions for those diseases.

2 Methods

We first describe the theoretical basis, i.e. the generic properties of a

complex system in the vicinity of the critical point, and then provide

the procedures used to preprocess input datasets and the detailed

algorithm.

2.1 Theoretical basis
Disease progression or its biological process can be generally divided

into the following three states or stages, i.e. (i) the before-transition

state (or normal state), (ii) the pre-transition state (or pre-disease

Fig. 1. Outline for identifying the pre-transition state using Markov model. (a)

A complex biological process can be divided into three states, i.e. the before-

transition state, the pre-transition state and the after-transition state. Both the

before-transition and after-transition states are relatively stable or stationary

with high resilience or low fluctuations, insensitive to the parameter changes.

In the two states, external perturbations will not easily drive the system to-

wards an alternative state. The pre-transition state is a time-varying state

with low resilience or strong fluctuations, sensitive to the parameter changes,

but may be reversible to the before-transition state in contrast to irreversible

after-transition state. (b) First, based on the observed sequence of samples

(Ot-1¼ {o1, o2, . . ., ot-1}), we train the hidden Markov model (HMM)

ht�1ðOt�1Þ ¼ ðAt�1;Bt�1; pt�1Þ, that is, in view of stable dynamics, the before-

transition state is modelled as the stationary Markov process ht�1ðOt�1Þ, while

on the other hand, the pre-transition state is defined as a time-varying

Markov process, due to the dynamical characteristics that the pre-transition

state has strong fluctuations and is also sensitive to parameter changes, i.e. it

changes with the time. Thus, based on such dynamical difference of the two

states, to detect the pre-transition state during the biological process is

equivalent to identify the switching point of the two Markov processes or the

end point of the stationary Markov process. Second, under the assumption

that time point T¼ t with observation ot is the switching point (or end point)

of a stationary Markov process described by the trained HMM ht�1ðOt�1Þ, we

calculate the probabilityP ¼ P ðst ¼W1; st�1 ¼W0; . . . ; s1 ¼W0jht�1Þ, where

st¼State(ot), and W0 represents the before-transition state of the system, and

W1 stands for the state that is not consistent to W0, i.e. the pre-transition

state. W2 is the after-transition state, which may be another stationary

Markov process but is not the main focus in this work. (c) The large value of P

indicates that a candidate point T¼ t is the switching point of ht�1ðOt�1Þ with

high probability
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state) and (iii) the after-transition state (or disease state) (Fig. 1a).

The before-transition state is a stable state with high resilience pre-

senting a relatively ‘healthy’ stage, during which the state may

change gradually and thus is considered as a stationary Markov pro-

cess. The pre-transition state is a state defined as the limit of the be-

fore-transition state just before the critical phase transition. It is

sensitive to the parameter changes, reversible to the before-transi-

tion state, and thus is considered as a time-varying Markov process.

On the other hand, due to low resilience, even a small perturbation

may suffice to trigger a drastic state change to the after-transition

state, which is another stable state with high resilience and thus is

also considered as a stationary Markov process (Fig. 1 and

Supplementary Fig. S2). For a complex disease, the after-transition

state represents a seriously ill stage, in which a system is difficult to

return to the before-transition state even with intensive interven-

tions. Hence, it is crucial to detect the pre-transition state so as to

prevent qualitative deterioration by taking timely intervention ac-

tions. Although elucidating the critical phase transition at the net-

work level holds the key to understand the fundamental mechanism

of disease development and progression, it is notably hard to reliably

identify the pre-transition state because there may be little apparent

difference between the before-transition and pre-transition states.

This is also the reason why diagnosis based on traditional bio-

markers may fail to indicate the pre-transition state.

In this work, by exploring the different dynamics of one station-

ary Markov process and one time-varying Markov process, We de-

sign a method with an inconsistence index (I-index) based on hidden

Markov model (HMM) to signal the impending critical phase transi-

tion during a complex biological process. Therefore, detecting the

imminent critical phase transition is considered as identifying the

switching point or period of the two Markov processes, or equiva-

lently, identifying the period with the drastic increase of the I-index

resulting from the abrupt change of the state-transition probability

(Fig. 1) (Liu et al., 2015). The detail theoretical derivation is given

in Supplementary Information B.

2.2 Different dynamic features before and near critical

phase transition
In this section, we present the theoretical derivation of our computa-

tional method. The dynamics for the progression of a complex dis-

ease can be expressed by the following nonlinear discrete-time

dynamical system.

ZðtÞ ¼ f ðZðt � 1Þ; PÞ; (1)

where Z(t)¼(z1(t),. . .,zn(t)) is an n-dimensional state vector or vari-

able at time instant t with t¼1,2,. . . and P¼ (p1, . . ., ps) is a param-

eter vector or driving factors representing slowly changing factors,

e.g. genetic factors (SNP, CNV, etc.), epigenetic factors (methyla-

tion, acetylation, etc.) or environment factors. f : Rn�Rs � Rn is a

nonlinear function. For such a nonlinear system, the system will

undergo a phase change at �Z or a bifurcation from a stable equilib-

rium when the parameter P reaches the threshold Pc (Gilmore,

1993). Detailed descriptions are presented in Supplementary

Information A1.

For system (1) near �Z, before P reaches Pc, the system is sup-

posed to stay at a stable equilibrium �Z and therefore all the eigen-

values are within (0, 1) in modulus. The parameter value Pc at

which the state shift of the system occurs is called a bifurcation par-

ameter value or a critical value, and the state just before such a bi-

furcation is called pre-transition state. Generally, a real system is

constantly perturbed by noise, and thus has stochastic dynamics.

The following dynamic and statistic features have been proven when

the system approaches the pre-transition state from the before-tran-

sition state, i.e. a dominant group or dynamical network biomarkers

(DNBs) appears among the observed variables when the system state

approaches the pre-transition state, satisfying the following three

conditions (Chen et al., 2012; Liu et al., 2012, 2013a, 2014b).

• Correlations between the variables ziðtÞ among this group

increase;
• Correlations between variables ziðtÞ of this group and other vari-

ables zjðtÞ decrease;
• Standard deviations of the variables ziðtÞ among this group

increase.

Therefore, the dynamics between the before-transition state and

the pre-transition state are significantly different. The before-transi-

tion state is a stable state with high resilience, insensitive to param-

eter perturbations, and thus can be modeled as a stationary Markov

process. There is no significant change between the distributions of

Z(t) and Z(t - 1) when the system is in a before-transition state, i.e.

the probability distribution almost keeps constant with the time evo-

lution. In contrast, the pre-transition state is sensitive to the param-

eter changes with low resilience, and its dynamics or probability

distribution changes with the time evolution. Thus, the pre-transi-

tion state is modeled as a time-varying Markov process. The distri-

bution of Z(t) is significantly distinct to that of Z(t - 1) when the

system is in a pre-transition state. Based on such dynamic features,

we can identify the switching period from the before-transition state

to the pre-transition state. The derivation of the Markov process

and the corresponding algorithm is presented in the following

Section 2.3.2.

2.3 Identifying the switching period from stationary

Markov process to time-varying Markov process based

on HMM
We regard that the progression of a biological system in the before-

transition stage is a stationary Markov process. To detect the onset

of the pre-transition stage is equivalent to identify the changing

period from this stationary Markov process to another time-varying

Markov process.

2.3.1 Inconsistence index (I-index)

Specifically, we propose an inconsistence index (I-index) to measure

the probability of a candidate time point as the changing or switch-

ing point from the stationary Markov process to the time-varying

Markov process. On the basis of an observed sequence Ot-1¼ {o1,

o2, . . ., ot-1}, i.e. the preceding t - 1 sets of samples from time points

1, 2,. . ., t - 1, we train and obtain a hidden Markov model (HMM)

ht-1¼ (A, B,p), where the subscript t - 1 of h represents that the

HMM is derived from the training samples up to time point t - 1, A

is a state transition matrix, B is an emission matrix, and p is a prob-

ability vector for the initial state. The training process based on an

unsupervised learning procedure, i.e. Baum–Welch algorithm, is

provided in Supplementary Information A.3.

Then, I-index, or HMM-based probability Pt measuring the

inconsistence between the system state st at time t and the preceding

system states under the HMM ht-1, is given as follows:

IðtÞ ¼ Ptðst ¼W1jst�1 ¼W0; st�2 ¼W0; . . . ; s1 ¼W0; ht�1;OÞ; (2)

where ht-1 is the trained HMM, Ot¼ {o1, o2, . . ., ot-1, ot} is the

observed sequence up to time t, {s1, s2, . . ., st-1, st} is the state se-

quence with subscript i � {1, 2,. . ., t - 1, t} stands for the state of the
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system at the ith time point, W0 and W1 are unobserved (hidden)

states while W0 represents the before-transition state of the system,

and W1 stands for the state that is not consistent to W0, i.e. the pre-

transition state. W2 is the after-transition state, which is not studied

in this work. Obviously, the inconsistence index I satisfies that

IðtÞ ¼ 1�Qtðst ¼W0jst�1 ¼W0; st�2 ¼W0; . . . ; s1 ¼W0; ht�1;OÞ;
(3)

where Qt actually represents the probability of consistence between

the system state with observation ot and the preceding system states

under the HMM ht-1. According to the Markov chain, it follows

Qtðst ¼W0jst�1 ¼W0; st�2 ¼W0; . . . ; s1 ¼W0; ht�1;OÞ

¼ Qtðst ¼W0jst�1 ¼W0; ht�1;OÞ

¼ Pðst�1 ¼W0; st ¼W0jht�1;OÞ
Pðst�1 ¼W0jht�1;OÞ

The calculation of the probability Qt with ht-1 is based on the for-

ward algorithm, shown in Supplementary Information A.3.

Clearly, if the testing time point t is in the stationary Markov

process which is described by HMM ht-1, or observation ot is derived

in the before-transition stage, then the probability I(t) has no signifi-

cant change comparing with I(t - 1) (see Fig. 1, or Supplementary

Fig. S2), that is, I-index remains stationary when the system is in the

before-transition stage. However, if the testing time point t is in the

time-varying Markov process, or the observation ot is derived in the

pre-transition stage, then I(t) increases drastically, indicating the

high inconsistence between observation ot and the HMM ht-1 based

on the preceding t - 1 sample sequences Ot-1¼ {o1, o2, . . ., ot-1}.

Clearly the inconsistent data appears at the switching period be-

tween the stationary Markov process in the before-transition stage

and the time-varying Markov process in the pre-transition stage.

Therefore, the abrupt increase of the inconsistence index I(t) signals

the impending of the critical transition, or the occurrence of the pre-

transition stage.

2.3.2 Algorithm

There are two steps to detect the switching period in our algorithm,

i.e.

• Step-1: In the training step, obtain the HMM ht-1 ¼ (A, B,p)

based on the preceding t-1 observed data (time sequence data)

Ot-1¼ {o1, o2, . . ., ot-1}. Here A¼ (aij (t-1))2�2 with

aijðt � 1Þ ¼ Pðst�1 ¼Wijst�2 ¼WjÞ; i; j 2 f0;1g (4)

B¼ (bjk (t - 1))2�(nþ1) with bjk (t - 1) representing the probability

of the kth possible observation under the assumption that the

system state is Sj at time t – 1, i.e.

bjkðt � 1Þ ¼ Pð#1ðt � 1Þ ¼ kjst�1 ¼WjÞ; j 2 {0,1}, k 2
{0,1,. . .,n}. (5)

where case #1(t - 1)¼k reflects that there are k molecules differ-

entially expressed in one observation.

• Step-2: In the testing step, calculate I-index of the testing sam-

ple ot at time point t by Eq. (2) based on both the HMM ht-1

and the additional observation ot. If there is a drastic increase

of I-index, then t is the switching point, at which system is in

the pre-transition stage. Otherwise go to Step-1 for next time

point.

The detailed algorithm including the training of HMM and the

testing of candidate time point for the I-index is also shown in

Supplementary Information A.3.

2.4 Data processing
We applied our method to real datasets, i.e. the microarray data of

acute lung injury of mice induced by carbonyl chloride inhalation

exposure (GSE2565), the microarray data of MCF-7 human breast

cancer caused by heregulin (HRG) (GSE13009) and the microarray

data of HCV-induced dysplasia and hepatocellular carcinoma

(HCC) (GSE6764). These microarray datasets were downloaded

from the NCBI GEO database (www.ncbi.nlm.nih.gov/geo).

In these datasets, redundant probe sets without the correspond-

ing gene symbols were discarded. The expression values of different

probe sets mapped to the same gene symbol were averaged. For each

species, we downloaded the biomolecular interaction networks from

various databases, including STRING (http://string-db.org/), TRED

(www.rulai.cshl.edu/cgi-bin/TRED/), KEGG (www.genome.jp/kegg)

and HPRD (www.hprd.org), i.e. the available functional linkage in-

formation for Mus musculus and Homo sapiens was downloaded

from these databases and combined. After removing any redun-

dancy, we obtained 65 625 linkages in 11 451 human proteins/genes

and 37 950 linkages in 6683 mouse proteins/genes. Next, the genes

evaluated in these microarray datasets were mapped individually to

these integrated functional linkage networks. The network informa-

tion is employed in the post-processing step for visualizing results

and functional analysis. For each disease dataset, the expression

profiling information was mapped to the integrated networks indi-

vidually. Specifically, the gene expression profiling dataset of acute

lung injury was obtained from an experiment of a toxic-gas-induced

lung injury such as pulmonary edema, in which genomic approach

was applied to investigate the molecular mechanism of phosgene-

induced lung injury. The dataset for breast cancer was obtained in

an experiment on MCF-7 cell line with HRG stimulation. Besides,

gene expression profiles of 75 tissue samples were analyzed repre-

senting the stepwise carcinogenic process from pre-neoplastic lesions

(cirrhosis and dysplasia) to HCC, including four neoplastic stages

(very early HCC to metastatic tumors).

Finally, the networks with selected top differential-expression

gene sets were visualized using Cytoscape (www.cytoscape.org) and

part of the functional analysis was based on the website tool DAVID

Bioinformatics Resource (Huang et al., 2008). The detailed data de-

scription and processing procedures are provided in Supplementary

Information C.

3 Results

3.1 Identifying the pre-transition state for a ten-node

network
To demonstrate the effectiveness of the computational method and

the inconsistence index, we used a theoretical model of a ten-node

gene regulatory network (Fig. 2a) to generate data and show the de-

tection of early-warning signals near a critical point. These types of

gene regulatory networks are often used to study transcription,

translation, diffusion and translocation processes that affect gene

regulatory activities (Chen et al., 2009). The specific set of stochastic

differential equations representing the gene regulation among ten

genes in the network (Fig. 2a) is given in Supplementary

Information B, from which the simulated dataset is generated. The

numerical simulation shows that a drastic boost of the inconsistence
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index indicates the upcoming critical transition at parameter P ¼ 0

(Fig. 2b).

The numerical experiment validates that the inconsistence score

is reliable and accurate in identifying the pre-transition state and

thus provides the early-warning signal of a catastrophic change in

the system. Besides, to demonstrate the different dynamics of the

system between the before-transition state and the pre-transition

state, we illustrate the underlying frequency of nodes with large

changes, i.e. the ratio of state-transition nodes (Fig. 2c). The calcula-

tion details are presented in Supplementary Information B. Note

that there is no clear signal to detect the imminent transition from a

single variable (or a few variables) due to the noise (or stochastic

fluctuations) of the original biological system, which demonstrates

the advantage of exploiting high-dimensional information using our

scheme. In other words, if there is no detailed model for a biological

system, generally we do not know which variable can reflect the crit-

ical change of the system so as to measure it. As shown in this ex-

ample, given high-throughput data or high-dimensional

information, the inconsistence score provides a way to detect the sig-

nal for diagnosing the pre-transition state even without a detailed

model.

3.2 Predicting critical transitions in real datasets
We applied the HMM-based method in three real experimental

datasets, i.e. the microarray data for acute lung injury induced by

phosgene gas inhalation (GSE2565), MCF-7 human breast cancer

caused by heregulin (HRG) (GSE13009) and HCV-induced dyspla-

sia and hepatocellular carcinoma (HCC) (GSE6764). Here we

present the application on the dataset of lung injury as an example.

The descriptions of the results on the other two datasets are given in

Supplementary Information C.

The dataset GSE2565 was obtained in an experiment on toxic

gas-induced lung injury effects, i.e. pulmonary edema (Sciuto et al.,

2005). A genomic approach was used to investigate the molecular

mechanism of phosgene-induced lung injury. The experiments deter-

mined the temporal effects of phosgene exposure on lung tissue anti-

oxidant enzyme concentrations and gene expression levels, and

these results were compared with those from air-exposed mice

treated in a similar manner to assess the role of the glutathione

redox cycle in this oxidative lung injury model. To produce two

groups of data, i.e. the control group data and case group data, two

groups of CD-1 male mice were exposed to air or phosgene, respect-

ively. Lung tissues were collected from air- or phosgene-exposed

mice at eight sampling time point, i.e. 0.5, 1, 4, 8, 12, 24, 48 and 72

h after exposure. The details of the experiment are available in the

original paper (Sciuto et al., 2005).

According to the HMM-based method, we regard that each time

point is a candidate transition point, i.e. the end point of a Markov

process in before-transition state. At each sampling point, the top

500 differential-expression genes are identified on the basis of P-

value from the Student t-test. The inconsistence index is then calcu-

lated based on these selected genes (Fig. 3a). Clearly, there are eight

probability curves respectively corresponding to eight groups of dif-

ferential-expression genes. Each group of genes is differentially ex-

pressed at one time point. Among the probability curves in Figure 3a,

the red one presents the inconsistence index calculated based on the

top 500 differential genes with the most significant P-values at the

8-h time point. It can be seen that the red curve shows the largest

probability at 8 h and thus indicates the imminent critical transition.

The selection of 500 genes is from computational consideration. The

gene filtering, detailed algorithm and computation progress are

shown in Supplementary Information C1. To further elucidate the

relation between top differential-expression genes and dysfunctional

pathways, we also carried out the clustering analysis based on cor-

relation at the pre-transition stage (4 and 8 h), that is, based on the

top 500 differential genes, we selected the most significant gene

group (with P-value 1.37E-04 and over 3-fold change comparing

with the control group at 8 h, see Figs 3c) for further functional ana-

lysis shown in Supplementary Information C1. To illustrate the sig-

nificance of the results, a comparative figure with control samples

and bootstrap is presented in Supplementary Figure S6. Besides, it

should be noted that the number of the selected genes is not so sensi-

tive to the inconsistence index (see Supplementary Information C1

for the details).

Besides, to study the top differential-expression genes and their

upstream transcriptional factors, we identified the top turnover

module or subnetwork, that is, by mapping the top differential-ex-

pression 200 genes and their upstream transcriptional factors to the

gene regulatory network from STRING, we illustrate a module with

over 55% turnover genes in Figure 4a. Each turnover gene is highly

(or lowly) expressed before the critical transition and has lowly (or

highly) expression after.

Figure 4b presents the dynamical evolution in the whole gene

network based on the case data of acute lung injury. It can be seen

that those top differential-expression genes (the top right corner in

each network) are strongly correlated with wild fluctuation 8 h after

the exposure to phosgene gas, which provides a significant signal

indicating the pre-transition stage just before the deterioration into

differentiation, while other genes show no significant signal.

Clearly, when the deterioration is impending, these selected genes

Fig. 2. The validation of HMM-based method on a simulation dataset. To val-

idate the sensitivity and effectiveness, we calculated the inconsistence index

using the simulated dataset from a ten-node network. (a) Theten-node net-

work, in which the arrow represents positive regulation, whereas the blunt

line denotes negative regulation. (b) The inconsistence index of the network.

It can be seen that an abrupt increase of the probability signals the imminent

critical transition at P¼0. The simulations were performed in

MATLAB(R2013a) using the Euler-Maruyama integration method with the Ito

calculus. The system undergoes a bifurcation at P¼0. (c) We illustrate that

the distribution of the frequency of nodes with large changes, i.e. the ratio of

state-transition nodes. It can be seen that when the parameter P is far away

from the critical value P¼ 0 (P¼0.3, P¼0.2), there are few nodes with large-

scale changes. However, while the parameter P approaches the critical value

P¼0 (P¼0.005), the distribution is quite different, i.e. the ratio of 4-changing-

nodes increases considerably
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form a special subnetwork. It can be seen that, oppositely, neither

the whole gene network nor the selected differential-expression

genes present a signal before or after the transition, which shows the

sensitivity of the HMM-based method at the pre-transition state. In

fact, the inconsistence index reveals the existence of the pre-transi-

tion state, which, however, cannot be shown by any single bio-mol-

ecule. Therefore, the benefits brought by the HMM-based method

in signaling the pre-transition state make the identification and man-

agement of high-risk cases more effective.

Briefly, those studies suggested that the main physiological ef-

fects occurred within the first 8 h after exposure, resulting in com-

mon observations of enhanced bronchioalveolar lavage fluid (BALF)

protein levels, increased pulmonary edema and ultimately decreased

survival rates (Sciuto et al., 2005). At the concentration delivered,

50–60% mortality was routinely observed after 12 h while 60–70%

mortality was observed after 24 h (Sciuto et al., 2005). Early-warn-

ing signals of lung injury based on our method are shown in Figures

3a and 4b, which showed that the pre-transition state may start

around 8 h, whereas the system may enter the after-transition state

(or disease state) after 12 h. Our prediction based on the inconsis-

tence index agreed with the actual development of the disease.

Figure 5 presents the second application of HMM-based method

for HRG-caused breast cancer. Based on Figure 5a, each probability

curve is calculated based on a group of differential-expressed genes

at the corresponding sampling time point. The red curve in Figure

5a shows the most significant increase of inconsistence index at the

90-min time point, which indicates that the most possible critical

transition point is around 90-min time point. Figure 5b shows the

dynamical evolution in the whole feature network based on the case

data of breast cancer. It can be seen that the network structure also

changes significantly at the 90-min time point. In fact, the original

assay showed that the AP-1 complex in HRG-treated MCF-7 cells

contains c-JUN, c-FOS and FRA-1, although the association of c-

JUN in the complex is transient (Saeki et al., 2009). Besides, the

stimulation of MCF-7 breast cancer cells with EGF and HRG re-

sulted in very similar early transcription profiles up to 90 min; how-

ever, subsequent cellular phenotypes differed after 3 h (Saeki et al.,

2009), which suggests that the differentiation is around 3 h (the 9th

sampling time point). Therefore, our application results are in coin-

cidence with the experimental observation and successfully detect

the early-warning signal of the impending critical transition.

The results of the third application for the hepatocellular carcinoma

(HCC) (GSE6764) are illustrated in Supplementary Information C.

3.3 Functional analysis
Phosgene gas is one of the most important and common chemical in-

dustry gases (Schneider and Diller, 2000). Some pathogenic mechan-

isms of the acute lung injury induced by phosgene have been

identified (Sciuto et al., 2005). According to the results above, a

Fig. 3. The application of HMM-based method to the dataset of acute lung in-

jury induced by phosgene inhalation. (a) The inconsistence indices based on

the top 500 differential-expression genes from each candidate transition time

points. The red curve represents the inconsistence index calculated from the

top 500 differential-expression genes which are selected at 8 h, while the

seven blue curves are those from other time points. It can be seen that the

most significant signal appears at 8 h the exposure to phosgene gas, which is

in coincidence with the experimental observation, i.e. the main physiological

effects occurred within the first 8 h after exposure. (b) We illustrate the clus-

tering result respectively for genes at 4 h (red bubbles) and 1 h (green ones).

(c) We illustrate the clustering result respectively for genes at 8 h (red bub-

bles) and 1 h (green ones). Clearly, comparing with the control group, the

P-value of each gene group is more significant at 8 h than that at 1 h. The top

differential-expression genes were selected to proceed with functional ana-

lysis (Color version of this figure is available at Bioinformatics online.)

Fig. 4. Dynamical changes in the network during the progression of phos-

gene-induced acute lung injury. To validate the results from HMMbased

method, we show the dynamical evolution of the network structure. (a) A sub-

network with top 200 differential-expression genes is identified from the 4th

clustering group in Figure 3c. In this network, over 55% genes have reversal

(or turnover) expressions when the system progresses from the before-tran-

sition state to the after-transition state, comparing with only 18% turnover

ratio for all genes. (b) The figures show the dynamical changes of the molecu-

lar network at 0.5, 1, 4, 8, 12, 24 and 72 h, respectively. Each network was con-

structed from the overall mapped mouse molecular interaction network

based on the expression data. The color of nodes represents the fluctuation

of expression, and the thickness of links stands for the correlation between

each pair of nodes. The group of the 200 genes of most significant differential

expressions is located in the top right corner in each network. It can be seen

that the selected genes show wild fluctuation in terms of their expressions

during 4–8 h. These critical phenomena do not appear before or after this

period, i.e. the before- or aftertransition state. Thus, the pre-disease stage is

around 4–8 h, where the network structure exhibits the most significant

change, just before the critical transition triggered by phosgene inhalation

(Color version of this figure is available at Bioinformatics online.)
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major change in the inconsistence index of the top differential genes

occurs from 4 to 8 h. Pathway enrichment analysis and GO func-

tional analysis showed that the genes in the top significant group

(the 4th red group in Fig. 3c) were closely related to the mechanism

of disease progression (Sciuto et al., 2005; Wang et al., 2013).

Dysfunction in glutathione metabolism and the chemokine signaling

pathway related to the inflammatory immune response was caused

in vivo, which also reflected protection against the oxidant-like ac-

tivity of phosgene. Pathways affected by the oxidant reaction be-

came disordered, especially signal transduction via protein-modified

activation, such as the mitogen-activated protein kinase (MAPK)

signaling pathway and the Wnt signaling pathway. The decrease in

PH induced by the HCl-release reaction affected some pathways

that are sensitive to intracellular conditions and related to communi-

cation or transport channels, e.g. gap junctions. Some signaling

pathways may also be relevant to repair, survival, apoptosis and re-

production, such as the gonadotropin-releasing hormone (GnRH)

signaling pathway, MAPK signaling pathway and TGF-beta signal-

ing pathway (Sciuto et al., 2005; Wang et al., 2013). At the gene

ontology (GO) function level, some biological processes were also

highly related to acute lung injury. For example, the expression pro-

files of some genes were related to abnormal changes in primary

metabolic processes. This indicates the denaturation of lipids, pro-

teins and nucleic acids that may have been oxidized by phosgene

(Sciuto et al., 2005; Wang et al., 2013).

The functional analysis for HRG-induced breast cancer and

HCC liver cancer are shown in the Supplementary Information C.

4 Discussion

Complex diseases significantly damage the health of many people all

over the world. Detecting the early-warning signal of the sudden de-

terioration provides an opportunity to interrupt and prevent the

continuing costly cycle of managing these diseases and their compli-

cations. Although it is crucial to detect the pre-transition state so as

to prevent the qualitative deterioration by taking appropriate inter-

vention actions, it is a challenging task to reliably identify the pre-

transition state because the state of the system may show neither ap-

parent change nor clear phenomenon before this critical transition

during the disease progression. This is also the reason why diagnosis

based on traditional biomarkers may fail to indicate a pre-transition

state.

In this work, we presented a computational method with an

inconsistence index based on HMM to identify the imminent critical

transition, which has been shown to be effective by real datasets. It

is worth noting that this method aims to detect the early-warning

signal generating from the pre-transition state (or pre-disease state),

rather than to find the indication of the after-transition state (or dis-

ease state) in which the qualitative deterioration has taken place. As

shown in Figure 1 and in METHODS, generally there are significant

differences between the before-transition state and the after-transi-

tion state, which is why we can find many molecular biomarkers to

accurately diagnose the disease based on the differential expressions

of those biomarkers. But there may be no significant differences be-

tween the before-transition state and the pre-transition state in terms

of expressions, which requires the different types of biomarkers

based on different signals. DNB theory provides such conditions of

the pre-disease state, and we developed HMM-based method to

quantitatively detect the signals of the pre-disease state based on

those conditions. We applied our method to the identification of the

pre-transition state based on both the simulated dataset and the

microarray data from acute lung injury experiment. Given that the

lung damage is not generally detectable until approximately 8 h

after exposure to phosgene gas, we tested the hypothesis that the dis-

ease progression can be modeled into three states: (i) a before-transi-

tion state with high resilience and robustness to perturbations; (ii) a

pre-transition state, defined as the prelude to catastrophic shift into

the transition state, occurring just before the phase transition point

is reached, therefore, with low resilience and robustness to perturb-

ation due to its dynamical structure; (iii) an after-transition state,

representing the seriously deteriorated stage possibly with high re-

silience and robustness to perturbation. Then, based on the micro-

array data, we indicated the existence of the pre-transition stage

right before the critical transition induced by phosgene inhalation.

Actually, an indicative early-warning signal is presented at 8 h after

the expose to phosgene gas. The validation based on simulated data-

set (Fig. 2) and the microarray data of acute lung injury (Figs 3 and

4) demonstrates the sensitivity and effectiveness of our method.

With the genomics or proteomics survey of the CD-1 model rats, we

constructed bio-molecular networks (Fig. 4) to gauge the dynamical

regulations among genes at different hours after exposure to phos-

gene. Besides, we showed that some metabolic pathways respond to

the phosgene-induced interruptions and become increasingly dis-

ordered. Therefore, the HMM-based method provides a computa-

tional way of prying into the underlying mechanism of cell

differentiation and thus helping to achieve the timely intervention.

Our dynamic network analysis suggests, in regard to lung injury, by

focusing at the pre-transition state of the rat model, we are able to

probe the in situ environment changes preceding the development of

lung tissue abnormalities. This may not only lead to deep insights of

Fig. 5. The application of HMM-based method on the dataset of HRG-induced

breast cancer. (a) By applying HMM-based method to the microarray data of

HRG-induced breast cancer, we show the inconsistence indices based on the

top 500 differential-expression genes from each candidate transition time

points. The red curve represents the inconsistence index calculated from the

top 500 differential-expression genes which are selected at the time point

1.5 h, while the blue curves are those from other time points. It can be seen

that the most significant signal appear at 1.5 h, which agrees with the experi-

mental observation, i.e. the main physiological effects occurred within the

first 1.5 h after exposure. (b) We illustrate the dynamical changes in the net-

work during the progression of breast cancer. The 200 top expressed genes

are placed in the top right corner (Color version of this figure is available at

Bioinformatics online.)
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external environment interactions, but also identify the effective

time window for novel therapeutic strategies in phosgene-triggered

lung injury.

There are limitations of this work. First, the validity of the iden-

tified pre-transition state and the accurate result need further sup-

ports from animal experiments or clinical studies. Second, the

method is insensitive when the genes are not differentially expressed.

Although this work is merely a step forward towards detecting the

early-warning signals of a critical transition during disease progres-

sion and the algorithm is expected to be improved in both sensitive

and accurate ways, it opens a new way for identifying the early-

warning signals of a critical transition during the progression of

complex diseases.
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