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Abstract

Motivation: Subtyping cancer is key to an improved and more personalized prognosis/treatment.

The increasing availability of tumor related molecular data provides the opportunity to identify mo-

lecular subtypes in a data-driven way. Molecular subtypes are defined as groups of samples that

have a similar molecular mechanism at the origin of the carcinogenesis. The molecular mechan-

isms are reflected by subtype-specific mutational and expression features. Data-driven subtyping

is a complex problem as subtyping and identifying the molecular mechanisms that drive carcino-

genesis are confounded problems. Many current integrative subtyping methods use global muta-

tional and/or expression tumor profiles to group tumor samples in subtypes but do not explicitly

extract the subtype-specific features. We therefore present a method that solves both tasks of sub-

typing and identification of subtype-specific features simultaneously. Hereto our method inte-

grates‘ mutational and expression data while taking into account the clonal properties of carcino-

genesis. Key to our method is a formalization of the problem as a rank matrix factorization of

ranked data that approaches the subtyping problem as multi-view bi-clustering.

Results: We introduce a novel integrative framework to identify subtypes by combining mutational

and expression features. The incomparable measurement data is integrated by transformation into

ranked data and subtypes are defined as multi-view bi-clusters. We formalize the model using rank

matrix factorization, resulting in the SRF algorithm. Experiments on simulated data and the TCGA

breast cancer data demonstrate that SRF is able to capture subtle differences that existing methods

may miss.

Availability and Implementation: The implementation is available at: https://github.com/rankmatrix

factorisation/SRF.

Contact: kathleen.marchal@intec.ugent.be, siegfried.nijssen@cs.kuleuven.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As cancer is a heterogeneous disease, subtyping cancer is key to an im-

proved and more personalized prognosis and treatment. With cancer

genomes, transcriptomes and epigenomes becoming increasingly avail-

able, one of the major challenges in cancer research is to use these mo-

lecular data to define clinically or biologically meaningful subtypes.

Successful seminal research on cancer subtyping aimed at group-

ing patients based on similarities in their molecular profiles (gene ex-

pression) or extracting expression derived features to optimally

classify patients according to clinically relevant phenotypes (Mischel

et al., 2003; Perou et al., 2000; Sørlie et al., 2001; Tothill et al.,

2008).
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With the availability of NGS data, charting cancer genomes,

transcriptomes and even epigenomes offers the opportunity to refine

subtyping by taking into account not only the molecular phenotypes

(expression) but also likely driver events (mutations, CNVs and

methylations) that are at the origin of the tumorigenesis (Vogelstein

et al., 2013).

Several efforts have been taken to integrate these different mo-

lecular data in order to extract relevant subtypes, for instance Yuan

et al. (2011) and Curtis et al. (2012) relied mainly on combining

copy number and expression data to define subtypes, whereas the

more generic models of Mo et al. (2013), Wang et al. (2014) and

Speicher and Pfeifer (2015) use next to expression and CNV also

mutation and methylation data.

The problem of these early approaches, which aim at clustering

samples based on shared CNV and mutational profiles, is that they

overlook one of the major properties of tumorigenesis: its clonality.

By directly using copy number alterations to discriminate between

samples they ignore the fact that CNVs are prevalent in cancerous

cells and that many CNVs are passenger events, not involved in driv-

ing the phenotype (>70%) (Sanchez-Garcia et al., 2014; Zack et al.,

2013). Using passenger events to group patients might blur the true

sample grouping in the data as driving events are rare compared to

passenger events.

The same goes for the sample grouping based on shared somatic

mutational profiles. Doing this implicitly assumes that true driving

somatic mutations are frequent across tumor samples, which is be-

cause of the clonality of the carcinogenesis not necessarily true.

Because they evolve independently, tumors can trigger the same

driver pathways through mutations in different genes. By focusing

only on frequent alterations, rare events that are very characteristic

for a subtype are ignored. In addition, if similarities between tumor

samples are scored using the raw mutation data, results are mainly

driven by the dense data, such as copy number and gene expression

with a negligible contribution from the mutation data.

The most advanced state-of-the-art integrative methods for can-

cer analysis do take into account the clonal properties of cancer by

searching for mutational consistency at pathway level rather than at

the individual gene level. They do so by exploiting the connectivity

of mutations occurring across different tumor samples on an inter-

action network. An interaction network here consists of a compre-

hensive compilation of all molecular interaction information,

available on an organism of interest; the network is represented as a

graph in which the nodes correspond to genes and the edges to inter-

actions between the genes. Mutations that are recurrently affecting

sets of genes that are closely connected on the interaction network

are identified as drivers (De Maeyer et al., 2016; Leiserson et al.,

2014; Verbeke et al., 2015). Hofree et al. (2013) successfully applied

this strategy to use mutation data for subtyping.

Here, we introduce a novel analysis framework that combines

CNVs and mutation data with an expression phenotype to identify

subtypes while considering mutational consistency at a pathway

level. Because identifying subtypes and defining the molecular mech-

anisms (driver pathways) that drive cancer are confounded (a sub-

type depends on the molecular mechanism but the molecular

mechanisms that one can identify also depend on how patients are

grouped), our method performs the two tasks simultaneously. The

distinguishing feature of our method is that it is based on ranked

matrix factorization: all data is represented in ranked form, in which

we identify factors that are used to define subtypes. We propose new

methods to cast the different types of data into a ranked form. We

extensively tested the performance of our method on simulated data.

Comparing our method with other state-of-the-arts on the well-

studied TCGA breast cancer dataset shows how our method is able

to grasp the most prominent signatures in the data that are also

retrieved by other methods, but also how it is able to capture subtle

differences that are missed by methods that compare samples based

on global profiles of similarities.

2 The SRF algorithm

An overview is given in Figure 1, details follow. Key processing steps

include (1) diffusing mutation information over an interaction net-

work on a per sample basis; (2) removing scale differences by apply-

ing a rank-based transformation of the mutation and expression

data; (3) applying a model based on rank matrix factorization (Le

Van et al., 2015) to jointly factorize the transformed data into a

number of ranked factors. Each resulting factor consists of a subset

of samples associated to a subset of expressed and mutated genes;

(4) defining subtypes as combination of ranked factors.

2.1 Transforming input datasets into rank matrices
The first step is to transform the original data into rank matrices.

Transforming transcription data: Given a gene expression matrix

A 2Rl�n, where l is the number of expression genes and n is the

number of tumor samples, its corresponding rank matrix is obtained

by sorting each row’s values from low to high and assigning ranks

accordingly (with the largest rank being assigned to the highest

value). That is, all samples are ranked for each gene. The resulting

ranked expression matrix E has the same size as A and the values in

each row are a subset of r1 ¼ f1; . . . ;ng (ties all get the lowest

rank). Figure 1C shows an example of an expression matrix A and

Figure 1D shows its transformed rank matrix E.

Since this transformation would allow our algorithm to only

find over-expressed genes (genes with an average high rank within

a subset of the samples), we duplicate each row and also assign

ranks in the reverse order. This will allow to find under-expressed

genes as well. For example, given an expression vector

g ¼ ð�2:0;�3:0; 2:0; 3:0Þ, we obtain both rank vectors ro ¼ ð2;1;3;
4Þ (assigning high ranks to over-expressed genes) and ru ¼ ð3; 4; 2;1Þ
(assigning high ranks to under-expressed genes). Consequently, the

resulting rank matrix has twice as many rows as the original matrix.

For ease of exposition, we will consider matrix E to have the same

size as A, but the algorithm trivially works on the duplicated matrix

and we will use this extended version in the experiments.

Transforming mutation data and interaction network: To trans-

form the Boolean mutation matrix into a rank matrix, we first map

each sample’s mutation profile to the given interaction network

(Hofree et al., 2013; Vanunu et al., 2010) and apply a network dif-

fusion model. The obtained diffusion values are then transformed to

ranks, so that higher ranks indicate that a gene is relatively ‘close’ to

a mutated gene (for a particular sample). Figure 1E illustrates this

procedure.

That is, let M 2 f0; 1gm�n be the mutation matrix, where m is

the number of mutation genes and n is the number of samples (as be-

fore), and let G ¼ ðV;EÞ be the interaction network. Applying diffu-

sion (Hofree et al., 2013) to the n columns of matrix M using G

results in a diffusion matrix B 2 Rm�n. Finally, by ranking the rows

for each column we obtain the ranked diffusion matrix

D 2 rm�n
2 ; r2 ¼ f1; . . . ;mg, which we use as input for the next step

of the analysis.

2.2 Mining subtypes using rank matrix factorization
The matrix factorization model that we introduce aims to jointly

factorize the two transformed rank matrices D and E into a set of k
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ranked factors, where k is an integer given by the user. One factor

consists of a set of mutation genes, a set of expressed genes and a set

of related samples. To provide some intuition for our approach, we

first present an optimization model for a single ranked factor. We

then generalize this to k ranked factors using rank matrix

factorization.

Mining a single ranked factor: As mentioned above, a ranked

factor represents a group of samples that are consistently over/

under-expressed in a subset of expression genes and that share the

same affected genes in the ranked diffusion matrix.

Let P ¼ f1; . . . ;ng;M¼ f1; . . . ;mg and E ¼ f1; . . . ; lg be index

sets for tumor samples, mutation genes and expression genes, re-

spectively. A ranked factor is represented by a tuple ðP;GM;GEÞ,
where P � P; GM �M and GE � E. Inspired by our ranked tiling

work (Le Van et al., 2014), a ranked factor is obtained by

optimizing:

arg maxP;GM ;GE

X

m2GM ;p2P

ðDm;p � h1Þþ

b
X

e2GE ;p2P

ðEe;p � h2Þ (1)

subject to

8m 2 M : m 2 GM !
X

p2P

Mm;p � l; (2)

where h1 and h2 are user-defined thresholds that control how high

ranks in D and E, respectively, should be to be included in the

solution. We sometimes indicate these thresholds using relative val-

ues, i.e. h1 ¼ a%; in this case, the absolute threshold is h1 ¼ a% � n.

b is a user-defined threshold to balance the contributions from the

values in the two matrices. l indicates the number of patients in

which a mutation should be present in order to be included in the

factor.

The objective in Equation (1) selects those rows (mutation and

expression genes) and columns (samples) that together maximize the

total sum of the values in the corresponding cells in the matrices, ad-

justed by h1 and h2. That is, cells that are lower than the thresholds

are penalized and those that have higher values are rewarded.

Equation (2) ensures that each gene that is selected from the ranked

diffusion matrix is mutated in at least one of the samples present in

the selection P. That is, genes that receive a high rank because they

are in the network neighborhood of genes mutated in the sample but

are never mutated themselves will not be selected.

For example, given the matrices in Figure 1A, B and D, and par-

ameters h1 ¼ 7; h2 ¼ 5; b ¼ 1, solving the objective results in P ¼ fP
1;P2;P3;P6g; GE ¼ fE1;E2;E3g; GM ¼ fM1;M5;M9;M10g. It is

clear from the input matrices that this solution corresponds to an area

with relatively high ranks. No more samples or genes can be added to

the solution without decreasing the score. Note that mutated gene

M11 was not selected despite having a high rank as no samples in the

group carry a mutation for this highly ranked gene.

Mining k ranked factors using RMF: As Equations (1) and (2)

only provide a way to find a single factor, we here present a vari-

ation of rank matrix factorization (Le Van et al., 2015) to find a set

of k non-redundant rank factors. To understand this generalization,

Fig. 1. SRF illustration. (A) Boolean mutation matrix; (B) Ranked diffusion matrix derived from the mutation matrix using the network diffusion model shown in

Figure E and the parameter a ¼ 0:7; (C) Numeric expression matrix; (D) Ranked expression matrix, obtained by ranking column values in each row; (E) Illustration

how to derive a ranked diffusion vector for tumor sample P1 using his/her mutation profile and a given interaction network. (F) Two ranked factors, represented

by C1, C2 and F, identified by SRF in matrices D and E
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let us first reformulate the problem of finding one factor. Let us note

that we can represent the set P using a 1� n boolean matrix F, with

F 2 f0; 1g1�n, such that F1;p ¼ 1 iff p 2 P. Similarly, we can repre-

sent the set GM using an m� 1 Boolean matrix C1, such that ðC1Þr;1
¼ 1 iff r 2 GM, and the set GE using an l � 1 Boolean matrix C2,

such that ðC2Þr;1 ¼ 1 iff r 2 GE.

Let us now denote by Jm;n the m�n matrix in which all cells are

filled with ones, and let the distance between two matrices be

defined by dðA;BÞ ¼
P

ij Ai;jBi;j. Then we can rewrite our earlier

problem as follows in matrix notation:

arg max
C1 ;C2 ;F

dðD� h1Jm;n;C1 � FÞ þ bdðE� h2Jl;n;C2 � FÞ (3)

subject to lC1 � M� FT : (4)

Here, � denotes the Boolean matrix product; in the Boolean ma-

trix product the or operator is used instead of the addition operator,

i.e. it is assumed that 1þ 1 ¼ 1. The constraint ensures that every

selected mutated gene is present in the required number of patients;

it uses the traditional matrix product. This notation makes the con-

nection between our earlier problem and matrix factorization clear:

we are factorizing the ranked data in a number of Boolean matrices

that indicate where values of high rank can be found.

This new formulation is trivially extended to an arbitrary number

of factors: by allowing that C1 2 f0;1gm�k; C2 2 f0; 1gs�k;

F 2 f0; 1gk�n for arbitrary k � 1, we obtain a generic matrix factori-

zation setting for any k. Intuitively, in this setting we identify a num-

ber of rectangles in the data; the union of these rectangles is required

to contain the highest ranks. An example is provided in Figure 1F.

To solve the optimization problem, we follow the algorithm pro-

posed by Le Van et al. (2015). That is, the SRF algorithm follows an

iterative EM-style scheme, in which first C1 and C2 are optimized

given F, and then F is optimized given C1 and C2. We repeat this it-

erative scheme until the optimization score cannot be improved any

further. When either C1 and C2 or F is known, it can be shown that

the optimization problem (3) and (4) is an integer linear program-

ming (ILP) problem. Each such optimization problem can be solved

optimally. To avoid local maxima, we initialize the algorithm with a

matrix F obtained by performing hierarchical clustering to cluster

the columns into k groups.

As additional contribution, we develop a parallel implementa-

tion of the above algorithm, which makes it scalable to large data-

sets. Observe that Equations (3) and (4) allow each row of C1 and

C2 to be optimized independently given F. Further, given C1 and C2,

each column of F can be optimized independently if we relax the in-

equality in Equation (4), which puts a constraint on the columns

and hence makes them dependent. However, if we require the itera-

tive process to terminate after the step optimizing C1 and C2 given

matrix F, we still obtain a very good approximation upon conver-

gence of the algorithm.

We implemented SRF in OscaR (OscaR Team, 2012) and used

Gurobi as the back-end solver. The implementation is available at:

https://github.com/rankmatrixfactorisation/SRF.

2.3 Deriving cancer subtypes from ranked factors
Ranked factors model groups of tumor samples that are homoge-

neous in gene expression as well as in mutations. Hence, if we obtain

k non-overlapping ranked factors, i.e. factors that cover fully dis-

joint sets of samples, each factor found is considered to represent a

unique subtype.

If the factors overlap in the sample dimension, however, we con-

sider each group of samples that is covered by a unique combination

of ranked factors to form a subtype. The reason for this is that each

combination of ranked factors represents a different combination of

expression and mutation profiles. In this case, the mutation and ex-

pression gene sets of a subtype are formed by the union of the muta-

tion and expressed genes (respectively) of all factors in the

combination. Section 3 shows examples of this concept. In practice,

we prune subtypes covering fewer samples than a user-defined

threshold, to avoid the discovery of small ‘subtypes’ that are most

likely artifacts of noise in the data.

3 Results

3.1 Analysis overview
As input data we use (1) a gene–patient expression matrix describing

for each patient its expression phenotype; (2) a gene–patient muta-

tion matrix that describes per patient which of the genes carry som-

atic mutations (see Fig. 1 for an overview of the analysis). To search

for pathway level consistency across the tumor samples we use a

transformed mutation matrix obtained by diffusing, per patient, the

effect of each mutation over a given interaction network. In this

way, not only genes that are mutated will receive high relevance

scores, but also genes that are close to the mutated genes in the net-

work. Identifying groups of patients with a consistent mutation pro-

file in this transformed matrix allows searching for mutational

consistency at the pathway level (Hofree et al., 2013) and accounts

for the clonality of carcinogenesis. Transforming the expression and

mutation matrix to rank matrices is key to removing the scale

differences.

A subtype is subsequently defined as a set of tumor samples that

share a similar molecular origin of their disease, i.e. a driver path-

way where the driver mutations occur. The effect of a mutated

driver pathway is assumed to be reflected in the expression pheno-

type, consistently down- or up-regulated compared to the reference,

of a subset of the genes downstream in those samples. Hence, se-

lected genes in the expression data and selected mutations in the mu-

tation data of the samples in a subtype can be different.

Detecting a subtype is formalized as a complex bi-clustering

problem in which one wants to search for a subset of patients that

share both a similar set of driver mutations and a subset of consist-

ently differentially expressed genes; given that the clonal phenotypes

in cancer are affected in the same driver pathways, this assumption

is reasonable. This clustering problem is solved by applying rank

matrix factorization (Le Van et al., 2015) to jointly factorize the

ranked mutation and expression matrices into a number of ranked

factors. Conceptually, each resulting factor consists of a subset of

samples associated to a subset of expression and mutation genes (ex-

pression and mutational features) for which the selected samples

have, respectively, highly ranked expression values and highly

ranked relevance scores. Expression and mutational features can,

but do not have to overlap. Whereas a factor represents a group of

patients together with their characteristic features, a subtype is

defined as a group of patients covered by a unique combination of

factors. Subtypes can thus mutually overlap in their characteristic

expression and/or mutational features. This overlap in features be-

tween subtypes reflects the fact that subtypes are rarely distinct but

rather represent a continuum of possible alterations. The subtyping

algorithm is dubbed SRF, for Subtyping with Ranked Factors.

3.2 Results on simulated datasets
To test the performance of the method in recovering known sub-

types, we generated datasets in which each subtype was defined as a

set of tumor samples carrying a number of driver genes and a
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concomitant set of consistently over- and/or under-expressed genes

of which the expression phenotype is assumed to be triggered by the

driver mutations. The data contained four subtypes that occasion-

ally shared genes mutated in the same driver pathways or genes dis-

playing the same consistent expression. We imposed the rule that

whenever two subtypes share genes mutated in the same driver path-

way(s), they should share a set of consistently expressed genes.

Figure 2A and 2B shows an example dataset.

Driver genes were modeled to display mutational consistency at

the pathway level across tumor samples belonging to the same sub-

type by selecting the drivers of those patients from a pre-selected set

of genes that are closely connected in a real protein–protein inter-

action network and therefore assumed to belong to the same driver

pathway. We varied the size of the driver pathways as well as the

mutational recurrency of the driver genes for the samples within the

subtypes to generate datasets (see Section 4).

For each simulated dataset, we ran our algorithm with varying

parameter settings. We used two parameters to specify the preferred

ranges of the ranks from the two input matrices, and another to bal-

ance the contributions of the two matrices. For each parameter set-

ting, we used SRF to search for k¼5 subtypes, where the 5th

subtype serves as the collection of tumor samples that have no clear

subtype assignment. We initialized the algorithm with five sample

groups obtained by a hierarchical clustering of the tumors using the

ranked expression data.

After factorizing the rank matrices, resulting subtypes containing

less than 4% of the total number of samples were pruned (see

Section 4).

Accuracy of the identified subtypes: We evaluated the perform-

ance of our algorithm in recovering the known subtypes as well as

their characteristic expression and mutational features. For this we

used the F1 score, which assesses the trade-off between correctly

and comprehensively distinguishing between samples, expression

genes and mutational features that truly belong to the subtypes from

those that do not.

To optimize the parameter settings, we calculated F1 scores for

different parameter settings and chose the one that resulted in the

highest average score (see Section 4). Then, we used that parameter

setting to evaluate the performance of the algorithm on all the simu-

lated datasets.

Figure 2E shows the F1 scores obtained for different driver

pathway sizes and mutational recurrencies. We can observe that

the F1 score of recovering tumor samples of the simulated subtypes

is high and largely independent of the sizes of the driver pathways

and the mutational recurrencies. This demonstrates the added

value of integrating the expression data. Further, the F1 scores of

recovering mutation and expression genes relevant to the subtypes

are generally high. As expected, the higher the mutational recur-

rency, the larger the number of mutated genes that can be

recovered.

Comparison to related work: To show that our method performs

at least as well as state-of-the-art subtyping methods, we compared

the results obtained by our method to those obtained with

iClusterþ (Mo et al., 2013), NBS (Hofree et al., 2013) and SNF

(Wang et al., 2014), applied on the same simulated data. Both

iClusterþ (Mo et al., 2013) and SNF (Wang et al., 2014) identify

Fig. 2. Evaluation on simulated datasets. (A,B) Example data with ground truth. The heatmaps show mutation and numeric expression data of a representative

simulated dataset, with a 10% mutational recurrency (meaning that a gene is mutated in at least 10% of the samples in a given subtype) and pathway size of 40.

The four ground truth subtypes are marked by the horizontal and vertical colored bars above and to the left of the heatmaps. (C, D) Results on the data shown in

panels A and B. Results obtained by NBS (Hofree et al., 2013), iClusterþ (Mo et al., 2013), SNF (Wang et al., 2014) and the hierarchical clustering algorithm (hclust),

which we used to initialize our model, are shown in the colored bars above the heatmaps. The results obtained with SRF are indicated by the four colored horizon-

tal and vertical bars, just above and to left of the heatmaps; each bar indicates the patients (horizontally) and genes (vertically) selected by a ranked factor. (E)

Performance comparison. The three plots denote F1 scores for (1) patient recovery (top), (2) expression gene recovery (middle) and (3) mutation gene recovery

(bottom) for iClusterþ, NBS, SRF and SNF, for simulated datasets of varying driver pathway sizes and mutational recurrencies. Note that NBS does not work with

expression data and we were unable to recover the mutated genes due to a lack of documentation
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subtypes by jointly clustering the expression and untransformed mu-

tation data, while NBS (Hofree et al., 2013) exploits mutational in-

formation but does not use expression data.

Results obtained by iClusterþ, NBS, SNF and SRF are summar-

ized in Figure 2E. Our method obtained higher F1 scores than its

competitors for both recovering expression and mutation genes.

This is because our model couples genes, including mutation and ex-

pression genes, and patients to define subtypes and thus explicitly

identifies subtype-specific genes. For iClusterþ and SNF, this is not

the case and the selected expression or mutation genes are thus al-

ways the same, irrespective of the subtype.

As a representative example, we illustrate in more detail the results

produced by the different methods on the simulated dataset with a

10% mutational recurrency and a pathway size of 40 (Fig. 2C and D).

The figures show that compared to the other methods, our method can

discover overlap between very similar subtypes in both the patient and

gene dimension. In addition, our model is shown to be tolerant to

noise: the fifth ranked factor found by SRF remained empty, revealing

that no ‘noisy’ patients and genes were incorrectly marked as belonging

to a subtype.

3.3 Results on the TCGA breast cancer data
To test SRF in a real-world setting, we applied it to the well-studied

TCGA breast cancer dataset. The method was run as outlined in

Section 4. As we were mostly interested in identifying subtype-

specific features, we chose stringent parameters to only identify sub-

types with representative profiles in terms of expression and muta-

tions factorizing the dataset into k¼8 factors resulted in 13

subtypes. The number of identified subtypes is higher than the num-

ber of factors because subtypes are defined as combinations of fac-

tors (see Section 2.3). The results are visualized in Figure 3.

To validate our subtypes, we tested (1) to what extent the dis-

covered subtypes corresponded to the PAM50 classification, and (2)

to what extent SRF could further refine it. Figures 3 and 4A show

that most subtypes are enriched in samples with the same PAM50

label (Parker et al., 2009) as shown in Figure 3A. All samples of the

same PAM50 class rarely end up in a single subtype. The Basal sub-

type, for example, is divided into two major subgroups: S10, S12;

LumA is divided into S3, S4, S5, S6, S8, S13; LumB into S1, S2, S5,

S9; Her2 into S11 and S7. So our approach does not only match the

PAM50 classification to a large extent, but it also further refines

known subtypes.

This high-resolution subtype refinement is a characteristic prop-

erty of the method’s intrinsic feature selection. Rather than using

global profiles to group samples, the methods actively search for

combinations of feature sets (factors) that characterize samples

using rather stringent criteria. As a result differences between ex-

pression and mutational profiles are marginal for some subtypes

(e.g. for LumA-related subtypes S3, S4, S8, S13 and for LumB-

related subtypes S7 and S9). Retrospectively, it might have been pos-

sible to merge these subgroups. However, in case of subtypes S10

and S12, carrying samples with the same Basal label, the subtype-

specific mutational and gene expression profiles are quite distinct

for the selected feature sets, corresponding to the brown and pink

bars in Figure 3.

Next to the subtypes that have rather homogeneous PAM50

labels assigned to their samples, subtypes S1, S2, S5 and S9 contain

a mixture of LumA and LumB samples, and S11 contains a mixture

of Her2 and LumB samples. Although some inconsistency between

the mere expression-based PAM50 classification and subtyping

protocols based on the integration of expression and genomic infor-

mation is to be expected (Curtis et al., 2012), a closer inspection of

the expression and mutational profiles of the subtypes with mixed

PAM50 class membership shows why our method does not distin-

guish between, e.g. the selected Her2 and some LumB samples. That

is, the selected LumB samples of subtype S11 contain clear Her2-

related features that distinguish them from other LumB samples,

such as an increased ERBB2 amplification and a more pronounced

over-expression of a characteristic subset of genes.

Our approach towards identifying subtypes together with their

features can only be meaningful if the selected features are biologic-

ally relevant. To assess this, we first tested to what extent the expres-

sion features used to build the PAM50 classifier are amongst our

selected features. From the 50 PAM50 features, 49 were present

amongst the features selected by our method after pre-processing

(see Section 4). The ranked factors found by SRF used 2221 features

in total, including 48 out of 50 PAM50 features. To select a smaller

representative feature set, the 10 genes with the highest average

ranked score per subtype were selected, resulting in 110 instead of

2221 features (Fig. 3D). Those 110 features contained 8 out of the

48 remaining features of the PAM50 classifier. SRF selects all high-

ranking features, hence the selected feature sets are more redundant

than those used by PAM50, which were designed for classification.

If our approach is to coincide with PAM50, we expect each group of

features to be covered by a few PAM genes. Except for one subtype

this is indeed the case. The exception, indicated with the blue row

bar in Figure 3D, does not have a corresponding PAM50 feature.

Remarkably, this is the feature set that has the most distinct differ-

ence in expression between the two subtypes with the same PAM50

Basal label (S10 and S12). Figure 3C shows how indeed no differ-

ences can be observed between Basal subtypes S10 and S12 using the

PAM50 features, whereas the subdivision is clear using the

expression-based features selected by our method and shown in

Figure 3D. Figure 5 shows how the subtype subdivision of the Basal-

like subtypes and the selection of the corresponding expression fea-

tures is also driven by the simultaneous selection of the mutation-

based features: S10 and S12 show clearly distinctive mutational

Fig. 3. Results of applying SRF (k¼8) on the TCGA breast cancer dataset, which resulted in the 13 subtypes denoted by S1, . . ., S13. For heatmaps in Panels A, C and D:

red implies over-expressed, white neutral, blue under-expressed. (A) Expression data. The gene and tumor sample sets corresponding to the eight ranked factors are

marked by the vertical and horizontal color bars. Each subtype is a unique combination of ranked factors in the tumor sample dimension. (B) Mutation data. Samples are

ordered as in panel A. Note that although the method uses the diffused ranked mutation matrix, the shown heatmap corresponds to the Boolean mutation data prior to dif-

fusion. Only mutated genes that belong to any of the factors are displayed. On panels A and B, the top bar indicates the PAM50 annotation of the samples together with

the subtyping results of iClusterþ, NBS, SNF and hierarchical clustering. (C) Expression heatmap of the PAM50 genes. The samples are ordered as in panel A. (D)

Expression heatmap of the top-10 genes per subtype, i.e. the 10 genes having the highest average ranked scores per subtype. (E) KEGG pathway (Kanehisa and Goto,

2000) enrichment results. Mutated genes of the eight factors were tested for pathway enrichment; resulting �log10 P-values are shown for cancer related pathways that

were found to be significantly enriched in at least one of the factors. Panel F: KEGG pathway enrichment analysis for the top-10 ranked expressed genes of the eight fac-

tors. log10 and�log10 P-values are shown for pathways having under- and over-expressed genes, respectively
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profiles with different mutational frequencies of CD9, DRAM1 and

E4F1. Interestingly, survival analysis of these two Basal-like sub-

types, despite not being significant due to the low mortality rate,

shows that subtype S12 tends to be more aggressive than S10 during

the first 2 years (Fig. 4B).

To assess whether the selected feature sets belong to known driver

pathways in breast cancer, we did per factor a KEGG pathway enrich-

ment analysis on, respectively, the selected mutational and expression

features. Figure 3E and F displays the enrichment levels for a representa-

tive set of cancer related pathways that were found to be enriched. They

also indicate how each subtype is a composition of different factors and

how the factors overlap in genes and thus also in enriched pathways. For

instance, the genes with a characteristic expression profile in factor 5

(representative for lumA and B) and factor 4 (representative for basal

S10) are enriched in rap1, ras1 and mapK signaling, but with an anticor-

related expression profile for the Luminal subtypes versus the Basal one.

Figure 3E shows how, as expected, (Cancer Genome Atlas Network,

2012; Toss and Cristofanilli, 2015; Verbeke et al., 2015), the Basal-

related (S10, S12) and Her2-related subtypes (S11) are highly enriched in

p53 signaling and cell cycle whereas other subtypes are not. In addition,

the Luminal subtypes (LumA and LumB; S2, S5, S6, S9 and S13) are en-

riched with cancer pathways known to be specific for this group: PI3K-

Akt signaling pathway (Cancer Genome Atlas Network, 2012; Verbeke

et al., 2015), Estrogen signaling pathway (Lisa et al., 2013) and AMPK

signaling pathway (Verbeke et al., 2015).

3.4 Comparison with state-of-the-art methods
To test to what extent our method agrees with state-of-the-art sub-

typing methods, we also ran iClusterþ (Mo et al., 2013), NBS

(Hofree et al., 2013) and SNF (Wang et al., 2014) on the same data-

set. Parameter settings for each of these methods were optimized as

explained in Section 4. Figure 3 illustrates how our results compare

with those of the other tools in terms of matching the PAM50 sub-

typing. SNF and iClusterþ, the two integrative methods that do not

use mutational consistency at the pathway level, do not perform

well for some subtypes. For example, SNF could not discern the het-

erogeneity of the Luminal samples, which has been known to be the

most heterogeneous breast cancer subtype (Cancer Genome Atlas

Network, 2012; Curtis et al., 2012), when it clustered all LumA

samples and a large number of LumB samples into one group;

iClusterþ could not subdivide the Basal subtype. NBS, which could

use mutational consistency at the pathway level but could not inte-

grate with expression data, could not distinguish the LumA from the

LumB samples. In contrast, our method can integrate expression

data and mutational data at the pathway level and hence can cap-

ture subtle differences that might be missed otherwise.

Comparison with hierarchical clustering: We performed a hier-

archical clustering of the tumor samples into clusters, of which the

result is annotated by the hclust column bar in Figure 3A. This clus-

tering is also used to initialize the matrix F of the factorization in

Equation (3). In contrast to hierarchical clustering, our SRF algo-

rithm identifies clusters (subtypes) that are highly overlapping and

removes noisy samples.

4 Materials and methods

Simulated data: Mutational data was generated by first selecting

driver pathways for each of the simulated subtypes. Driver pathways

were selected from the densely connected sub-networks obtained by

applying the InfoMap algorithm (Rosvall and Bergstrom, 2008) im-

plemented in the igraph (Csardi and Nepusz, 2006) R package on the

STRING network (Szklarczyk et al., 2011) post-processed by Hofree

et al. (2013). The selected driver pathway sizes varied from f20; . . . ;

100g genes and each such gene was assigned a mutational recurrency

between 2 and 15%. Passenger mutations were simulated by sam-

pling, for each patient, from a Bernoulli distribution with p¼0.005

(the average mutational recurrency we observed in the TCGA breast

cancer data). The total number of passengers was chosen such that

the total number of mutation genes, including both drivers and pas-

sengers, was 8000, which was approximately equal to the number of

mutation genes used in the TCGA breast cancer data. Each simulated

mutation matrix consists of 8000 genes�350 patients.

Expression data was simulated as previously described by Le

Van et al. (2015). That is, first background information was gener-

ated by sampling from a mixture of three Gaussians, of which means

were uniformly sampled from three different ranges, namely,

[�5,3), [�3,3] and (3,5]. Then, over-expressed and under-expressed

modules were implanted. Values within over-expressed and under-

expressed modules were sampled from a Gaussian, with mean uni-

formly sampled from (3,5] and [�5,�3), respectively. Per set of

driver mutations and thus per subtype, we ensured that the simu-

lated dataset consisted of at least one set of genes that was consist-

ently differentially expressed across the samples in the subtype.

To simulate noise in the expression data, we simulated 100 small

expression modules that could be seen as the result of some confound-

ing factors such as sex and tissue type. The number of rows and col-

umns of these confounding modules were sampled from a normal

distribution, whose mean was equal to 25% of the medium-sized

Fig. 4. (A) Distribution of PAM50 samples in the identified subtypes; (B)

Kaplan–Meier plot for the two Basal-related subtypes S10 and S12. (Not stat-

istically significant because of the low mortality rate.)

Fig. 5. Comparing the mutation frequencies among the identified subtypes

using the mutation gene set selected by subtype S12
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pattern and standard deviation was equal to 40% of the mean. Each

simulated expression matrix consists of 4000 genes�350 patients.

TCGA breast cancer dataset: Breast cancer somatic mutation, copy

number alteration (CNA), expression (RNA-Seq v2) and clinical data

were downloaded from the TCGA data portal. Mutational data were

converted to a Boolean mutation matrix. CNA data were analyzed

using Gistic 2.0 (Mermel et al., 2011) with default settings. This data

was then binarized by considering how genes are classified by Gistic: as

either deleted or amplified. This information was added to the muta-

tion matrix. We restricted our analysis to mutations and CNVs in genes

that also appear in the STRING network (12 232 vertices) prepared by

Hofree et al. (2013). Expression genes were selected based on their dif-

ferential expression relative to normal (non-tumor) samples: for each

gene a normal distribution was fitted using the normal expression sam-

ples and z-scores were calculated for the tumor samples. We then eval-

uated the 5th and 95th percentiles of the tumor samples. Genes were

selected if (1) the P-values for these percentiles were below 0.001 and

(2) their log-fold change relative to the mean normal expression was at

least 2.5. After the filtering steps mentioned above, the final mutation

matrix consisted of 8604 genes� 719 patients, and the final expression

matrix of 2472 genes� 719 patients.

Parameter selection: To allow for a fair comparison, parameters

of the algorithms were optimized to obtain the best possible results.

See the supplementary document for a more detailed discussion.

Gene feature selection: To compare SRF to other methods con-

cerning the recovery of subtype-specific genes in the simulated data-

sets, we used gene feature selection. With our method, it was

straightforward to extract the mutation genes and expression genes

representative of the individual subtypes, as described in the Section

2. With iClusterþ (Mo et al., 2013), we used a quantile cut-off of

P¼0.75 to select the important genes according to the model. With

SNF (Wang et al., 2014), we first ordered the genes by Normalized

Mutual Information using the SNF software. We then selected the

top-n expression and the top-m mutation genes, where n and m are

the total number of true expression and mutation genes of the simu-

lated subtypes, respectively. With NBS (Hofree et al., 2013), we

could in theory obtain subtype-specific mutation genes, but were not

able to recover them given the lack of documentation. It is import-

ant to note that with both iClusterþ and SNF, all identified subtypes

have the same set of mutation and expression genes.

Hierarchical clustering: SRF requires an initialized matrix F to

start from, which was obtained through hierarchical clustering: we

used the hclust package in R to cluster the columns of the ranked ex-

pression matrix into k groups (with Euclidean distance).

Pruning small subtypes: To be more tolerant towards noise,

derived subtypes that contain less samples than a predefined thresh-

old (<4% of the total number of samples for the simulated datasets)

were pruned. Samples of the pruned subtypes were re-assigned to

the remaining subtype that results in the highest score for the func-

tion in Equation (1).

Survival and pathway enrichment analysis: Survival analysis was

performed using the R survival package. We used time to follow,

time to event and the subtype information produced by our algo-

rithm to calculate the survival probability. Pathway enrichment ana-

lysis was done using the ClueGo plugin (Bindea et al., 2009) in

Cytoscape (Shannon et al., 2003).

5 Discussion

Previous integrative models, such as iClusterþ (Mo et al., 2013) and

SNF (Wang et al., 2014), used between-sample similarities from the

sample’s global expression/mutational profiles to derive subtypes.

However, molecular subtypes are defined by the molecular mechan-

isms that drive carcinogenesis. How subtypes are defined thus de-

pends on the features used to group samples in subtypes.

Conversely, the subtypes define which features are relevant for a cer-

tain sample grouping. Hence, subtyping and feature identification

are confounded problems that ideally should be solved

simultaneously.

In this work, we therefore developed SRF, an approach that does

so. To this end, we approached the subtyping problem by decom-

posing patient–mutation and patient–expression data into ranked

factors. A factor here represents a set of samples for which a set of

genes display mutational consistency and a (possibly overlapping)

second set of genes display expression consistency. A factor thus is

an expressed and mutational feature set shared by a group of sam-

ples, and can be viewed as a bi-cluster (Madeira and Oliveira, 2004)

in, respectively, the expression and mutation data that are coupled

in the patient dimension. We developed a global model in the form

of matrix factorization to identify these bi-clusters.

Subtypes are then defined as each patient set that is covered by a

unique combination of ranked factors. As a result, subtypes can

overlap in the factors that characterize them, reflecting the fact that

subtypes are never mechanistically completely different, but share

common representative features/driver mechanisms.

Compared to state-of-the-art methods, our method is most

related to Hofree et al. (2013) (1) as it uses a network model to ac-

count for pathway level parallelism between independently evolved

tumor samples and (2) because it extracts features explicitly.

However, it is different from Hofree et al. (2013) by integrating

both mutational and expression data.

Compared to related methods, samples without clear-cut signals

will not be assigned to any subtypes. This prevents samples (noisy or

heterogeneous samples) from blurring the molecular characteristics

that are representative for a subtype. However, if desired we could

assign samples to the closest subtype identified by our method.

In this article, we did not consider metabolomics data, as was

done in the work by Tardito et al. (2015). The type of data described

in Tardito et al. (2015) can only be generated for cell lines and not for

a tumor biopsy. It is not available in the context of TCGA or ICGC.

We extensively tested the performance of our method on simu-

lated data. Testing and comparing our method with other state-of-

the-art subtyping methods on the well studied TCGA breast cancer

dataset shows how our method is able to grasp the most prominent

signatures in the data. In addition, however, our method is also able

to capture subtle differences that are missed by methods that com-

pare samples based on global profiles of similarities.
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