
A program for verification of phylogenetic

network models

Andreas D.M. Gunawan1,†, Bingxin Lu2,† and Louxin Zhang1,*

1Department of Mathematics and 2Department of Computer Science, National University of Singapore, Singapore

117417, Singapore

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Abstract

Motivation: Genetic material is transferred in a non-reproductive manner across species more fre-

quently than commonly thought, particularly in the bacteria kingdom. On one hand, extant gen-

omes are thus more properly considered as a fusion product of both reproductive and non-

reproductive genetic transfers. This has motivated researchers to adopt phylogenetic networks to

study genome evolution. On the other hand, a gene’s evolution is usually tree-like and has been

studied for over half a century. Accordingly, the relationships between phylogenetic trees and net-

works are the basis for the reconstruction and verification of phylogenetic networks. One important

problem in verifying a network model is determining whether or not certain existing phylogenetic

trees are displayed in a phylogenetic network. This problem is formally called the tree containment

problem. It is NP-complete even for binary phylogenetic networks.

Results: We design an exponential time but efficient method for determining whether or not a

phylogenetic tree is displayed in an arbitrary phylogenetic network. It is developed on the basis of

the so-called reticulation-visible property of phylogenetic networks.

Availability and Implementation: A C-program is available for download on http://www.math.nus.

edu.sg/�matzlx/tcp_package.

Contact: matzlx@nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Horizontal gene transfer and hybridization have occurred between

organisms more frequently than commonly thought (Chan et al.,

2013; Treangen and Rocha, 2011). Accordingly, phylogenetic net-

works have been adopted for modeling these two genetic transfer

events as well as other so-called reticulation events in evolutionary

genomics (Doolittle, 1999; Moret et al., 2004; Nakhleh, 2013). The

computational and mathematical aspects of phylogenetic networks

have been intensively studied over the past two decades (e.g.

Gusfield, 2014; Huson et al., 2011; Parida, 2010; Wang et al.,

2001).

On one hand, phylogenetic networks are very useful for dating

and inferring reticulation events (Charlton et al., 2008; Koblmüller

et al., 2007). On the other hand, it is extremely challenging to re-

construct network models correctly from sequence data or from

gene trees (Huber et al., 2015; Song et al., 2005; Yu et al., 2014).

Given that phylogenetic trees of numerous gene families have been

studied for over half a century, phylogenetic networks are often re-

constructed and verified by examining their compatibility with

existing gene trees (Cardona et al., 2009; Huson et al., 2011; Kanj

et al., 2008; van Iersel et al., 2010b). This has motivated re-

searchers to study the problem of determining whether or not a

phylogenetic tree is consistent with a phylogenetic network. This

problem is called the tree containment problem (TCP) (Kanj et al.,

2008; see also Huson et al., 2011). The cluster containment prob-

lem (CCP) is another problem arising from the verification of

phylogenetic models. It asks whether or not a cluster of taxa ap-

pears in a phylogenetic tree displayed in a network (Huson et al.,

2011).

Both the TCP and CCP are NP-complete (Kanj et al., 2008),

even on binary networks, in which tree nodes have an outdegree of

two and reticulation nodes have an indegree of two (van Iersel et al.,

2010a). van Iersel et al. (2010a) first developed a polynomial time

algorithm for solving the TCP on tree-child networks. Recently,

polynomial time TCP algorithms have been published for phylogen-

etic networks with the reticulation-visible property (Bordewich and

Semple, 2015; Gambette et al., 2015; Gunawan et al., 2016). The

visibility property was originally introduced to capture an important

VC The Author 2016. Published by Oxford University Press. i503
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i503–i510

doi: 10.1093/bioinformatics/btw467

ECCB 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

http://www.math.nus.edu.sg/&hx0026;sim;matzlx/tcp_package
http://www.math.nus.edu.sg/&hx0026;sim;matzlx/tcp_package
http://www.math.nus.edu.sg/&hx0026;sim;matzlx/tcp_package
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw467/-/DC1
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text: ,
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:); <xref ref-type=
http://www.oxfordjournals.org/

feature of galled networks (Huson et al., 2011). A network is

reticulation-visible if every reticulation node separates the network

root from at least some leaves.

The TCP algorithm of Gunawan et al. (2016) has been simplified

into a quadratic-time algorithm by using proper data structures in

the full version of the paper that is available online. One important

technique used for designing the algorithm is a decomposition the-

orem. The technique also leads to a linear time algorithm for the

CCP on reticulation-visible networks. Although our study of

reticulation-visible networks is theoretically interesting, its applica-

tion is limited, as a large portion of phylogenetic networks do not

have the reticulation-visible property (Zhang, 2016).

In this work, a computer program for the TCP was developed

from a generalization of the decomposition technique reported in

Gunawan et al. (2016). The program solves the TCP on arbitrary

networks in which nodes are not necessarily binary. Although it is of

exponential time, the theoretical analysis shows that it is hundreds

of times as fast as the naı̈ve program for binary phylogenetic net-

works with 30 or more reticulation nodes. The evaluation tests on

random networks demonstrate that it is fast enough to solve real in-

stances arising in evolutionary genomics.

2 Algorithm

2.1 Basic concepts and notation
A phylogenetic network over a set of taxa X is an acyclic digraph in

which (i) the leaves (i.e. nodes of outdegree zero) are bijectively

mapped to the taxa in X and (ii) there is a unique node of indegree

zero, called the root. The property (ii) implies there is a (directed)

path from the root to each of the other nodes.

We also assume that a node is of outdegree one if it has indegree

greater than one. These nodes are called reticulation nodes, repre-

senting reticulation events. Other non-leaf nodes are called the tree

nodes of the network, which include the root and all the nodes of

both indegree and outdegree one. A phylogenetic network is reduced

if the unique child of each reticulation node is either a tree node or a

leaf (Moret et al., 2004). A phylogenetic network is said to be bi-

combining if each reticulation node is of indegree two. It is binary if

all reticulation nodes are of indegree two and all tree nodes are of

outdegree two. A phylogenetic tree is a rooted full binary tree or,

equivalently, a binary phylogenetic network without reticulation

nodes.

Let N be a phylogenetic network. In this paper, we use the fol-

lowing notation:

qðNÞ is the root of N; L(N) is the set of leaves in N; TðNÞ is the

set of tree nodes in N; RðNÞ is the set of reticulation nodes in N;

VðNÞ is the set of all nodes (i.e. LðNÞ [TðNÞ [RðNÞ); E(N) is the

set of edges in N; N–S is the subnetwork with the node set VðNÞ
�VðSÞ and the edge set fðx; yÞ 2 EðNÞjfx; yg � VðNÞ � VðSÞg for a

vertex subset S.

For u; v 2 VðNÞ such that u 6¼ v, u is a parent of v and, equiva-

lently, v is a child of u if there is an edge from u to v. In general, v is

a descendant of u if a direct path exists from u to v.

Consider a phylogenetic network M over a set of taxa X and a

phylogenetic tree G over a set of taxa Y such that Y � X. After all

but one incoming edges are removed for every reticulation node, M

becomes a tree M0 (Fig. 1). Note that some internal nodes of M may

have become leaves in M0. After the nodes that are not in any path

from qðMÞ to a leaf in Y and all the edges incident to them are

removed from M0; M0 becomes a tree M00 over Y. M00 is called a sub-

tree history of the network M for Y. The tree G is consistent with M

if G can be obtained from a subtree history of M for Y by contrac-

tion (i.e., contracting all the nodes with both indegree and outdegree

one) (Fig. 1). If M is a tree without nodes of indegree and outdegree

one over the same set of taxa as G, by definition, M ¼M0 ¼M00 and

so G will not be consistent with M unless they are identical. In this

paper, we study the following model verification problem.

2.1.1 Tree containment

Instance: A phylogenetic network N over X and a phylogenetic

tree G over Y such that Y � X.

Question: Is G consistent with N?

Here, we would like to point out that the TCP has been studied

only for a phylogenetic network and a phylogenetic tree over the

same set of taxa in literature (Huson et al., 2011).

Since the TCP is NP-complete (Kanj et al., 2008), we aim to de-

velop a program that takes exponential time in the worst case but

fast enough to check whether or not a phylogenetic tree is consistent

with a phylogenetic network arising from the study of a gene’s

evolution.

2.2 Networks with dummy nodes
A dummy reticulation node is a node that has indegree greater than

one and outdegree zero, and a dummy leaf is an unlabeled leaf. As

an evolutionary model, a phylogenetic network is assumed not to

have such nodes, as they are not meaningful. However, the algo-

rithm to be developed works in a recursive manner. Occasionally,

the input network will be simplified into a network with such kind

of nodes when the algorithm runs. Therefore, for convenience, in

this work, we allow a phylogenetic network to have dummy reticu-

lation nodes and leaves. Such a network is called a general phylogen-

etic network. We define the consistency of a phylogenetic tree with a

general phylogenetic network similarly.

For a phylogenetic network N over X and Y � X, we use NY to

denote the general phylogenetic network obtained from N by

removing all the leaves not labeled by a taxa in Y. It is not hard to

see that NY is over Y. It is also true that a phylogenetic tree G over Y

is consistent with N if and only if G is consistent with NY.

In the rest of this paper, because of the above fact, we shall inves-

tigate the TCP for general phylogenetic networks and phylogenetic

trees over the same set of taxa.

2.3 Tree components
In this subsection, we introduce some facts about the structural de-

composition of phylogenetic networks studied in Gunawan et al.

(2016). These facts are needed for developing our TCP algorithm in

next subsection.

Fig. 1. Illustration of tree containment. M is a phylogenetic network over taxa

f‘1 ; ‘2; ‘3; ‘4g. Reticulation nodes are represented by filled circles. An incom-

ing edge for the root is added for visualization. G is a phylogenetic tree over

f‘1 ; ‘2; ‘3g that is displayed in M

i504 A.D.M.Gunawan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text: : the
Deleted Text: :
Deleted Text: 3.
Deleted Text: :
Deleted Text: 4.
Deleted Text: :
Deleted Text: 5.
Deleted Text: :
Deleted Text: :
Deleted Text:
Deleted Text:
Deleted Text: :
Deleted Text: Figure
Deleted Text: that is
Deleted Text: Figure
Deleted Text: :
Deleted Text: TREE CONTAINMENT
Deleted Text:)
Deleted Text:)

Let N be a network over a set of taxa X. For u; v 2 VðNÞ, v is a

vertical descendant of u if a direct path exists from u to v that con-

tains either a single edge from u or multiple edges, which all enter a

node in TðNÞ [LðNÞ. Let VDðuÞ denote the set of all vertical des-

cendants of u. If u is a dummy reticulation node, VDðuÞ is empty.

Let r 2 RðNÞ have a unique child c(r). If c(r) is also in R(N),

VDðrÞ ¼ fcðrÞg. If cðrÞ 62 RðNÞ, then VDðrÞ � TðNÞ [LðNÞ.
Additionally, VDðrÞ induces a subtree of N with the vertex set VDðrÞ
and the edges set fðv0; v00Þ 2 EðNÞjv0; v00 2 VDðrÞg. This subtree is

denoted by C(r) and is called a tree component of N. The subtree

induced by fqg [VDðqÞ \ ðTðNÞ [LðNÞÞ½ � is also called a tree com-

ponent, denoted CðqÞ, where q ¼ qðNÞ. The concept of a tree compo-

nent is illustrated in Figure 2.

A tree component is trivial if it contains only a network leaf or if

it is empty. A non-trivial tree component must contain some internal

nodes. If N is reduced, for each reticulation node, its child is either a

tree node or a leaf. This implies that all the tree components form a

disjoint partition of TðNÞ [LðNÞ if N is reduced.

Let u 2 VðNÞ. The node u is said to be visible if there is a leaf ‘

such that every path from qðNÞ to ‘ contains u. It is not hard to see

that qðNÞ is visible with respect to every leaf.

A tree component C is visible if the root of C is visible. In the net-

work given in Figure 2, C0 is visible with respect to every leaf; C1 is

visible with respect to ‘1. However, C2 and C3 are not visible. N is

reticulation-visible if every tree component is visible.

Let r0; r00 2 RðNÞ [fqðNÞg. We say that r00 and its tree compo-

nent Cðr00Þ are right below Cðr0Þ if r00 is the child of a node in Cðr0Þ.
In Figure 2, C3 is right below both C1 and C2.

A tree component C(r) is exposed if it contains only a single leaf

or if every tree component right below it is trivial in N. In Figure 2,

only C3 is an exposed component containing more than one node.

Lemma 2.1. Let C be an exposed tree component. C is visible if

and only if C contains a leaf or if a reticulation node r exists right

below C such that the parents of r are all in C.

Proof. Let u be the root of C. If C contains a leaf x, then a unique

path P exists from u to x that contains only tree nodes. Consider a

path P0 from the network root to x. If u does not appear in P0, P0

and P intersects at a reticulation node in P, as x is in them. This is

impossible. Hence P0 must contain u, implying that u is visible with

respect to x. Similarly, we can prove that u is visible with respect to

the child of a reticulation node y if all the parents of y are in C. By

definition, we have proved that C is visible.

Conversely, let C be visible with respect to a leaf x and let x be

not in C. Since C is exposed, x is the child of a reticulation node r

right below C. Assume a parent y of r is not in C. Since C is exposed,

y is not below C, as there is a non-trivial component below C other-

wise. This implies that any path from the network root to x through

y does not contain the root of C, contradicting the visibility assump-

tion on C. This completes the proof.

2.4 Description of the algorithm
In this section, we shall describe how to generalize the TCP algo-

rithm for reticulation-visible networks, appearing in Gunawan et al.

(2016), into one that works for arbitrary networks. We first intro-

duce notation and facts on which the algorithm is based and then

present the algorithm in Figure 4.

Let N and G be a network and a phylogenetic tree over the same

set of taxa X, respectively (Fig. 2). In the rest of this paper, for sim-

plicity, we use the same symbol to denote the leaf that represents the

same taxa in G and N.

It is not hard to see that N contains at least one exposed non-

trivial tree component. Consider r 2 RðNÞ such that C(r) is non-

trivial, exposed and visible. Let Lr be the set of network leaves with

respect to which C(r) is visible and let ‘ 2 Lr. A unique path then

exists from the tree root qðGÞ to ‘ in G, say

P‘ : v0 ¼ qðGÞ; v1; � � � ; vt; vtþ1 ¼ ‘; (1)

where t � 0. P‘2 is shown in the tree G in Figure 2, where t¼2. It is

not hard to see that G� P‘ is a union of tþ1 disjoint trees Gi, each

of which branches off from P‘ at vi for i ¼ 0; � � � ; t. For example, in

Figure 2, G0 consists of ‘1; ‘3 and their parent; G1 and G2 are sim-

ply ‘5 and ‘4, respectively. For convenience, we set Gtþ1 ¼ f‘g.
Define

sGðrÞ ¼ minf ij0 	 i 	 t þ 1;LðGiÞ \ Lr 6¼1g; (2)

where LðGiÞ denotes the set of labeled leaves in Gi. Since

‘ 2 LðGiÞ \ Lr, the index sGðrÞ is well defined. For G in Figure 2, if

Lr ¼ f‘2; ‘5g, we have sGðrÞ ¼ 1, as G1 contains ‘5 in Lr but G0 con-

tains neither ‘2 nor ‘5; if Lr ¼ f‘2g, then sGðrÞ ¼ 3.

The index sGðrÞ can be computed by calling a simple dynamic pro-

gramming algorithm on G and Lr, which takes linear time OðjLðGÞjÞ
(see Gunawan et al., 2016).

For each vi, we use G0ðviÞ to denote the subtree rooted at vi in G.

Let ½r�N denote the subnetwork consisting of all the descendants of r

and the edges between them in N. Formally, for each sGðrÞ 	 i 	 t

þ1; G0ðviÞ is said to be displayed in the subnetwork below r, if it is

consistent with the following subnetwork:

½r�N � fcðr0Þ; r0jr0 2 RðNÞ such that cðr0Þ 62 LðG0ðviÞÞg, where

cðr0Þ is the unique leaf child for r0 2 RðNÞ.
If G is displayed by N, the subtree G0ðvsGðrÞÞ must be displayed in

the subnetwork of N below r. The reason for this is because r and

C(r) are visible with respect to a leaf ‘0 2 Lr \ LðGsGðrÞÞ, as well as ‘,

forcing vsGðrÞ to correspond to a node in C(r) in any display of G in

N.

However, a super subtree containing G0ðvsGðrÞÞ may possibly be

displayed below r in N. Let us define

dGðrÞ ¼ minfjjG0ðvjÞ is displayed below r in Ng: (3)

The index dGðrÞ can be found in quadratic time (Gunawan et al.,

2016).

Fig. 2. A network N and a phylogenetic tree G displayed in N. Left panel: C0 is

the tree component containing the network root; Ci ¼ Cðri Þ for 1 	 i 	 3. For

each of the other reticulation nodes, the tree component contains only its

unique child. Right panel: G0, G1 and G2 are subtrees branching off the path

from the root v0 to ‘2

A program for phylogenetic network models i505

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

Deleted Text: Figure
Deleted Text: :
Deleted Text:)
Deleted Text: :
Deleted Text:)

Consider the network N0 in Figure 3, Cðr3Þ ¼ C3. It is visible

with respect to ‘2 and exposed. For the tree G in Figure 2, since

Lr3
¼ f‘2g; sGðr3Þ ¼ 3. However, dGðr3Þ ¼ 2, as G0ðv2Þ is displayed

in the subnetwork below r3.

Let N � CðrÞ þ ‘ denote the network obtained from N as

follows:

• for each x 2 RðNÞ right below C(r), remove the edges to x from

its parents in C(r) if the child of x is not in the subtree G0ðvdGðrÞÞ,
and

• replace the resulting subnetwork below r with ‘ so that ‘ be-

comes the child of r.

Similarly, we use G�G0ðvdGðrÞÞ þ ‘ to denote the tree obtained

from G by replacing G0ðvdGðrÞÞ with ‘.

For Cðr3Þ ¼ C3 and ‘2 in the network N0 in Figure 3 and G in

Figure 2, since dGðr3Þ ¼ 2; N0 �C3 þ ‘2 and G�G0ðv2Þ þ ‘2 are

those shown in the second row in Figure 3.

The following theorem was first proved for reticulation-visible

networks by Gunawan et al. (2016). Its correctness for arbitrary net-

works is proved in the Appendix.

Theorem 2.1.: Assume C(r) is non-trivial, exposed and visible

with respect to ‘ in N. Let N � CðrÞ þ ‘, G�G0ðvdGðrÞÞ þ ‘; sGðrÞ,
and dGðrÞ be defined above.

i. If dGðrÞ > sGðrÞ, N does not display G.

ii. If dGðrÞ 	 sGðrÞ, N displays G if and only if N � CðrÞ þ ‘ dis-

plays G�G0ðvdGðrÞÞ þ ‘.

Consider r 2 RðNÞ such that C(r) is exposed and non-trivial.

Assume that C(r) is not visible but a reticulation node r0 exists right

below C(r) such that Cðr0Þ consists of only a leaf. Since C(r) is not

visible, r0 has at least one parent not in C(r).

We define

N0 ¼ N � fðx; r0Þ 2 EðNÞjx 62 CðrÞg (4)

and

N00 ¼ N � fðx; r0Þ 2 EðNÞjx 2 CðrÞg: (5)

If r0 has only one parent in C(r) in N, r0 is of indegree and outde-

gree one in N0. In this case, r0 becomes a tree node and is merged

into C(r) in N0 (Figure 3). If r0 has multiple parents in C(r), Cðr0Þ is

only right below C(r) in N0. Hence, C(r) has become visible with re-

spect to the unique leaf child of r0 in N0.

In the network N in Figure 2, C3 is exposed, but not visible. If

the parent of ‘2 is chosen, N0 and N00 are shown in the top row in

Figure 3.

By the definition of tree containment, a tree is in N if and only if

it is in either N0 or N00.

By combining the two possible cases discussed above, we obtain

an algorithm for solving the TCP summarized in Figure 4.

On the input network N and tree G in Figure 2, the algorithm

runs as follows:

1. Since C3 is exposed and non-trivial, C3 is selected in Step 1.

2. Since C3 is not visible, Step 3 is executed. If we assume the leaf

‘2 is chosen, the resulting networks N0 and N00 are given in

Figure 3. Hence, the algorithm runs recursively on N0 and then

on N00. In this example, the algorithm outputs TRUE and exits

before running on N00.

Fig. 3. Illustration of the TCP algorithm. Top left panel: the network N 0 ob-

tained from N (Fig. 2) by deleting the edge entering the parent of ‘2 from a

node in C1. Note that C3 is visible with respect to ‘2 in N 0 . Top right panel: the

network N 00 obtained from N (Fig. 2) by deleting the edge entering the parent

of ‘2 from a node in C3. Bottom left panel: the network derived from N 0 by

replacing C3 with ‘2 after the subtree G 0ðv2Þ is found to be displayed below r3.

Bottom right panel: the tree obtained from G (Fig. 2) by replacing G 0ðv2Þ with

‘2. G 0ðv2Þ is the subtree of G consisting of ‘2; ‘4 and its parent v2 (Fig. 2) Fig. 4. A TCP algorithm for arbitrary networks

i506 A.D.M.Gunawan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

Deleted Text: :
Deleted Text: ()
Deleted Text: ()

3. In N0, C3 is visible with respect to ‘2, Hence, Step 2 is executed.

The indices sGð‘2Þ and dGð‘2Þ are first computed. Their values

are 3 and 2. Since 0 < dGð‘2Þ < sGð‘2Þ; N0 is simplified into

N0 � C3 þ ‘2 and G into G�G0ðv2Þ þ ‘2, shown in the bottom

row in Figure 3. The algorithm is then called on the simplified

network and tree.

4. Since C1 is exposed, non-trivial and visible with respect to ‘1,

Step 2 is executed again on N0 � C3 þ ‘2, eliminating C1 from

the network and ‘1; ‘3 from the tree G�G0ðv2Þ þ ‘2.

5. Note that C0, C2 and the tree component fr1g remain in N000

¼ ðN0 �C3 þ ‘2Þ � C1 þ ‘1 and the tree has become a tree with

three leaves: ‘1; ‘2 and ‘5. Here, the tree component fr1g is the

one associated with the reticulation parent of r1. In N000, C2 is

visible and exposed, Step 2 will be executed to dissolve C2. Step

3 will then be executed when the tree component fr1g is exam-

ined, followed by the execution of Step 2 for dissolving C0 be-

fore outputting TRUE.

2.5 Implementation of the algorithm
A couple issues arising during implementation of our algorithm are

worth mentioning here. First, since the algorithm decodes tree com-

ponents one by one, the input network and any additional networks

created in Step 3 of the algorithm are each represented as a sorted

list of non-trivial tree components. The non-trivial tree components

are sorted in post order so that after the tree components listed be-

fore a tree component is dissolved, the latter becomes exposed. In

this way, the non-trivial components are dissolved from the first to

the last. When a tree component is dissolved, each tree component

listed behind it will be updated if a reticulation node below the for-

mer is also below the latter.

Our evaluation tests showed that the running time of our algo-

rithm was very sensitive to the order in which the tree components

were listed. Ideally, visible tree components with more nodes should

be listed first whenever possible.

We used an array to save the leaf below each reticulation node

for which the tree component is a single leaf. The list is updated at

the end of Step 2.4(i) when an exposed and visible tree component is

replaced by a network leaf.

Second, we used a two-dimensional table to implement a dy-

namic programming method for computing dGðrÞ, defined in

Equation (3). The details of the dynamic programming method can

be found in Gunawan et al. (2016).

3 Analyses of the algorithm’s performance

In this section, we first analyze the worst-case time complexity of

the algorithm for bi-combining networks. We then report its per-

formance on one of the largest networks in the literature and on ran-

dom networks.

3.1 Measuring the efficiency of the algorithm
Our algorithm is a recursive algorithm by nature. Here are some

useful observations on its efficiency.

First, the running time of the algorithm is proportional to the

number of non-trivial tree components. If the input network N has

only one non-trivial tree component, this tree component is rooted

at the network root and hence must be visible with respect to each

leaf, implying that the network is reticulation-visible. In this case,

both Steps 3 and 4 will not be executed; Step 2 of the algorithm is

executed only once, taking OðjEðNÞjjLðGÞÞj time (Gunawan et al.,

2016), where j � j denotes the cardinality of a finite set.

Second, when Step 3 is executed, the algorithm will run on two

simplified copies of the current network in sequential order.

According to Gunawan et al. (2016), the time spent on each exposed

and visible tree component C is OðjECjjLðGÞjÞ, where

EC ¼ fðu; vÞ 2 EðNÞju 2 Cg. Let m denote the number of times Step

3 is executed on the input N and G. The total running time of the al-

gorithm is bounded above by Oððmþ 1ÞjEðNÞjjLðGÞjÞ. Since the

TCP is NP-complete, m is likely an exponential function of the num-

ber of reticulation nodes in N, jRðNÞj, unless NP ¼ P.

Third, the input network N and tree G satisfy LðGÞ � LðNÞ.
Hence, we simply use jLðNÞj to replace jLðGÞj in the analysis of the

time complexity of the algorithm. In this way, the time complexity

of our algorithm is written as Oððmþ 1ÞjEðNÞjjLðNÞjÞ.
Recall that a network is reduced if there are no consecutive re-

ticulation nodes along a path. Given G and reduced N as an input,

the naı̈ve algorithm will consider all the reticulation nodes one by

one. For each reticulation node r, there will be kr possibilities if the

indegree of r is kr. Therefore, the naı̈ve algorithm will createY
r2RðNÞkr trees and will then take linear time to determine whether

or not G is consistent with each of them.

If N is bi-combining, each reticulation node has indegree 2, and

hence
Y

r2RðNÞkr ¼ 2jRðNÞj. Combining this fact and the third point

made above, we propose to measure the efficiency of our algorithm

by comparing log2ðmÞ against jRðNÞj. The former is denoted by

b(N, G) and is called the effective reticulation number of the algo-

rithm for N and G. Additionally, bðNÞ ¼ maxGbðN;GÞ.

3.2 A theoretic bound for bi-combining networks
The analysis of our algorithm is difficult in general. However, we

are able to establish the following results for bi-combining reduced

networks.

Theorem 3.1. For any bi-combining reduced network N,

bðNÞ 	 log2
1þ
ffiffi
5
p

2

� �

 jRðNÞj � 0:694jRðNÞj.

Proof. Let m(N) be the largest possible number of times Step 3 is

executed on N and any phylogenetic tree. When Step 3 is first exe-

cuted on N, the two networks N0 and N00 are created. For these three

networks

mðNÞ 	 1þmðN0Þ þmðN00Þ: (6)

Let us assume that N0 and N00 are created by examining an

exposed non-trivial tree component C and a reticulation node r right

below C. Since the tree component C is exposed, the child of r is a

network leaf, say ‘. Because C is neither trivial nor visible, another

reticulation node r0 exists right below C. By the construction of N0,

C is visible with respect to ‘ in N0. Hence, when the algorithm is

called on N0, Step 2 should first be executed, eliminating all the re-

ticulations below C including r0 simultaneously. Additionally, r has

become a tree node in N0 and N00.

Let M(k) denote the largest possible number of times Step 3 is

executed on any bi-combining reduced network with k reticulation

nodes and any phylogenetic tree, namely

MðkÞ ¼ maxN2SfmðNÞjjRðNÞj ¼ kg;

where S is the set of bi-combining reduced networks. Here, clearly,

Mð1Þ 	 0 and Mð2Þ 	 1. By Equation (6), this discussion implies

that

MðkÞ þ 1 	 ½Mðk� 2Þ þ 1� þ ½Mðk� 1Þ þ 1�:

A program for phylogenetic network models i507

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

Deleted Text: ()
Deleted Text: respectively
Deleted Text: ()
Deleted Text: ()
Deleted Text: are
Deleted Text: .
Deleted Text: A
Deleted Text: P
Deleted Text: Step
Deleted Text:)
Deleted Text: ,
Deleted Text: ,
Deleted Text: :
Deleted Text: :

Since the Fibonacci numbers Fk satisfy F0 ¼ 1 and F1 ¼ 1 and Fk

¼ Fk�1 þ Fk�2 (k � 2) (Graham et al., 2002), we have the following

inequality:

MðkÞ þ 1 	 Fk 	
1ffiffiffi
5
p 1

2
ð1þ

ffiffiffi
5
p
Þ

� �k

þ 1

2
;

implying that

bðNÞ 	 dlog2MðjRðNÞjÞe 	 log2

1

2
ð1þ

ffiffiffi
5
p
Þ

� �

 jRðNÞj:

The above theorem indicates that Step 3 of our algorithm is exe-

cuted 20:694jRðNÞj times at most on an input network N and a phylo-

genetic tree. Hence, the algorithm has time complexity

O 20:694jRðNÞjjEðNÞjjLðNÞj
� �

.

3.3 Performance for a network in the literature
Charlton et al. (2008) reconstructed an ancestral recombination

graph with as many as 32 reticulation nodes over seven taxa to study

the evolution of double-stranded RNA in fungi (Gusfield, 2014, p.

325). We redrew this network (Supplementary Fig. S1) and call it A.

In this subsection, we report b(A, G) for each of the 10 395 possible

phylogenetic trees over the seven taxa.

The distribution of b(A, G) is presented in Table 1. There are

4255 trees consistent with the model A. The effective reticulation

numbers b(A, G) for these trees vary from 4 to 14. However, b(A,

G) for the 6140 trees inconsistent with A ranges narrowly from 10

to 14.

A is bi-combining and has 77 nodes (32 reticulation nodes, 38

tree nodes and 7 leaves). Table 1 shows that for each tree, the effect-

ive reticulation number is less than 32/2. Hence, based on our theor-

etical analysis, the program is roughly 851 (¼ 216=77) times as fast

as the naı̈ve approach.

3.4 Performance for random networks
To evaluate our program, we ran the program over thousands of

phylogenetic trees and networks with 5–30 leaves on a cluster with

32 GB RAM and 8 cores. On one hand, since the spaces of trees and

networks with 10 or more leaves are both huge, it was very hard to

have unbiased evaluation. For instance, for many random networks

over 20–30 leaves generated by a computer, it is impossible to run

our program on every tree against each of them. On the other hand,

since there were only a small fraction of random trees displayed in

each generated random network, our program finished very quickly

for most trees. Additionally, it is impossible to run the naı̈ve method

on a network with 30 reticulation nodes on any computer currently.

These facts prevented us to have a clear picture of our program’s

performance on the entire spaces of trees and networks.

Here, we report the performance of our program on five groups

of random networks with seven leaves. Each group contained 18

random networks generated by a computer program designed by the

last author’s group. The networks in the kth group had 5ð1þ kÞ re-

ticulation nodes, for each k from one to five. The percentages of the

trees in the entire tree space with the same effective reticulation

numbers were calculated and summarized in Figure 5. There are 10

395 phylogenetic trees with seven leaves.

We obtained several facts about our test. For all but four net-

works, over 90% of phylogenetic trees had an effective reticulation

number of seven or less. There was a network with 20 reticulation

nodes for which about 95% of phylogenetic trees had the effective

reticulation number of 9 (represented by the orange bar in the mid-

dle). For the rightmost network with 30 reticulation nodes, almost

every tree had an effective reticulation number of 9 or more. These

facts strongly suggest that the effective reticulation number is at

most half the number of reticulation nodes in the network for each

tree and each network.

In terms of CPU time, the whole test on 5
 18
 10; 395

network-tree pairs took 18 h and 38 min, implying the program

took 7.2 cs on an average for each network-tree pair.

4 Conclusion

The TCP is one of the important problems in the verification of

phylogenetic models. This problem was surprisingly proved to be

solvable in quadratic time for reticulation-visible networks recently

(Gunawan et al., 2016). In this work, we have implemented a fast

program for solving the TCP for arbitrary networks by taking ad-

vantage of the techniques developed in that work.

The program can be straightforwardly extended to measure the

difference of two networks by identifying phylogenetic trees that are

in one but not in the other (Huson et al., 2011). The program and

its extensions will be integrated into the freely available

Table 1. The distribution of b(A, G) in the space of phylogenetic

trees over the same set of taxa as A

No. of trees consistent with A No. of inconsistent trees

4 63

5 561

6 278

7 544

8 411

9 478

10 659

11 766 40

12 433 416

13 62 5352

14 322

Each entry is the number of trees with b(A, G) being equal to the corres-

ponding number in the first column.

Fig. 5. Summary of the performance of the program. The data were collected

from our test on 90 random networks with seven leaves, which were divided

into five groups. Each group contained 18 networks with the same number of

reticulation nodes, arranged roughly in increasing order of the smallest ef-

fective reticulation number in a row along the X-axis. The five groups were

arranged from left to right in increasing order of the number of reticulation

nodes. Each of the stacked bars in a column represents the percentage of

trees that had the same effective reticulation number when the program ran

on them against the corresponding network

i508 A.D.M.Gunawan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

Deleted Text:)
Deleted Text: :
Deleted Text:)
Deleted Text: page
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw467/-/DC1
Deleted Text: ,
Deleted Text: to
Deleted Text: Since
Deleted Text: to
Deleted Text: ran
Deleted Text: -
Deleted Text: ,
Deleted Text: ours
Deleted Text: utes
Deleted Text: enti
Deleted Text: econds
Deleted Text:)
Deleted Text:)

Dendroscope software (Huson et al., 2007). Doubtless, they are

valuable for application of networks in evolutionary genomics.

Acknowledgements

We thank Daniel Huson for helpful discussion on different issues of the verifi-

cation of evolutionary network models and anonymous reviewers for helpful

comments on the first submission. We also thank Philippe Gambette for creat-

ing an on-line tool for drawing networks. The tool was extremely useful for

debugging our program.

Funding

The Singapore Ministry of Education Academic Research Fund MOE2014-

T2-1-155.

Conflict of Interest: none declared.

References

Bordewich,M. and Semple,C. (2015) Reticulation-visible networks. Adv.

Appl. Math., 78, 114–141 arXiv:1508.05424

Cardona,G. et al. (2009) Comparison of tree-child phylogenetic networks.

IEEE-ACM Trans. Comput. Biol. Bioinform., 6, 552–569.

Chan,J.M. et al. (2013) Topology of viral evolution. Proc. Natl. Acad. Sci.

U.S.A., 110, 18566–18571.

Charlton,N.D. et al. (2008) Phylogenetic relatedness of the M2 double-

stranded RNA in Rhizoctonia fungi. Mycologia, 100, 555–564.

Doolittle,W.F. (1999) Phylogenetic classification and the universal tree.

Science, 248, 2124–2128.

Gambette,P. et al. (2015) Solving the tree containment problem for genetically

stable networks in quadratic time. In: Proceedings of 19th Annual

International Conference on Research in Computational Molecular

Biology, Springer, Berlin, Germany, pp. 96–107.

Graham,R.L. et al. (2002) Concrete Mathematics, Pearson Education,

Reading, USA.

Gunawan,A.D.M. et al. (2016) Locating a tree in a reticulation-visible net-

work in cubic time. In Proceedings of the 20th Annual International

Conference on Research in Computational Molecular Biology, Los Angeles,

USA, pp. 266. The journal version is available online: arXiv:1603.08655.

Gusfield,D. (2014) ReCombinatorics: The Algorithmics of Ancestral

Recombination Graphs and Explicit Phylogenetic Networks. MIT Press,

Cambridge, USA.

Huber,K.T. et al. (2015) How much information is needed to infer reticulate

evolutionary histories? Syst. Biol., 64, 102–111.

Huson,D. et al. (2007) Dendroscope: an interactive viewer for large phylogen-

etic trees. BMC Bioinformatics, 22, 460.

Huson,D.H. et al. (2011) Phylogenetic Networks: Concepts, Algorithms and

Applications. Cambridge University Press, Cambridge, UK.

Kanj,I.A. et al. (2008) Seeing the trees and their branches in the network is

hard. Theor. Comput. Sci., 401, 153–164.

Koblmüller,S. et al. (2007) Reticulate phylogeny of gastropod-shell-breeding

cichlids from Lake Tanganyika: the result of repeated introgressive hybrid-

ization. BMC Evol. Biol., 7, 7.

Moret,B.M.E. et al. (2004) Phylogenetic networks: modeling, reconstructibil-

ity, and accuracy. IEEE-ACM Trans. Comput. Biol. Bioinform., 1, 13–23.

Nakhleh,L. (2013) Computational approaches to species phylogeny inference

and gene tree reconciliation. Trends Ecol. Evol., 28, 719–728.

Parida,L. (2010) Ancestral recombinations graph: a reconstructability perspec-

tive using random-graphs framework. J. Comput. Biol., 17, 1345–1370.

Song,Y.S. et al. (2005) Efficient computation of close lower and upper bounds

on the minimum number of recombinations in biological sequence evolu-

tion. Bioinformatics, 21, i413–i422.

Treangen,T.J. and Rocha,E.P. (2011) Horizontal transfer, not duplication,

drives the expansion of protein families in prokaryotes. PLoS Genet., 7,

e1001284.

van Iersel,L., Semple,C., Steel,M. (2010a) Locating a tree in a phylogenetic

network. Inform. Process. Lett., 110, 1037–1043.

van Iersel,L. et al. (2010b) Phylogenetic networks do not need to be complex:

using fewer reticulations to represent conflicting clusters. Bioinformatics,

24, i124–i131.

Wang,L. et al. (2001) Perfect phylogenetic networks with recombination.

J. Comp. Biol., 8, 69–78.

Yu,Y. et al. (2014) Maximum likelihood inference of reticulate evolutionary

histories. Proc. Natl. Acad. Sci. USA., 111, 16448–16453.

Zhang,L.X. (2016) On tree-based phylogenetic networks. J. Comput. Biol.,

23, 553–565.

A program for phylogenetic network models i509

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

Deleted Text:)

Appendix

A Proof of Theorem 2.1

For convenience, we simply set s ¼ sGðrÞ and d ¼ dGðrÞ.
(i) The fact is equivalent to that if N displays G, then d 	 s.

Assume that N displays G. By definition, a subtree history M of N

exists such that G is obtained from M by contracting nodes of inde-

gree and outdegree one. Without loss of generality, we assume the

root of M is the network root, i.e., qðMÞ ¼ qðNÞ.
Since r is visible with respect to ‘, the unique path qðMÞ to ‘ in M

must contain r. G0ðvtþ1Þ is displayed below r. The proof is complete

if s ¼ t þ 1.

If s < t þ 1, by the definition of s, G(s) contains a leaf �‘ 6¼ ‘ such

that r is also visible with respect to �‘. Thus, r is also in the unique

path from qðMÞ to �‘. As the least common ancestor of ‘ and �‘, vs

must be mapped to a node u below r in M. Hence, G0ðvsÞ can be ob-

tained from the substree of M rooted at u by contraction. Hence,

s 	 d. The proof of the fact (i) is completed.

(ii) Assume d 	 s. Note that G0ðvsÞ is a subtree of G0ðvdÞ.
(Sufficiency) Let Nr ¼ N � CðrÞ þ ‘ and Gr ¼ G�G0ðvdÞ þ ‘.
Assume that Nr displays Gr. On one hand, a subtree history Mr of

Nr exists such that Gr can be obtained from Mr by contraction.

On the other hand, since G0ðvdÞ is displayed below r, a subtree

history M00 exists in ½r�N � fcðr0Þ; r0jr0 2 RðNÞ s:t: c0ðrÞ 62 LðG0ðvdÞÞg
from which G0ðvdÞ can be obtained by contraction. Let M0 be the tree

obtained from Mr by replacing the leaf ‘ with M00.

Clearly, M0 is a subtree history of N and G can be obtained from

M0 by contraction. Hence, N displays G.

(Necessity) Assume that a subtree history M0 of N exists from

which G can be obtained by contraction. If qðM0Þ 6¼ qðNÞ, there is a

path from qðNÞ to qðM0Þ consisting of nodes of indegree and outde-

gree one in M0. Without loss of generality, we assume that

qðM0Þ ¼ qðNÞ.
Let vd correspond to a node u 2 VðM0Þ. Since vd is an ancestor of

‘, u is in the path P from qðNÞ to ‘. Since r is visible with respect to

‘, r and its child c(r) are both in the path P. Hence u is either above r

or below c(r), the root of the tree component C(r).

If u is below c(r), by the definition of d, vdþ1 must correspond to

node above c(r) in M0. Let M0
r be the subtree obtained from M0 by

replacing M0ðcðrÞÞ with ‘, where M0ðcðrÞÞ is the subtree rooted at the

unique child c(r) of r. Clearly, M0r is a subtree history of Nr. In add-

ition, Gr can be obtained from M0
r by contraction. The proof is com-

pleted for the case that u is below c(r).

If u is above r and hence strictly above c(r) in M0. Let M00 be the

subtree history of the following subnetwork below r

½r�N � fcðr0Þ; r0jr0 2 RðNÞ such that c0ðrÞ 62 LðG0ðvdÞÞg;

from which G0ðvdÞ can be obtained by contraction. Let Pðu; cðrÞÞ be

the path from u to c(r) in M0. We consider

M ¼M0 �M0ðuÞ þ Pðu; cðrÞÞ þM00;

where M0ðuÞ is the subtree of M0 rooted at u. Clearly G can be ob-

tained from M by contraction. Since M00 corresponds to G0ðvdÞ, the

subtree obtained from M0 �MðuÞ þ Pðu; cðrÞÞ by replacing c(r) with

a leaf labeled with ‘ is a subtree history of Nr from which Gr can be

obtained by contraction. This finishes the proof.

i510 A.D.M.Gunawan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i503/2450798 by guest on 24 April 2024

Deleted Text: :
Deleted Text: P
Deleted Text: p
Deleted Text: .
Deleted Text: A
Deleted Text: :
Deleted Text: :

	btw467-TF1
	app1

