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Abstract

Motivation: To address ‘missing heritability’ issue, many statistical methods for pathway-based ana-

lyses using rare variants have been proposed to analyze pathways individually. However, neglecting

correlations between multiple pathways can result in misleading solutions, and pathway-based analyses

of large-scale genetic datasets require massive computational burden. We propose a Pathway-based ap-

proach using HierArchical components of collapsed RAre variants Of High-throughput sequencing data

(PHARAOH) for the analysis of rare variants by constructing a single hierarchical model that consists of

collapsed gene-level summaries and pathways and analyzes entire pathways simultaneously by impos-

ing ridge-type penalties on both gene and pathway coefficient estimates; hence our method considers

the correlation of pathways without constraint by a multiple testing problem.

Results: Through simulation studies, the proposed method was shown to have higher statistical

power than the existing pathway-based methods. In addition, our method was applied to the large-

scale whole-exome sequencing data with levels of a liver enzyme using two well-known pathway

databases Biocarta and KEGG. This application demonstrated that our method not only identified

associated pathways but also successfully detected biologically plausible pathways for a pheno-

type of interest. These findings were successfully replicated by an independent large-scale exome

chip study.

Availability and Implementation: An implementation of PHARAOH is available at http://statgen.

snu.ac.kr/software/pharaoh/.

Contact:tspark@stats.snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past decade, rapid advances in DNA sequencing technol-

ogy have enabled extensive investigations into human genetic archi-

tecture, especially for the identification of genetic variants

associated with complex traits. In particular, genome-wide associ-

ation studies (GWAS) have identified more than 14 000 single nu-

cleotide variants (SNVs) associated with over 1400 traits, including

Mendelian heritable diseases, common diseases and numerous can-

cers (Bertram et al., 2008; Hindorff et al., 2014; McCarthy et al.,

2008; Seng and Seng, 2008). However, even while the number of de-

tectable genetic variants increases, the proportion of the variance of

complex traits explained by common variants has been generally

very small (Maher, 2008; Manolio et al., 2009). This so-called

‘missing heritability’ problem has continually confounded the pre-

cise role of such identified common genetic variants (Manolio et al.,

2009). Moreover, one potential approach to the missing heritability

issue, the analysis of rare variants, is generally not feasible by

GWAS (Li and Leal, 2008; Wu et al., 2011).

To deal with the sparseness of rare variants, early approaches

simply aggregated multiple rare variants of a gene by the existence

of minor alleles or by summation of minor alleles (Li and Leal,

2008; Price et al., 2010). In contrast, more recent methods seek to

consider biological information, such as linkage disequilibrium, and
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the biological effects of genetic variants, to enhance biological inter-

pretation (Hu et al., 2013; Wu et al., 2011). These approaches have

been useful for identifying statistically significant genes associated

with several complex traits, including high-density lipoprotein lev-

els, obesity, schizophrenia and multiple cancer types (Ahituv et al.,

2007; Brunham et al., 2006; Cohen et al., 2004; Slatter et al., 2008;

Walsh et al., 2008).

Most approaches for identifying rare variants focus mainly on

individual gene analysis. However, it has now been recognized that

a majority of biological behaviors manifest from a complex inter-

action of biological pathways (Costanzo et al., 2010; Hirschhorn,

2009). In this respect, using pathway or gene-set information to ana-

lyze next generation sequencing data has several advantages in ad-

dressing the multiple testing problems and improving biological

interpretation. First, it is possible to dramatically reduce the number

of tests, because tens of millions of SNVs or tens of thousands of

genes are grouped into hundreds of pathways. By grouping such

large numbers of SNVs into pathways, pathway-based analysis is

much less restricted by multiple testing problems, even compared to

gene-based analyses. Second, interpreting statistically significant

pathways can be easier than interpreting individual SNVs or genes.

By analyzing pathway information that associates with biological

processes, components or structures, the underlying bases for biolo-

gical traits can be characterized more intuitively than by examining

individual genes (Khatri et al., 2012; O’Dushlaine et al., 2009).

Moreover, many successful discoveries of pathways that underlie

complex traits have proven the utility of pathway-based analysis

(Askland et al., 2009; International Multiple Sclerosis Genetics

Consortium, 2013; Lesnick et al., 2007). However, these methods

are mainly designed for the analysis of common variants and are not

suitable for analysis of rare variants including the most recent

pathway-level analyses using genetic information such as linkage

disequilibrium or gene-environmental interaction (Lamparter et al.,

2016; Qian et al., 2016).

Recent pathway-based methods for the analysis of rare variants

have extended gene-based analysis methods for rare variants by

aggregating P values from each gene-based test, or extending exist-

ing powerful gene-based tests to pathways (Wu and Zhi, 2013; Yan

et al., 2014; Zhao et al., 2014). For example, the Weighted

Kolmogorov–Smirnov (WKS) method, the Direct Region-Based

(DRB) method (Wu and Zhi, 2013) and Smoothed Functional

Principal Component Analysis (SFPCA) (Zhao et al., 2014) are

approaches that extend pathway-based analyses of GWAS data to

pathway-based analyses of high-throughput sequencing data. The

WKS method, a modification of Gene Set Enrichment Analysis

(GSEA) (Wang et al., 2007), uses the results of single-variant ana-

lysis. Moreover, DRB methods have extended existing gene-based

methods, including the Burden type (Li and Leal, 2008), C-alpha

type (Neale et al., 2011; Wu et al., 2011) and Optimal type (Lee

et al., 2012), to pathway analysis for rare variants.

However, there are several limitations to using current pathway

approaches to identify rare variants. First, a substantial number of

genes are shared by pathways, potentially leading to high correl-

ations between pathways. Thus, neglecting these correlations can re-

sult in misleading solutions. For example, high correlations between

pathways can yield highly correlated results or confound the inter-

pretation of significant pathways (Alexa et al., 2006; Jiang and

Gentleman, 2007; Skarman et al., 2012). Second, the multiple test-

ing problem is another challenge for current pathway-based ana-

lyses. Although the number of pathway-based tests is far less than

that of variant-level or gene-based tests, the required P value thresh-

old by Bonferroni correction is quite small, leading to low statistical

power. In addition, methods using permutation tests suffer from a

heavy computational burden to obtain more precise P values, when

the P value threshold is very small.

In this report, we propose a novel statistical approach for the

analysis of rare variants using pathways, named Pathway-based ap-

proach using HierArchical components of collapsed RAre variants

Of High-throughput sequencing data (PHARAOH). Our method

has several unique distinctive features. First, PHARAOH can exam-

ine associations between a phenotype and entire pathways with a

single model, using collapsed rare variants derived from gene infor-

mation. Using this model, PHARAOH can evaluate effects of path-

ways to the phenotype, in addition to effects of genes to the

phenotype via the pathway. Thus, PHARAOH provides an expan-

sive view of biological processes underlying the trait of interest by

examining entire pathways. Second, PHARAOH can account for

potential correlations between pathways by imposing a ridge pen-

alty on the effects of pathways on a phenotype. PHARAOH also

adds another ridge penalty on the weights of genes to their corres-

ponding pathways, allowing consideration of potential correlations

between genes. In this regard, PHARAOH is a doubly ridge-

regularized method (Hwang, 2009). Although there is a number of

alternative penalization approach such as LASSO (Tibshirani, 1996)

or Elastic-Net (Zou and Hastie, 2005), we choose ridge method as

our first try from its computational efficiency.

Through simulation studies, the proposed method was shown to

have higher statistical power than the existing pathway-based meth-

ods. In addition, using large-scale, whole-exome sequencing data

from a Korean population study of liver enzyme levels, PHARAOH

was compared to several existing pathway-based analyses of genetic

variants, using two well-known pathway databases Biocarta (http://

cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and KEGG

(Kanehisa et al., 2004). These comparisons demonstrated that

PHARAOH not only identified associated pathways, with no need

for multiple comparisons, but also successfully detected biologically

plausible pathways for a phenotype of interest. Furthermore, we de-

veloped the PHARAOH software to provide a graphical display of

pathway-based analysis results, thus allowing for easy and detailed

interpretations. The software is provided in both R and C/Cþþ,

and is freely available at the website (http://statgen.snu.ac.kr/soft

ware/pharaoh/) which provides a detailed and complete instruction

including dataset preparation, parameter selection and result

interpretation.

2 Materials and methods

2.1 PHARAOH method
Let us assume that yj is the jth observation of a specific phenotype in-

dependently following an exponential family distribution

(j¼1,. . .,N). The density function or probability distribution for yj

can be expressed as Equation (1),

pðyj; cj; dÞ ¼ exp ðyjcj � nðcjÞÞ=fðdÞ þ �ðyj; dÞ
� �

(1)

for some known functions n(�), f(�) and �(�). If the dispersion param-

eter d is known, (1) belongs to the exponential family with canonical

parameter cj. In (1), yj is independently distributed with a mean of

mj. The dispersion parameter is assumed to be constant over all ob-

servations (McCullagh and Nelder, 1989, p. 30).

Let gij be the genotype of the ith genetic variant of the jth individ-

ual, which is defined as 0, 1 or 2 by the number of minor alleles.

Since our approach is needed to collapse multiple rare variants into

gene-based summaries with appropriate weights, we define xjkt as
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the collapsed genotype of the tth gene in the kth pathway from the

equation xjkt¼ Ri2Gt
xigij (k¼1,. . .,K; t¼1,. . .,Tk, where K is the

number of pathways and Tk is the number of genes in kth pathway),

and Gt is the set of genetic variants indices in the tth gene and xi is

the predefined weight for the ith variant. For the pre-defined weight,

the PHARAOH software supports both user-defined weight or pre-

viously proposed weighting approaches, such as inverse minor allele

frequency (MAF) (xi ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAFi 1�MAFið Þ

p
, where MAFi is the

MAF of ith variant), or beta-transformed MAF

(xi¼Beta(MAFi;1,25)), as suggested by Wu et al. (2011). In our

study, the beta-transformed MAF was used as a default weight.

We next define each pathway as a weighted composite or com-

ponent of a set of genes. Let wkt denote a weight assigned to xjkt,

leading to the kth pathway. Let b0 denote the intercept and bk denote

the coefficient connecting the kth pathway to the phenotype yj. Let gj

and g(�) denote a linear predictor and a link function, respectively.

We can then specify the relationship between a linear predictor and

a link function as Equation (2),

gj ¼ b0 þ
XK

k¼1

XTk

t¼1

xjktwkt

" #
bk ¼ b0 þ

XK

k¼1

fjkbk ¼
XK

k¼0

fjkbk ¼ gðljÞ

(2)

where fjk ¼ RTk

t¼1xjktwkt indicates the jth observation’s score of the

kth pathway when k>0, and is equal to one when k¼0. If cj¼ gj,

and we have a canonical link; for instance, the identity, logit, log, in-

verse and squared inverse functions are the canonical links for the

normal, binomial, Poisson, gamma and inverse Gaussian distribu-

tions, respectively.

To explain our proposed model, we provide an example in

Figure 1. This exemplary model assumes that a phenotype is nor-

mally distributed and involves three pathways (K¼3), each of

which consists of two genes (Tk¼2). Each pathway is then con-

structed by adding weights to its genes, featured by straight lines;

the pathway, in turn, influences a phenotype, signified by single-

headed arrows. When the phenotype is continuous (or normally dis-

tributed), this model can be viewed as a special type of structural

equation model known as extended redundancy analysis (Desarbo

et al., 2013; Hwang et al., 2013; Takane and Hwang, 2005), in

which all latent variables are equivalent to components of observed

variables (e.g. genes), and serve as exogenous variables that affect a

single endogenous and an observed variable (e.g. a phenotype).

Nonetheless, the proposed method is built on the framework of

generalized linear models (GLM) (McCullagh and Nelder, 1989;

Nelder and Wedderburn, 1972), to accommodate phenotype data

arising from a variety of exponential-family distributions.

Furthermore, as shown below, the proposed method aims to address

the issue of multicollinearity in parameter estimation, which is likely

to be present among both genes and pathways.

To estimate parameters, we seek to maximize a penalized log-

likelihood function taking the general form of:

u1 ¼
XN
j¼1

log pðyj; cj; dÞ �
1

2
kG

XK

k¼1

XTk

t¼1

w2
kt �

1

2
kP

XK

k¼0

b2
k: (3)

with respect to wkt and bk, subject to the conventional scaling con-

straint RN
i¼1f 2

jk ¼ N (Takane and Hwang, 2005), where kG and kP are

ridge parameters for gene and pathway, respectively. This optimiza-

tion function can be viewed as the L2-norm penalized log-likelihood

(Le Cessie and van Houwelingen, 1992; Lee and Silvapulle, 1988),

where the L2-norm or ridge penalty (Hoerl and Kennard, 1970) is

imposed on both weights and coefficients. The two ridge penalties

are added to address potential multicollinearity in both genes and

pathways, which can adversely affect the estimation of weights and

coefficients.

Let wk¼ wk1; . . . ;wkTk

� �0
, b¼ [b0, b1, . . ., bK]’ and F¼ [f1, . . ., fN]’,

where fi¼ [1, fj1, . . ., fjK]. Maximizing Equation (3) via iteratively

reweighted least squares (Green, 1984) is equivalent to minimizing the

following penalized least-squares function:

u2 ¼
XN
j¼1

vjðzj �
XK

k¼0

fjk bkÞ2 þ kG

XK

k¼1

XTk

t¼1

w2
kt þ kP

XK

k¼0

b2
k

¼
XN
j¼1

vjðzj � fjbÞ2 þ kG

XK

k¼1

ðwk’wkÞ þ kPðb’bÞ

¼ ðz� FbÞ’Vðz� FbÞ þ kG

XK

k¼1

ðwk’wkÞ þ kPðb’bÞ;

(4)

with respect to wt and b, subject to diag(F’F)¼NI, where V is an N

by N diagonal matrix with elements �j¼ (@lj/@gj)
2/sj, where sj is the

variance function evaluated at mj, and z is an N by 1 vector of the so-

called adjusted response variable with elements zj¼ gjþ (yj � lj)/�j

(McCullagh and Nelder, 1989, Chapter 2).

To minimize Equation (4), we use an iterative algorithm similar

to the alternating regularized least-squares algorithm (Hwang,

2009). However, we still should determine the values of kG and kP

before applying the parameter estimation procedure. We may use k-

fold cross-validation (CV) to decide the values of kG and kP. In our

results, we used the same penalty parameter for both gene and path-

way (i.e. kG¼ kP) for computational efficiency.

For the given ridge estimates of parameters, the asymptotic ap-

proximation to the variances of these parameter estimates cannot be

used directly for obtaining their confidence intervals, because their

biases should be taken in account (Le Cessie and van Houwelingen,

1992). Instead, resampling methods can be used to test the statistical

significance of the estimated effects of all pathways on the pheno-

type, as well as the estimated weights assigned to genes. Although

other resampling methods (e.g. bootstrap or jackknife) can also be

used for examining the statistical significance of the estimates, in the

proposed method, we utilize a permutation test to obtain P values.

By permuting the given phenotype, our method first generates null

distributions of both pathway and gene coefficients in empirical

manner. Then we can get empirical P values of both pathway and

gene from each empirical null distribution.Fig. 1. A schematic diagram of the proposed model
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2.2 Simulation study
To perform simulation, we used well-established simulation data

that was generated under pathway model, Genetic Analysis

Workshop (GAW) 17 dataset for the simulation (Almasy et al.,

2011). In brief, the GAW17 dataset is a simulated dataset consisting

of 697 individuals from 1000 Genomes Project and 24 487 SNVs,

along with 200 replicates of four simulated traits (Q1, Q2, Q4 and

AFFECTED). Among those traits, only Q1 was simulated to be af-

fected by an age factor and 39 SNVs residing in nine genes from the

vascular endothelial growth factor (VEGF) pathway defined by

Ingenuity Pathway Analysis (http://www.ingenuity.com). Other

traits were generated without using pathway information and thus

not considered further in our simulation studies. Since Q1 reflects

combinatorial effect of multiple genes in a pathway, VEGF, we

examined the power of the proposed method by the proportion of

identifying the pathway. First, 21 028 SNVs in 3179 genes from 697

unrelated samples were selected as rare variants by MAF filtering, i.

e. less than 5%. Subsequently, all of the rare variants were collapsed

into genes. Here, MAFs for all rare variants were computed directly

from the data. The names of all the genes were annotated using the

HUGO Gene Nomenclature Committee database. Here, each rare

variant was assigned to a gene if its location was in the gene or

within 10 kilobases 50 or 30 to the transcribed region. For pathway-

gene mapping, we extracted 217 pathways from Biocarta and 186

pathways from KEGG (Kanehisa et al., 2004), and mapped the

genes to the pathways.

2.3 Whole exome sequencing dataset for pathway

discovery
We applied PHARAOH to perform a pathway analysis of whole-

exome sequencing (WES) data from a Korean population study, via

our membership in the Type 2 Diabetes Genetic Exploration by

Next-generation sequencing in multi-Ethnic Samples (T2D-GENES)

Consortium. Specifically, the genomes of 1087 individuals, selected

from the Korean Association REsource (KARE) study (Cho et al.,

2009), were sequenced using the Illumina HiSeq2000 platform

(Illumina, Inc., San Diego, CA, USA). The levels of aspartate amino-

transferase (AST), a liver enzyme, were measured in the morning,

before the first meal of the day. Prior to the analysis, 1046 samples

were chosen after excluding participants taking medications likely

to influence liver enzyme levels. For 1046 participants, 399 729 vari-

ants, mapped to the UCSC hg19 genomic coordination, were re-

tained after a quality control process. Here, the quality control

process was an exclusion of variants with genotype call rates<95%

or Hardy–Weinberg Equilibrium (HWE) test P<10�5. Using 120

807 rare variants with MAF<5%, rare variant collapsing and

pathway-gene mapping were then performed, as in the simulation

study. MAFs for all rare variants were computed directly from the

data. The final datasets consisted of 1190 genes, with 55 978 rare

variants for Biocarta, and 4913 genes, with 216 531 rare variants

for KEGG, respectively. Note that the numbers of genes and variants

per pathway included those shared with other pathways.

2.4 Exome chip dataset for replication of discoveries
To further confirm our discovered pathways in an independent co-

hort, we conducted a replication study using an independent Korean

cohort from the Health Examinee shared control study, a part of the

KoGES population based cohort, initiated in 2001 (Kim et al.,

2011). Among these, 3445 samples were used for the replication

study. Samples were genotyped using the HumanExome BeadChip

v1.1 (Illumina, Inc., San Diego, CA, USA), which contains

approximately 240 000 variants. All samples passed quality control

tests using the following exclusion criteria: a genotype call rate

<99%, excessive heterozygosity and sex inconsistency. The exclu-

sion criterion for variants was as follows: HWE test P<10�6, geno-

type call rates <95% and monomorphic variants. After quality

control, 60 628 variants remained for further analysis. For all par-

ticipants from the cohort, AST was measured identically to the

KARE study. Rare variant collapsing and pathway-gene mapping

were then performed, as in the discovery study. MAFs for all rare

variants were computed directly from the data. Consequently, 517

genes mapped to 210 pathways, and 2391 genes mapped to 186

pathways, were then used in the replication study for Biocarta and

KEGG, respectively.

3 Results

3.1 Comparison of methods using simulation dataset
For the purpose of power comparison, PHARAOH and existing

pathway-based methods, including aforementioned WKS (WKS-

Variant and WKS-MinP) and DRB (Direct-Burden and Direct-

SKAT-o) (Wu and Zhi, 2013), were applied to the GAW17 simu-

lation dataset. We did not include the SFPCA method because it

was proposed for binary traits (Zhao et al., 2014). First, the per-

formance of methods was carried out by comparing empirical

power which is a proportion of VEGF pathway (true causal path-

way in the simulation) P<0.05 from 200 replicates of Q1. For

PHARAOH, the tuning parameters, kG and kP, were chosen based

on five-fold CV using 11 different starting points of ridge param-

eter ranging from 10�2 to 108 on a logarithmic base 10 scale, and

it was fixed to 4000 across simulation study. An analysis time of

PHARAOH was 15 min. As shown in Figure 2, PHARAOH

showed 0.87 of empirical power to detect VEGF pathway, while

those of WKS were only 0.105 and 0.055, respectively. We

excluded the results from DRB since it showed substantial infla-

tion of P values (Supplementary Fig. S1). Notably, PHARAOH

also identified the focal adhesion pathway in 77% of replicates,

since the pathway is a subsequent pathway of VEGF pathway and

the pathway contains five of significantly simulated genes (FLT1,

FLT4, KDR, VEGFA and VEGFC). Second, we generated and

tested another 5000 replicates of Q1 by permuting the first ori-

ginal replicate, to assess type I error. As shown in Table 1, all of

Fig. 2. Empirical powers of simulation dataset using KEGG pathway database.

Empirical power indicates the times of identification among 200 replicates.

(A) Empirical power of top five pathways from PHARAOH. (B) Empirical

power of top five pathways from WKS-Variant. (C) Empirical power of top five

pathways from WKS-MinP
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the methods controlled their type I errors, despite of slight conser-

vative trend of PHARAOH.

Finally, we also performed literature search to investigate empir-

ical powers of other methods to detect VEGF pathway in GAW17

dataset. For the methods using both common rare variants, one

comparison study that compared four extensions of gene-based

methods to pathway-based, using both rare and common variants,

showed that the highest empirical power among them was 0.65 (Uh

et al., 2011). In contrast, another comparison demonstrated up to

0.93 of empirical power (Ngwa et al., 2011). However, since they

considered all of nine causal genes are belong to VEGF pathway,

their assumption contains much more causal genes compared to our

KEGG mapping, as shown above. With reflection of this difference,

a subsequent analysis using PHARAOH with modified VEGF path-

way contains all of significant genes showed 0.935 of empirical

power even without the presence of common variants (data not

shown). Among the methods using only rare variants of GAW17,

only one method could handle joint effects of multiple rare variants

(Hu et al., 2011). Its maximum empirical power for VEGF pathway

was only 0.182, which demonstrates superior performance of

PHARAOH.

3.2 Discovery study using whole exome sequencing

dataset
PHARAOH and the existing methods were applied to a large

Korean population WES dataset (n¼1046) to examine possible as-

sociations between pathways and AST liver enzyme levels in partici-

pants’ serum. AST can be used for determining liver function

abnormalities, in addition to other liver enzymes such as alanine

aminotransferase (ALT) (Huang et al., 2006). As WKS and our

method require phenotype permutation, we generated 1000 and 10

000 permuted replicates of phenotypes for PHARAOH and WKS,

respectively. Following association tests conducted by Cho et al.

(2009), age, sex and area were included as covariates in the pathway

analyses. The chosen k values for AST were 5500 for Biocarta and

9500 for KEGG. The total computing times were 67, 113 and

22 min for PHARAOH, WKS and DRB methods, respectively.

Quantile–quantile plots of the results showed no explicit inflation or

deflation of P values (Fig. 3).

The discovery study using WES dataset using PHARAOH identi-

fied six pathways for Biocarta, and seven pathways for KEGG, at a

5% significance level (Table 2). Significant pathways and their sig-

nificant genes for Biocarta and KEGG are depicted in Figure 4A and

B, respectively. However, none of the existing methods identified

statistically significant pathways after Bonferroni correction at the

5% significance level, as shown in Table 2. The Bonferroni-

corrected P value thresholds were 2.3�10�4 (# pathways¼ 217)

for Biocarta and 2.69�10�4 (# pathways¼186) for KEGG.

The pathways identified by PHARAOH from the discovery study

are reported to have strong biological relevance to the liver. The

pathways linoleic acid metabolism, galactose metabolism, erythro-

cyte differentiation and alpha-hemoglobin stabilizing protein all

relate to liver function. One previous study showed that dietary con-

jugated linoleic acid alleviated non-alcoholic fatty liver disease by

reducing levels of hepatic injury markers in Zucker (fa/fa) rats

(Nagao et al., 2005). Conjugated linoleic acid supplementation also

lowered levels of serum ALT and alkaline phosphatase in Zucker

(fa/fa) rats (Noto et al., 2006). Galactose, a mono saccharide sugar

metabolized primarily in the liver, and galactose elimination cap-

acity, have been widely used for estimating quantitative liver func-

tion (Lindskov, 1982). Two other pathways, erythrocyte

differentiation and alpha-hemoglobin stabilizing protein, were

found to be related to red blood cells (Table 2). Erythrocyte differen-

tiation pathway and Hemoglobin’s Chaperone pathway describe the

process of preventing precipitation of hemoglobin alpha-subunits by

alpha-hemoglobin-stabilizing protein. The liver is a major hemato-

poietic organ during fetal life (Cardier and Barbera-Guillem, 1997).

We next compared the list of identified pathways from

PHARAOH with previous pathway-based analyses of AST and ALT

results from Sookoian and Pirola (2012) (Hereinafter SP). Despite

the use of different pathway databases, we found that the sphingo-

lipid metabolic process was significant in both results (P¼0.038

from PHARAOH and q value¼0.018, where the q value is the false

discovery rate-adjusted P value (Benjamini and Hochberg, 1995)).

Notably, PHARAOH also successfully identified the sphingolipid

pathway, well known to relate to liver diseases (Alexaki et al., 2014;

Table 1. Type 1 errors of PHARAOH, WKS and DRB

Method a¼ 0.05 a¼ 0.01

PHARAOH 0.040 (60.019) 0.0083 (60.008)

WKS-Variant 0.056 (60.028) 0.0156 (60.017)

WKS-MinP 0.049 (60.025) 0.0101 (60.010)

Direct-Burden 0.051 (60.044) 0.0103 (60.017)

Direct-SKAT-o 0.049 (60.043) 0.0105 (60.017)

Fig. 3. Quantile–quantile (QQ) plots for levels of the liver enzyme AST, with

adjustment for covariates. The QQ-plots are provided for PHARAOH, WKS

and DRB, with 95% confidence interval. (A) QQ-plot of PHARAOH using

Biocarta. (B) QQ-plot of PHARAOH using KEGG. (C) QQ-plot of WKS using

Biocarta. (D) QQ-plot of WKS using KEGG. (E) QQ-plot of DRB using Biocarta.

(F) QQ-plot of DRB using KEGG
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Pralhada Rao et al., 2013), thus further supporting our approach.

Moreover, our detection of the glycine-serine and threonine metab-

olism pathways of KEGG concurs with SP that identified three of

four significant genes in those pathways (SHMT2, GCAT and

ALAS1). Moreover, the ALAS1 gene was also statistically signifi-

cant in the Hemoglobin’s Chaperone pathway of Biocarta

(P¼0.002) and the glycine serine and threonine metabolism path-

ways (P¼0.002) of KEGG.

3.3 Replication study using exome chip dataset
In the replication study with an independent Korean population

dataset using exome array (n¼3445), the chosen k values were 245

for Biocarta and 8000 for KEGG. An execution time was 37 min for

Biocarta and 38 min for KEGG. The replication study identified

eight pathways from Biocarta and nine pathways from KEGG

(Table 3). Despite the limited number of rare variants included on

the exome array used in our replication study, we were able to suc-

cessfully replicate the Erythrocyte Differentiation pathway of

Biocarta, and the KEGG pathways glycine-serine and threonine me-

tabolism and glycosaminoglycan biosynthesis. In addition, the insu-

lin signaling pathway was also replicated, despite the differences

between pathway databases. Among the replicated pathways, we

were able to discover a number of associations between the identi-

fied pathways and liver function. The insulin signaling pathway

manifests selective insulin resistance in diabetic mice (Li et al.,

2010). Additionally, a study of the AST values of a high protein diet

suggested that hepatic utilization of glycine-serine and threonine in

the liver varied between fed and starved rats, thus also reflecting the

Fig. 4. Visualizations generated by PHARAOH in the discovery study of AST levels. Outermost rectangles indicate statistically significant genes within significant

pathways, circles represent statistically significant pathways, and center square indicate the phenotype of interest. (A) Result using the Biocarta pathway data-

base and (B) result using the KEGG database

Table 2. Pathways identified by PHARAOH in the discovery study

Pathway DB Pathway

# of mapped

SNVsa

# of mapped

genesb

P values

PHARAOH WKS-Variant WKS-MinP Direct-Burden Direct-SKAT-o

Bio-carta p38 MAPK signaling pathway 1321 47 0.024 0.259 0.735 0.175 0.316

Insulin signaling pathway 806 26 0.034 0.679 0.854 0.734 0.411

Role of Ran in mitotic spindle

regulation

441 18 0.038 0.379 0.264 0.847 1

Hemoglobin’s Chaperone 350 12 0.040 0.176 0.857 0.099 0.17

Erythrocyte differentiation

pathway

354 21 0.042 0.723 0.068 0.222 0.38

EGF signaling pathway 1173 43 0.048 0.546 0.657 0.528 0.76

KEGG Protein export 575 28 0.004 0.04 0.738 0.808 0.479

Glycine, serine and threonine

metabolism

1312 39 0.024 0.127 0.467 0.893 0.589

Other glycan degradation 879 22 0.024 0.978 0.829 0.126 0.166

Glycosaminoglycan

biosynthesis (heparan sulfate)

966 35 0.026 0.773 0.101 0.709 0.387

Linoleic acid metabolism 1180 35 0.026 0.752 0.462 0.648 0.559

Galactose metabolism 1649 43 0.032 0.677 0.033 0.207 0.164

Sphingolipid metabolism 1347 50 0.038 0.829 0.917 0.195 0.195

Pathway names with bold text and underlined text indicate the replicated pathways in the independent dataset and another independent study (Sookoian and

Pirola, 2012), respectively.
aThe number of mapped genetic variants to the pathway.
bThe actual number of genes included in the pathway.
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role of the glycine-serine and threonine pathways in the liver

(Remesy et al., 1983).

4 Discussion

In this study, we developed a novel statistical method for pathway-

based analysis of large-scale genetic data. Using GAW17 simulation

dataset, we have demonstrated substantial empirical power using

PHARAOH, compared to several methods for pathway analysis,

with an appropriate control of type I error. While other methods re-

quire common variants to achieve large empirical power, our

method could achieve higher power without common variants. In

addition, by applying PHARAOH to large-scale WES and exome

chip data, we identified several pathways biologically associated

with levels of AST or overall liver function, in accord with previous

findings (Alexaki et al., 2014; Cardier and Barbera-Guillem, 1997;

Li et al., 2010; Lindskov, 1982; Nagao et al., 2005; Noto et al.,

2006; Pralhada Rao et al., 2013; Remesy et al., 1983; Sookoian and

Pirola, 2012). Generally, it is not straightforward to replicate find-

ings of rare variant analysis (Liu and Leal, 2010), because the com-

position of rare variants can differ in independent datasets.

Nonetheless, we successfully replicated four pathways using an inde-

pendent dataset, representing potential candidates for biological

validation.

Compared to other existing pathway-based tests, our method

has several advantages. First, the proposed method is not restricted

by the multiple testing problem, because PHARAOH fits only a sin-

gle model that considers all pathways of interest, testing the statis-

tical significance of all parameter estimates at once. Although the

number of tests in a pathway-based analysis is much smaller than

that of variant-level or gene-based analysis, its cutoff value of

Bonferroni corrected P value at a 5% significance level was

2.3�10�4 for 217 pathways in Biocarta, making it highly untenable

to reject the null hypothesis. Because it is free from the multiple test-

ing problem, PHARAOH requires substantially smaller numbers of

permutations than other existing permutation-based methods. In

practice, PHARAOH requires at most 1000 permutations at a 5%

significance level, whereas other existing permutation-based meth-

ods require much larger numbers of permutations (e.g. 10 000 or

more) (Kim et al., 2011; Weng et al., 2011).

Second, PHARAOH can accommodate potentially high correl-

ations between pathways, which cannot be efficiently controlled by

other existing methods using a series of single pathway analyses. As

shown by several studies of pathway-based or gene set-based meth-

ods (Alexa et al., 2006; Jiang and Gentleman, 2007; Skarman et al.,

2012), it is necessary to consider correlations between pathways, be-

cause such correlations influence the combined effects of pathways

on the phenotype. Whereas other existing methods adopt an add-

itional step to adjust for the effect caused by overlap between path-

ways, our method seeks to control for correlations between genes in

a specific pathway, as well as correlations between pathways, by

imposing ridge-type penalties on both gene and pathway coefficient

estimates. In addition, the proposed method provides P values not

only for pathway coefficient estimates, but also for gene estimates

per pathway.

Although we identified and addressed a number of issues in this

report, several challenges are still remained. Unlike other methods,

our proposed approach analyzes all pathways simultaneously in

very short time (e.g. several hours). However, the permutation

scheme used to obtain P values increases the time required for an en-

tire analysis. Thus, it would be desirable to extend the proposed

method without heavy permutation, to achieve faster and more ac-

curate computation.

An optimal choice of weight would increase the performance of

PHARAOH. The current default weight is the beta-transformed

MAF in the collapsing of multiple rare variants of specific genes, as

suggested by Wu et al. (2011) for rare variant analysis. However, re-

cent studies suggest that other weighting approaches, based on the

number of informative family members or the predicted functional

effects of variants, can reduce false positive rates and increase statis-

tical power (De et al., 2013; Hu et al., 2013; Shugart et al., 2012;

Sifrim et al., 2013). The application of such weighting variants rep-

resents one possible extension of our future work.

Cross validation for PHARAOH can often be time-consuming

because it considers large combinations of candidate values for the

two penalty parameters for gene and pathway. To reduce computa-

tional burden, we applied cross validation to select only a single

value for the parameters, constraining them to be equal. This may

lead to less optimal values for the parameters. According to our lim-

ited experience, if cross validation is applied to decide the two par-

ameters freely without the equality constraint on the parameters, the

penalty parameter for gene tends to remain the same as the common

penalty parameter obtained under the equality constraint. This may

suggest that if we can derive the penalty value for pathway as a

Table 3. Significant pathways from PHARAOH in the replication study

DB Pathway PHARAOH

Biocarta HIV-I Nef: negative effector of Fas and TNF 0.006

Feeder pathways for glycolysis 0.016

Human cytomegalovirus and map kinase pathways 0.018

Lck/Fyn tyrosine kinases in initiation of TCR Activation 0.022

Erythrocyte differentiation pathway 0.026

NFkB activation by Nontypeable Hemophilus influenza 0.048

Growth hormone signaling pathway 0.049

Influence of Ras and Rho proteins on G1 to S Transition 0.049

KEGG Glycine, serine and threonine metabolism 0.01

Metabolism of xenobiotics by cytochrome P450 0.018

Insulin signaling pathway 0.028

Glycosaminoglycan biosynthesis (keratan sulfate) 0.032

Phenylalanine metabolism 0.036

Tryptophan metabolism 0.044

Pathway names with bold text and underlined text indicate the replicated pathways in the independent dataset using the same pathway database, an independ-

ent dataset and a different pathway database (SP), respectively.
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function of that for gene in some way (e.g. kG¼ckP, where c is a con-

stant), using cross validation with this constraint could be more

computationally efficient. However, a careful investigation into the

feasibility of this approach is warranted.

Although there exist other penalization approaches such as

LASSO (Tibshirani, 1996) or Elastic-Net (Zou and Hastie, 2005),

we choose a ridge method due to its computational efficiency.

Hence, our future work can be an extension of the proposed ap-

proach to the model using different penalizations. Moreover,

PHARAOH can be flexible by allowing pathways and genes to have

their own penalty parameters. We strongly believe that our novel

method will enhance the success of pathway-based analysis using

genetic datasets, thus addressing, at least in part, the problem of

missing heritability.
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