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Abstract

Motivation: The PRED-TMBB method is based on Hidden Markov Models and is capable of predict-

ing the topology of beta-barrel outer membrane proteins and discriminate them from water-

soluble ones. Here, we present an updated version of the method, PRED-TMBB2, with several

newly developed features that improve its performance. The inclusion of a properly defined end

state allows for better modeling of the beta-barrel domain, while different emission probabilities

for the adjacent residues in strands are used to incorporate knowledge concerning the asymmetric

amino acid distribution occurring there. Furthermore, the training was performed using newly de-

veloped algorithms in order to optimize the labels of the training sequences. Moreover, the method

is retrained on a larger, non-redundant dataset which includes recently solved structures, and a

newly developed decoding method was added to the already available options. Finally, the method

now allows the incorporation of evolutionary information in the form of multiple sequence

alignments.

Results: The results of a strict cross-validation procedure show that PRED-TMBB2 with homology

information performs significantly better compared to other available prediction methods. It yields

76% in correct topology predictions and outperforms the best available predictor by 7%, with an

overall SOV of 0.9. Regarding detection of beta-barrel proteins, PRED-TMBB2, using just the query

sequence as input, achieves an MCC value of 0.92, outperforming even predictors designed for this

task and are much slower.

Availability and Implementation: The method, along with all datasets used, is freely available for

academic users at http://www.compgen.org/tools/PRED-TMBB2.

Contact: pbagos@compgen.org

1 Introduction

Beta-barrel outer membrane proteins (OMPs) are localized in the

outer membrane of Gram-negative bacteria and in the outer mem-

branes of plastids and mitochondria. Their membrane-spanning seg-

ments are formed by short amphipathic beta-strands that create a

closed structure resembling a barrel (Schulz, 2003). The difficulty in

obtaining crystals suitable for high-resolution studies of OMPs has

resulted in their under-representation in the Protein Data Bank

(Rose et al., 2013).

Given these difficulties, and because many beta-barrel OMPs at-

tract an increased medical interest, several approaches have been

made towards the development of topology prediction algorithms

for this type of proteins. These methods are based grossly on

hydrophobicity analysis (Zhai and Saier, 2002), statistical prefer-

ences of amino acids (Wimley, 2002), remote homology detection

(Remmert et al., 2009), Hidden Markov Models (Bagos et al.,

2004a, b; Bigelow et al., 2004; Hayat et al., 2016; Martelli et al.,

2002; Savojardo et al., 2013), feed-forward Neural Networks

(Gromiha et al., 2004; Jacoboni et al., 2001) and radial basis func-

tion Neural Networks (Ou et al., 2008, 2010). PRED-TMBB (Bagos

et al., 2004,b,c) was introduced in 2004 and is still one of the most

widely used methods for topology prediction and discrimination of

beta-barrel outer membrane proteins. It was based on a HMM

architecture and was one of the first methods to perform well in

both tasks. To date, BOCTOPUS2 (Hayat et al., 2016), which is the

successor to BOCTOPUS (Hayat and Elofsson, 2012) method, is the
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most accurate in topology predictions. The main improvement in

BOCTOPUS2 is the exploitation of the dyad-repeat pattern of lipid

and pore-facing residues in bacterial beta-barrel proteins. A previ-

ously presented benchmark study of several topology prediction

methods showed that HMMs are the most reliable predictors for

beta-barrels (Bagos et al., 2005). The same also holds for alpha-

helical membrane proteins, as shown in (Viklund and Elofsson,

2004) and (Tsirigos et al., 2015).

Other existing methods aim specifically at the identification of

beta-barrel proteins and discrimination of them from other classes

of proteins in proteome-wide analyses. The most popular are

BetAware (Savojardo et al., 2013), BOMP (Berven et al., 2004), the

Freeman–Wimley beta-Barrel Analyzer (Freeman and Wimley,

2010), HHomp (Remmert et al., 2009), PSORTb (Yu et al., 2010),

SSEA-OMP (Yan et al., 2011), TMB-Hunt (Garrow et al., 2005a,

b), SOSUIgramN (Imai et al., 2008) and TMBETADISC-RBF (Ou

et al., 2008). Some of the aforementioned tools make use of evolu-

tionary information in the form of multiple sequence alignments

(MSAs), which are a bottleneck in large-scale analyses.

Finally, special purpose biological databases that include families

of beta-barrel proteins have also been available to the public. These

include TCDB (Saier et al., 2006), PDBTM (Kozma et al., 2013),

TOPDB (Tusnady et al., 2008), PSORTdb (Yu et al., 2011), OPM

(Lomize et al., 2006) and Mptopo (Jayasinghe et al., 2001), and the

most recent ones, OMPdb (Tsirigos et al., 2011) and TMBB-DB

(Freeman and Wimley, 2012).

Here, we present a new method, PRED-TMBB2, which shows

superior predictive ability over previously developed algorithms.

Apart from the use of a larger training set, this is achieved by incor-

porating some novel features into the model itself, by applying

newly derived decoding algorithms, by using a modified technique

that optimizes the labels of the training sequences and, finally, by

incorporating evolutionary information in the form of MSAs. We

also show that PRED-TMBB2 can efficiently differentiate between

beta-barrel and non-beta-barrel proteins using only single sequences

as input, which makes it ideal for scanning large datasets.

2 Methods

2.1 Training and test set
For training, we initially retrieved all outer membrane proteins with

known three-dimensional structures deposited in PDB (Rose et al.,

2013), using the boundary definitions of the beta strands as de-

posited in the PDBTM database (Kozma et al., 2013). Some non-

canonical beta-barrel structures, such as TolC (Koronakis et al.,

2000), a-hemolysin from Staphylococcus aureus (Song et al., 1996)

and the mycobacterial (Gram-positive) outer membrane channel

MspA (Faller et al., 2004), as well as the mitochondrial porin

(Bayrhuber et al., 2008), were removed from the set.

In the next step, we used the 2nd algorithm of Hobohm et al.

(1992) to remove sequences having more than 30% sequence simi-

larity in a BLAST (Altschul et al., 1997) alignment in a length of

more than 80 residues. This procedure resulted in 49 outer mem-

brane proteins that constitute our final training set. In order to re-

duce the risk of over-training, we further divided the set according

to the family classification of OMPdb (Tsirigos et al., 2011).

OMPdb is based on the Pfam classification (Finn et al., 2016) but in-

cludes additional families of outer membrane proteins that are not

deposited in Pfam. This way, the 49 proteins were divided into 30

families, and each set was used in a strict cross-validation procedure,

where members of one family were removed from the set, the

method was trained using the proteins of the remaining families,

and the whole process was repeated.

Since many of the proteins in our training set were also used in

BOCTOPUS2 training set, we decided to perform our benchmark

using the 42 proteins used for training BOCTOPUS2 (Hayat et al.,

2016) dataset, so that both tools would be evaluated fairly. Out of

the 42 proteins, 28 were already present in PRED-TMBB2’s training

set, whereas, for the remaining 14, we used the cross-validated mod-

els with respect to the corresponding family in which each one

belongs.

For testing PRED-TMMB2 in terms of discriminating capability

between beta-barrel and non-beta-barrel proteins, we used a positive

and a negative dataset. The latter is a non-redundant (20% sequence

similarity) PDB dataset, with 8858 sequences (Freeman and Wimley,

2010). We decided to use the respective full-length sequences (as we

did in the training of PRED-TMBB2) and removed some proteins

that were included more than once and some that were not, in fact,

beta-barrels. We further performed an additional redundancy reduc-

tion at a cut-off of 30% in the full sequences, using CD-HIT (Huang

et al., 2010). We chose to use full sequences in both topology predic-

tion and detection of beta-barrel proteins, since such a procedure

would resemble a real-life situation, where a whole proteome would

be scanned for outer membrane proteins. In the end, 7571 proteins

remained. The positive dataset is comprised of the proteins which

belong to the seed alignments of the 92 families that OMPdb cur-

rently has, on which we performed a redundancy reduction follow-

ing the same principles as for training of PRED-TMBB2. This

procedure left us with 1009 protein sequences, which we consider,

with a good confidence, to be transmembrane beta-barrel proteins.

2.2 The HMM architecture
The HMM architecture consists of three sub-models that correspond

to periplasmic loops, TM beta-strands and extracellular loops and is

similar to the initial model, with several modifications (Fig. 1). First

of all, we explicitly added an end state to the model, which is par-

ticularly useful in correct modeling of the beta-barrel domain. It is

well known that in all the available structures of outer membrane

proteins from Gram-negative bacteria, both N- and C-terminal are

located in the periplasmic space (Schulz, 2003). In the first version

of the method (Bagos et al., 2004b), this feature was partially ex-

ploited by fixing the N-terminal part, whereas now, with the add-

ition of the end state, the same is accomplished for the C-terminal as

well. By allowing transitions to the end state only from states of the

cytoplasmic loops, we achieve better correspondence between the

mathematical formalism of the model and the features of the known

beta-barrels.

Furthermore, we now treat the emission probabilities of the

strands having their N-terminal to the periplasmic space differently

as compared to those having the opposite orientation. This asym-

metry in the distribution of amino acids is something that has been

exploited earlier in HMM prediction methods of beta-barrels

(Bigelow et al., 2004), and has been validated statistically

(Chamberlain and Bowie, 2004; Slusky and Dunbrack, 2013).

Another modification in the emission probabilities was performed in

order to model explicitly the so-called ‘positive-outside rule’, that is,

the preference of positively charged residues to localize in the extra-

cellular loops (Jackups and Liang, 2005).

Finally, the transition probabilities were modified in the periplas-

mic loop with the addition of a self-transitioning state in order to ac-

commodate some recently solved structures with long periplasmic

loops (the initial model allowed periplasmic loops with a maximum
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length of 12 residues). Similarly to the initial model, states that are

believed to possess the same properties, share the same emission

probabilities (Fig. 1). Thus, the HMM is still very parsimonious

since it contains only 171 freely estimated emission probabilities

and 42 freely estimated transitions, yielding a total of 213 free

parameters.

2.3 Algorithms
For training, we used the conditional maximum likelihood (CML)

approach for labeled sequences (Krogh, 1997). The CML approach

has several advantages over traditional maximum likelihood, but it

suffers mainly from two disadvantages: first, it lacks a simple and

globally convergent algorithm for parameter estimation (such as the

Baum–Welch algorithm); and second, it requires good-quality labels

in order to work efficiently. Towards this end, the model was

trained according to a modified gradient descent algorithm which

offers robustness and fast convergence (Bagos et al., 2004a).

Moreover, another improvement consists of redesigning the training

procedure in order to optimize the predictive accuracy as much as

possible. Instead of just using the labeled sequences derived from the

three-dimensional structures, we now performed an extra optimiza-

tion step, re-defining the labels as proposed in (Krogh et al., 2001).

Briefly, a model was initially estimated using the Baum-Welch algo-

rithm for labeled sequences (Krogh, 1994). Afterwards, the labels of

the sequences were deleted in a region flanking three residues in

each direction of the end of a membrane-spanning strand, and pre-

dictions were performed with the Viterbi algorithm using the model

estimated from step 1. The final model was estimated using the

labels derived from step 2 with the modified gradient-descent

method for CML training.

For decoding, apart from the standard Viterbi algorithm

(Forney, 1973) and the N-best decoder (Krogh, 1997), we also con-

sidered the Posterior–Viterbi algorithm (Fariselli et al., 2005) and

the optimal accuracy posterior decoder (OAPD) (Kall et al., 2005),

that both optimize the path derived from the posterior probabilities.

We also evaluated a previously developed dynamic programming al-

gorithm, but the initial results suggested that the optimal accuracy

posterior decoder performs slightly better in all tests (data not

shown). Taking into account the fact that OAPD is also used in the

subsequent steps with the incorporation of information from homo-

logs, the OAPD was chosen as the default decoding method and we

do not report results from other decoders.

Furthermore, we have implemented previously presented ver-

sions of all the above mentioned decoding algorithms that can im-

pose constraints on the prediction arising from any kind of prior

knowledge concerning the protein at hand. For instance, if experi-

mentally derived information regarding the localization of a particu-

lar segment exists, this could be incorporated to the prediction,

outputting better results. This feature is unique among the pre-

dictors of beta-barrel membrane proteins, since until now it was

available only for alpha-helical membrane proteins predictors

(Bagos et al., 2006; Kall et al., 2005; Tusnady and Simon, 2001)

and can be used in various ways. For example, the obvious way is to

provide the user with the option of constraining some part(s) of the

sequence to a predefined localization according to experimentally

derived information (from experiments with antibodies, cysteine-

scanning mutagenesis, proteolysis, gene fusions, etc.). Even though

this practice is widely used for alpha-helical membrane proteins,

there are several cases of outer membrane proteins in which it could

be beneficial as well. Moreover, some outer membrane proteins are

known to possess long N-, and C-terminal regions extending far

away from the transmembrane beta-barrel domain (the OmpA fam-

ily, the Autotransporter family, the Initimin/Invasin family and so

on). These regions contain known Pfam domains that can be used

for imposing constraints, using the modified algorithms described

above. This technique was applied for the first time in alpha-helical

membrane proteins (Bernsel and Von Heijne, 2005), and in order to

use it for outer membrane beta-barrels, we use the Pfam phmm col-

lection from which we have removed the models that we have identi-

fied as characteristic for beta-barrel proteins according to OMPdb.

Each query sequence is scanned using the hmmscan package from

HMMER3 (Eddy, 2011) against these models prior to the actual

submission to the server.

2.4 Multiple sequence alignments
In many protein structure prediction problems, a significant gain in

prediction accuracy can be obtained by incorporating evolutionary

information in the form of multiple sequence alignments (MSAs).

This is also the case for prediction of transmembrane beta-barrels.

The majority of the existing methods use such information in the

form of profiles generated by PSI-BLAST (Altschul et al., 1997).

Since PRED-TMBB was based on standard HMM that uses single

sequences, we used a modified version of the method developed by

K€all and coworkers (Kall et al., 2005). Briefly, given a query se-

quence and a MSA of its homologs, predictions with the single se-

quence method are obtained on each of the homologs. Then, the

predicted labels (I, M and O, for Intracellular, Membrane and Outer

loops, respectively) are mapped on the alignment and averaged for

each position of the query sequence. This creates a ‘posterior label

probability’ (PLP) table for the query sequence that contains infor-

mation from the MSA. In the last step, the OAPD is applied and the

final prediction is obtained.

For finding the homologs and performing the alignments, we

chose to use the jackhmmer program from the HMMER3 package.

jackhmmer finds the homologs and simultaneously performs the

multiple alignment with a sensitivity that is comparable (if not bet-

ter) to PSI-BLAST. We managed to reduce the running time using

OMPdb as a reference database. Thus, a query sequence is first

scanned against the profiles contained in OMPdb and, if a signifi-

cant hit is found, the jackhmmer search is performed only against

the members of the respective family. For a potential newly found

protein (i.e. a protein that does not belong to any known family), a

Fig. 1. Schematic representation of the HMM architecture used in PRED-

TMBB2. Within each sub-model that corresponds to the labels (cytoplasmic,

TM, extracellular), states with the same shading share the same emission

probabilities. B represents the start state and E the end state. In total, the

model contains 62 states with 171 freely estimated emission probabilities and

42 freely estimated transitions, yielding a total of 213 free estimated

parameters
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similar search is performed against the nr90 database. This step can

be time-consuming but we anticipate it will rarely happen.

2.5 Detection of OMPs
We finally investigated the ability of PRED-TMBB2 to discriminate

transmembrane beta-barrels from other classes of proteins (globular

and alpha-helical inner membrane proteins). The initial version of

PRED-TMBB used the length-normalized log-probability of a se-

quence, in order to achieve detection rates at a sensitivity of ap-

proximately 89% (using a small benchmark dataset). Here, we also

used the same metric, but we additionally explored the use of several

other metrics. First of all, we used the log-odds scores derived from

comparing the probability under the model, compared to the prob-

ability of a null model (a single state with emissions derived from

Uniprot (Magrane and Consortium, 2011)). We also used the length

of the sequence, the number of predicted TM strands, the presence

of a signal peptide, the reliability of the prediction and, finally, two

indicator variables; these correspond to a hit in one of the character-

istic non-beta-barrel Pfam domains we identified and to a hit in

OMPdb’s pHMMs in an hmmscan search. The last metric was

chosen since we observed that, in many cases, proteins belonging to

one family of OMPdb have detectable hits in the models of other

families, even though these are with a much lower score as com-

pared to the family’s trusted cut-off. For proteins that belong to a

known family, only the putative second (insignificant) hit was

counted in order to mimic a situation when the predictor will en-

counter a member of a previously unseen family. These eight metrics

were evaluated with logistic regression. In order to avoid over-

fitting, the proteins of the positive test set that belong to a family

with known structure, were submitted to the HMM predictor in a

cross-validation mode (i.e. they were tested using the model that

was built excluding the members of the particular family).

2.6 Evaluation criteria
We used a number of metrics to evaluate PRED-TMBB2; the mod-

el’s accuracy in topology prediction was estimated in a strict family-

wise cross-validation procedure, as described in the Section 2.1

(Training and test set). We evaluated the correctly predicted residues

in a three-state mode (Q3), the segments overlap measure (SOV)

(Zemla, et al., 1999), the number of proteins with correctly deter-

mined topologies and the number of proteins with correctly pre-

dicted number of strands. For all comparisons, we used the

annotated strands present in PDBTM (Kozma et al., 2013) as refer-

ence (i.e. observed transmembrane strands).

Regarding the discrimination performance, PRED-TMBB2,

along with all methods that were evaluated, were tested based in

terms of sensitivity (the proportion of TMBBs positively identified

in the datasets of known TMBBs), specificity (the proportion of

non-TMBBs eliminated in the datasets with known non-TMBBs)

and the Matthews correlation coefficient (MCC), a metric of overall

efficiency of a prediction algorithm (Matthews, 1975). In cases like

constrained predictions, or detection of beta-barrels, another useful

metric that was employed was the reliability of the prediction, as

described in Melen et al. (2003).

3 Results

In Table 1, we present the cross-validated results on the training

dataset, both for the single- and the multi-sequence version of

PRED-TMBB2. The results clearly show that the incorporation of

evolutionary information increases the prediction accuracy greatly.

Out of the 49 proteins, PRED-TMBB2 predicts the correct topology

in 78% of them, whereas it manages to predict the correct number

of strands in most of the proteins (94%).

We also tried to estimate the contribution of the changes in the

model architecture, so we compared PRED-TMBB2 with and with-

out evolutionary information against the old version of PRED-

TMBB on the training set. For the same task, we also used the old

model and performed a retraining, in order to evaluate the impact of

the larger dataset alone. The experimentation was performed in the

self-consistency phase and, after the model architecture and the

other settings were chosen, we evaluated the performance in the

cross-validation. The incorporation of information from homologs

resulted in a significant increase in all measures (Q3, SOV and cor-

rectly predicted topologies) even for the old predictor.

The larger training set alone resulted in no significant increase of

Q3 and SOV, but improved the number of correctly predicted topol-

ogies. The changes in the model architecture were proven to be

beneficial in all measures. As shown in Figure 2, by combining all

the enhancements (larger set, modifications in model architecture

and use of alignments), PRED-TMBB2 achieved the highest per-

formance in all measures, thus justifying our choice.

The benchmark results on the cross-validation set and the com-

parison against the other predictors (on the BOCTOPUS2 dataset of

42 proteins) are shown in Table 2. Even from the results of the

cross-validation test, it is obvious that PRED-TMBB2 performs sig-

nificantly better than the previous version of the method (PRED-

TMBB), and also better compared to other available methods.

BOCTOPUS2 ranks second in the comparison in terms of number of

correctly predicted topologies by 7%, but is better than PRED-

TMBB2 in terms of Q3 and SOV. The performance of all other

methods is much lower, even though they actually contain some of

the proteins in their training sets.

PRED-TMBB2 performs also very well in discriminating OMPs

from globular and alpha-helical transmembrane proteins. The key

advantage of PRED-TMBB2 compared to other methods that can

Table 1. Cross-validated results on the training dataset (49

proteins)

Method Q3 Correct #TM Correct top SOV

PRED-TMBB2-MSA 0.880 46 38 0.900

PRED-TMBB2-single 0.850 31 19 0.828

Fig. 2. The comparison of PRED-TMBB, PRED-TMBB retrained and PRED-

TMBB2, with and without evolutionary information. The version of PRED-

TMBB2 which combines all enhancements (larger set, modifications in model

architecture and use of alignments) achieved the highest performance in all

measures (Q3, SOV and correctly predicted topologies). The most remarkable

improvement is in the fraction of correctly predicted topologies
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discriminate OMPs is that it does that with a very high accuracy and

without the need for homologous proteins. After all, the inclusion of

MSAs benefits mainly the topology prediction and not the classifica-

tion process. Using the eight metrics described earlier, a logistic re-

gression classifier achieves 91.87% sensitivity and 99.14%

specificity on the 1009 OMPs from OMPdb (positive set) and the

7571 non-OMPs from the set of Wimley (negative set), resulting in a

MCC value of 0.92. These results are much better compared to all

currently available methods used for detection of OMPs (Table 3),

both the single-sequence- and the multiple-sequence-based ones,

with the exceptions of HHomp and BOCTOPUS2, which, however,

are the slowest of all methods and cannot be used to scan entire

proteomes.

Our method is capable of correctly excluding non-OMPs with

high reliability, something that is desirable in proteome-wide appli-

cations. There are also cases of programs that show high success

rates for one measurement at the expense of the other; for example

BetAware has a very high specificity but its sensitivity is quite low.

The opposite goes for PROFtmb which ranks last in excluding non-

beta-barrel proteins in our benchmark but has a very high sensitivity

for beta-barrel proteins. All in all, PRED-TMBB2 shows the best

balance between sensitivity and specificity, without the need for ob-

taining a MSA. This allowed our method to scan all 8580 sequences

in a couple of hours on our server, using just 1 processor out of the

20, whereas HHomp and BOCTOPUS2 required almost a whole

month each in order to run on the same machine using all available

processors.

It is important to state here that the ‘blind’ (cross-validated) test

presented on the discrimination table for PRED-TMBB2 will rarely

be used due to the regular Pfam and OMPdb updates. This way, if

the sequence at hand has a significant hit in one of the collection of

characteristic beta-barrel models, it is automatically assigned as

being a beta-barrel protein (thus the actual sensitivity would be actu-

ally 100%).

For testing the newly developed method in the presence of ex-

perimentally derived information, we also used several outer mem-

brane proteins with reliable experimental information derived from

the literature as test cases. We decided to focus on proteins that do

not have a determined 3D-structure and belong to a family with no

known structure. Such proteins include the MOMP of C. trachoma-

tis (Findlay et al., 2005; Yen et al., 2005), HopE of H. pylori (Bina

et al., 2000) and PorT of P. gingivalis (Nguyen et al., 2009). It is of

importance to note here that, in such cases, we cannot evaluate the

prediction directly, but we can draw useful conclusions (indirectly)

from the reliability score. Of course, this would only be the case if

PRED-TMBB2 does not predict the topology accurately without the

use of experimental information. We have to note here, that the re-

spective publications informed us about the location of specific resi-

dues in the sequence with respect to the membrane, i.e. the full

topology was not known. Thus, we initially tested whether PRED-

TMBB2 and BOCTOPUS2 could assign the correct localization to

the residues with experimentally determined topology and after-

wards, whether PRED-TMBB2 could obtain more reliable overall

predictions by incorporating this information.

The three proteins (PorT, MOMP and HopE), were submitted to

a blind prediction using PRED-TMBB2 and subsequently the same

was done incorporating the available experimental information and

information for signal peptides. As we can observe in Table 4,

PRED-TMBB2 and BOCTOPUS2 predict the same number of TM

strands for two out of the three proteins. Interestingly,

BOCTOPUS2 fails to predict any TM segments in the case of

MOMP and classifies it as a non-beta-barrel protein (Table 4).

When the experimental information is taken into account, the pre-

dicted location of the TM strands by PRED-TMBB2 changes for

MOMP and HopE, whereas the reliability is increased for all of

them. BOCTOPUS2 predicts the correct localization of the experi-

mentally verified segments only for PorT protein. We need to men-

tion that, prior experimental information could not aid the topology

prediction in the case of BOCTOPUS2, since this method cannot

perform constrained predictions like PRED-TMBB2.

4 Discussion

We presented a HMM-based method (PRED-TMBB2) that is able

to predict the topology of transmembrane beta-barrels and discrim-

inate them from other proteins with improved accuracy. During the

development of PRED-TMBB2, we used new model architecture

and decoding method, while the training was performed using newly

developed algorithms in order to optimize the labels of the training

sequences. The non-redundant dataset used for training includes all

Table 2. Benchmark results on the training dataset of BOCTOPUS2

(42 proteins)

Method Q3 Correct #TM Correct top SOV

PRED-TMBB2-MSA 0.892 39 32 0.905

PRED-TMBB2-single 0.868 22 14 0.840

BOCTOPUS2 0.914 35 29 0.925

PROFtmb (8) 0.840 24 18 0.751

HMM-B2TMR (18) 0.839 25 18 0.783

PRED-TMBB (16) 0.826 21 12 0.678

BetAware (38) 0.851 23 10 0.725

TMBETAPRED-RBF (26) 0.851 19 8 0.559

Denoted in parentheses is the number of proteins (out of 42) that were pre-

sent in the respective training set of each method. PRED-TMBB2 and

BOCTOPUS2 results are reported based on a cross-validation test.

Concerning topology, PRED-TMBB2-MSA performs the best of all methods

tested, while BOCTOPUS2 shows the highest SOV.

Table 3. Benchmark results on the discrimination datasets

Method MSA Sensitivity Specificity MCC

PRED-TMBB2 N 91.87 99.14 0.92

BOMP N 75.22 98.18 0.77

F-W b-Barrel Analyzer N 97.62 90.97 0.72

PSORTb 3.0 N 59.66 98.89 0.70

TMBETADISC-RBF N 88.90 92.22 0.69

SOSUIgramN N 65.11 95.25 0.60

PRED-TMBB (v1) N 69.38 92.27 0.56

TMBHunt N 76.11 89.54 0.55

HHomp Y 97.73 99.95 0.98

BOCTOPUS2 Y 98.12 98.81 0.93

BetAware Y 67.29 99.87 0.80

BOMP-MSA Y 78.20 98.18 0.79

SSEA-OMP Y 96.04 88.57 0.66

PROFtmb Y 98.12 84.97 0.62

PRED-TMBB2 results are reported based on a cross-validation test. For

MSA-based methods, four rounds of PSI-BLAST and an E-value of 10e�3

were used. Other parameters were set to default. For BOCTOPUS2, as stated

in the respective publication, a protein is considered a beta-barrel if at least

three beta strands are predicted. HHomp achieves the highest performance,

while PRED-TMBB2 performs equally good as BOCTOPUS2, however it is

orders of magnitude faster than both of them.
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recent representative 3D-structures. Finally, the method now not

only allows the incorporation of evolutionary information in the

form of multiple alignments, but also the prior knowledge of top-

ology of specific regions in the protein sequence, a feature which is

unique among the beta-barrel predictors.

The results of the strict, family-wise, cross-validation procedure,

showed that PRED-TMBB2 performs significantly better than other

available prediction methods. We evaluated all currently available

methods for both topology prediction as well as for detection of

beta-barrel proteins, where PRED-TMBB2 was compared even

against predictors designed specifically for this task. One additional

advantage of PRED-TMBB2 is the fact that it operates in single-

sequence mode and thus can be used effectively to scan entire prote-

omes in a reasonable time even with the use of a personal computer,

which is practically impossible for methods based on multiple align-

ments. Finally, we showed that the incorporation of experimental

information (which up to now was only possible for alpha-helical

TM proteins), can be valuable in newly discovered proteins.

The method, along with the datasets used for training and test-

ing, is freely available for academic users at http://www.compgen.

org/tools/PRED-TMBB2. The server can accept either one protein

sequence at a time, when using the MSA-based version of the tool,

or a batch submission in single-sequence mode. There is also the op-

tion of including signal peptide prediction [using the PRED-TAT

(Bagos et al., 2010) algorithm] as well as prior screening of the input

sequence(s) with the collection of Pfam domains, which are charac-

teristic for beta-barrel and non-beta-barrel regions. Finally, the user

can specify the topology for certain parts of the query sequence and

perform constrained predictions. We plan to make PRED-TMBB2

source code available for download in the near future.

Acknowledgements

The authors gracefully acknowledge NGP-net COST Action (BM1405) for

support and the four anonymous reviewers for valuable comments that im-

proved the quality of the manuscript.

Funding

This study was supported by from the Swedish Research Council (VR-NT

2012-5046 to A.E.) and from SeRC (the Swedish E-science Research

Community).

Conflict of Interest: none declared.

References

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Bagos,P.G. et al. (2004a) Faster gradient descent conditional maximum likeli-

hood training of hidden Markov models, using individual learning rate

adaptation. In Paliouras, G. and Sakakibara, Y. (eds), ICGI 2004, LNAI.

Spinger-Verlag, Athens, pp. 40–52.

Bagos,P.G. et al. (2005) Evaluation of methods for predicting the topology of

beta-barrel outer membrane proteins and a consensus prediction method.

BMC Bioinformatics, 6, 7.

Bagos,P.G. et al. (2006) Algorithms for incorporating prior topological information

in HMMs: application to transmembrane proteins. BMC Bioinformatics, 7, 189.

Bagos,P.G. et al. (2004b) A hidden Markov model method, capable of pre-

dicting and discriminating beta-barrel outer membrane proteins. BMC

Bioinformatics, 5, 29.

Bagos,P.G. et al. (2004c) PRED-TMBB: a web server for predicting the top-

ology of beta-barrel outer membrane proteins. Nucleic Acids Research, 32,

W400–W404.

Bagos,P.G. et al. (2010) Combined prediction of Tat and Sec signal peptides

with hidden Markov models. Bioinformatics, 26, 2811–2817.

Bayrhuber,M. et al. (2008) Structure of the human voltage-dependent anion

channel. Proc. Natl. Acad. Sci. USA, 105, 15370–15375.

Bernsel,A. and Von Heijne,G. (2005) Improved membrane protein topology

prediction by domain assignments. Protein Sci., 14, 1723–1728.

Berven,F.S. et al. (2004) BOMP: a program to predict integral beta-barrel

outer membrane proteins encoded within genomes of Gram-negative bac-

teria. Nucleic Acids Res., 32, W394–W399.

Bigelow,H.R. et al. (2004) Predicting transmembrane beta-barrels in prote-

omes. Nucleic Acids Res., 32, 2566–2577.

Bina,J. et al. (2000) Functional expression in Escherichia coli and membrane

topology of porin HopE, a member of a large family of conserved proteins

in Helicobacter pylori. J. Bacteriol., 182, 2370–2375.

Chamberlain,A.K. and Bowie,J.U. (2004) Asymmetric amino acid compos-

itions of transmembrane beta-strands. Protein Sci., 13, 2270–2274.

Eddy,S.R. (2011) Accelerated Profile HMM Searches. PLoS Comput. Biol., 7,

e1002195.

Faller,M. et al. (2004) The structure of a mycobacterial outer-membrane chan-

nel. Science, 303, 1189–1192.

Fariselli,P. et al. (2005) A new decoding algorithm for hidden Markov models

improves the prediction of the topology of all-beta membrane proteins.

BMC Bioinformatics, 6 Suppl 4, S12.

Findlay,H.E. et al. (2005) Surface expression, single-channel analysis and

membrane topology of recombinant Chlamydia trachomatis major outer

membrane protein. BMC Microbiol., 5, 5.

Finn,R.D. et al. (2016) The Pfam protein families database: towards a more

sustainable future. Nucleic Acids Res., 44, D279–D285.

Forney,G.D. (1973) The Viterbi algorithm. Proc. IEEE, 61, 268–227.

Freeman,T.C Jr. and Wimley,W.C. (2010) A highly accurate statistical ap-

proach for the prediction of transmembrane beta-barrels. Bioinformatics,

26, 1965–1974.

Freeman,T.C Jr. and Wimley,W.C. (2012) TMBB-DB: a transmembrane beta-

barrel proteome database. Bioinformatics, 28, 2425–2430.

Garrow,A.G. et al. (2005a) TMB-Hunt: a web server to screen sequence sets

for transmembrane beta-barrel proteins. Nucleic Acids Res., 33,

W188–W192.

Garrow,A.G. et al. (2005b) TMB-Hunt: an amino acid composition based

method to screen proteomes for beta-barrel transmembrane proteins. BMC

Bioinformatics, 6, 56.

Gromiha,M.M. et al. (2004) Neural network-based prediction of transmem-

brane beta-strand segments in outer membrane proteins. J. Comput. Chem.,

25, 762–767.

Hayat,S. and Elofsson,A. (2012) BOCTOPUS: improved topology prediction

of transmembrane beta barrel proteins. Bioinformatics, 28, 516–522.

Table 4. Results of the blind test in the three selected OMPs

Protein (Uniprot) PRED-TMBB2 (TM/Correct/Reliability) PRED-TMBB2EXP (TM/Correct/Reliability) BOCTOPUS2 (TM/Correct)

PorT (F5HG90) 8/YES/0.836 8/YES/0.889 8/YES

MOMP (Q46409) 12/NO/0.839 12/YES/0.895 0/NO

HopE (Q9ZLD5) 8/NO/0.844 8/YES/0.869 8/NO

We used PRED-TMBB2 in MSA-mode; here, PRED-TMBB2EXP denotes the predictions obtained by incorporating experimental information. For both meth-

ods, we report the number of predicted TM strands and whether the location of the experimentally verified segments is correctly predicted or not. For PRED-

TMBB2, we additionally report the reliability of the prediction.

i670 K.D.Tsirigos et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i665/2450774 by guest on 25 April 2024

http://www.compgen.org/tools/PRED-TMBB2
http://www.compgen.org/tools/PRED-TMBB2
Deleted Text: (
Deleted Text: )


Hayat,S. et al. (2016) Inclusion of dyad-repeat pattern improves topology pre-

diction of transmembrane beta-barrel proteins. Bioinformatics, 32,

1571–1573.

Hobohm,U. et al. (1992) Selection of representative protein data sets. Protein

Sci., 1, 409–417.

Huang,Y. et al. (2010) CD-HIT Suite: a web server for clustering and compar-

ing biological sequences. Bioinformatics, 26, 680–682.

Imai,K. et al. (2008) SOSUI-GramN: high performance prediction for sub-

cellular localization of proteins in gram-negative bacteria. Bioinformation,

2, 417–421.

Jackups,R Jr. and Liang,J. (2005) Interstrand pairing patterns in beta-barrel

membrane proteins: the positive-outside rule, aromatic rescue, and strand

registration prediction. J. Mol. Biol., 354, 979–993.

Jacoboni,I. et al. (2001) Prediction of the transmembrane regions of beta-

barrel membrane proteins with a neural network-based predictor. Protein

Sci., 10, 779–787.

Jayasinghe,S. et al. (2001) MPtopo: a database of membrane protein topology.

Protein Sci., 10, 455–458.

Kall,L. et al. (2005) An HMM posterior decoder for sequence feature predic-

tion that includes homology information. Bioinformatics, 21, i251–i257.

Koronakis,V. et al. (2000) Crystal structure of the bacterial membrane protein

TolC central to multidrug efflux and protein export. Nature, 405, 914–919.

Kozma,D. et al. (2013) PDBTM: Protein Data Bank of transmembrane pro-

teins after 8 years. Nucleic Acids Res., 41, D524–D529.

Krogh,A. (1994) Hidden Markov models for labelled sequences. Proceedings of

the12th IAPR International Conference on Pattern Recognition, pp. 140–144.

Krogh,A. (1997) Two methods for improving performance of an HMM and

their application for gene finding. Proc. Int. Conf. Intell. Syst. Mol. Biol., 5,

179–186.

Krogh,A. et al. (2001) Predicting transmembrane protein topology with a hid-

den Markov model: application to complete genomes. J. Mol. Biol., 305,

567–580.

Lomize,M.A. et al. (2006) OPM: orientations of proteins in membranes data-

base. Bioinformatics, 22, 623–625.

Magrane,M. and Consortium,U. (2011) UniProt Knowledgebase: a hub of

integrated protein data. Database, 2011, bar009.

Martelli,P.L. et al. (2002) A sequence-profile-based HMM for predicting and

discriminating beta barrel membrane proteins. Bioinformatics, 18 Suppl 1,

S46–S53.

Matthews,B.W. (1975) Comparison of the predicted and observed secondary

structure of T4 phage lysozyme. Biochim. Biophys. Acta, 405, 442–451.

Melen,K. et al. (2003) Reliability measures for membrane protein topology

prediction algorithms. J. Mol. Biol., 327, 735–744.

Nguyen,K.A. et al. (2009) Verification of a topology model of PorT as an inte-

gral outer-membrane protein in Porphyromonas gingivalis. Microbiology,

155, 328–337.

Ou,Y.Y. et al. (2010) Prediction of membrane spanning segments and top-

ology in beta-barrel membrane proteins at better accuracy. J. Comput.

Chem., 31, 217–223.

Ou,Y.Y. et al. (2008) TMBETADISC-RBF: discrimination of beta-barrel

membrane proteins using RBF networks and PSSM profiles. Comput. Biol.

Chem., 32, 227–231.

Remmert,M. et al. (2009) HHomp–prediction and classification of outer mem-

brane proteins. Nucleic Acids Res., 37, W446–W451.

Rose,P.W. et al. (2013) The RCSB Protein Data Bank: new resources for re-

search and education. Nucleic Acids Res., 41, D475–D482.

Saier,M.H., Jr. et al. (2006) TCDB: the Transporter Classification Database

for membrane transport protein analyses and information. Nucleic Acids

Res., 34, D181–D186.

Savojardo,C. et al. (2013) BETAWARE: a machine-learning tool to detect and

predict transmembrane beta-barrel proteins in prokaryotes. Bioinformatics,

29, 504–505.

Schulz,G.E. (2003) Transmembrane beta-barrel proteins. Adv. Protein Chem.,

63, 47–70.

Slusky,J.S. and Dunbrack,R.L. Jr. (2013) Charge asymmetry in the proteins of

the outer membrane. Bioinformatics, 29, 2122–2128.

Song,L. et al. (1996) Structure of Staphylococcal alpha-hemolysin, a hepta-

meric transmembrane pore. Science, 274, 1859–1865.

Tsirigos,K.D. et al. (2011) OMPdb: a database of {beta}-barrel outer mem-

brane proteins from Gram-negative bacteria. Nucleic Acids Res., 39,

D324–D331.

Tsirigos,K.D. et al. (2015) The TOPCONS web server for consensus predic-

tion of membrane protein topology and signal peptides. Nucleic Acids Res.,

43, W401–W407.

Tusnady,G.E. et al. (2008) TOPDB: topology data bank of transmembrane

proteins. Nucleic Acids Res., 36, D234–D239.

Tusnady,G.E. and Simon,I. (2001) The HMMTOP transmembrane topology

prediction server. Bioinformatics, 17, 849–850.

Viklund,H. and Elofsson,A. (2004) Best alpha-helical transmembrane protein

topology predictions are achieved using hidden Markov models and evolu-

tionary information. Protein Sci., 13, 1908–1917.

Wimley,W.C. (2002) Toward genomic identification of beta-barrel membrane

proteins: composition and architecture of known structures. Protein Sci.,

11, 301–312.

Yan,R.X. et al. (2011) Outer membrane proteins can be simply identified using

secondary structure element alignment. BMC Bioinformatics, 12, 76.

Yen,T.Y. et al. (2005) Characterization of the disulfide bonds and free cysteine

residues of the Chlamydia trachomatis mouse pneumonitis major outer

membrane protein. Biochemistry, 44, 6250–6256.

Yu,N.Y. et al. (2011) PSORTdb—an expanded, auto-updated, user-friendly

protein subcellular localization database for Bacteria and Archaea. Nucleic

Acids Res., 39, D241–D244.

Yu,N.Y. et al. (2010) PSORTb 3.0: improved protein subcellular localization

prediction with refined localization subcategories and predictive capabilities

for all prokaryotes. Bioinformatics, 26, 1608–1615.

Zemla,A. et al. (1999) A modified definition of Sov, a segment-based measure

for protein secondary structure prediction assessment. Proteins, 34,

220–223.

Zhai,Y. and Saier,M.H. Jr. (2002) The beta-barrel finder (BBF) program,

allowing identification of outer membrane beta-barrel proteins encoded

within prokaryotic genomes. Protein Sci., 11, 2196–2207.

PRED-TMBB2 i671

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i665/2450774 by guest on 25 April 2024


	btw444-TF1
	btw444-TF2
	btw444-TF3

