
Systems biology

Fuse: multiple network alignment

via data fusion
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Abstract

Motivation: Discovering patterns in networks of protein–protein interactions (PPIs) is a central

problem in systems biology. Alignments between these networks aid functional understanding as

they uncover important information, such as evolutionary conserved pathways, protein complexes

and functional orthologs. However, the complexity of the multiple network alignment problem

grows exponentially with the number of networks being aligned and designing a multiple network

aligner that is both scalable and that produces biologically relevant alignments is a challenging

task that has not been fully addressed. The objective of multiple network alignment is to create

clusters of nodes that are evolutionarily and functionally conserved across all networks.

Unfortunately, the alignment methods proposed thus far do not meet this objective as they are

guided by pairwise scores that do not utilize the entire functional and evolutionary information

across all networks.

Results: To overcome this weakness, we propose Fuse, a new multiple network alignment algo-

rithm that works in two steps. First, it computes our novel protein functional similarity scores by

fusing information from wiring patterns of all aligned PPI networks and sequence similarities

between their proteins. This is in contrast with the previous tools that are all based on protein simi-

larities in pairs of networks being aligned. Our comprehensive new protein similarity scores are

computed by Non-negative Matrix Tri-Factorization (NMTF) method that predicts associations be-

tween proteins whose homology (from sequences) and functioning similarity (from wiring pat-

terns) are supported by all networks. Using the five largest and most complete PPI networks from

BioGRID, we show that NMTF predicts a large number protein pairs that are biologically consistent.

Second, to identify clusters of aligned proteins over all networks, Fuse uses our novel maximum

weight k-partite matching approximation algorithm. We compare Fuse with the state of the art mul-

tiple network aligners and show that (i) by using only sequence alignment scores, Fuse already

outperforms other aligners and produces a larger number of biologically consistent clusters that

cover all aligned PPI networks and (ii) using both sequence alignments and topological NMTF-

predicted scores leads to the best multiple network alignments thus far.

Availability and implementation: Our dataset and software are freely available from the web site:

http://bio-nets.doc.ic.ac.uk/Fuse/.
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1 Introduction

Understanding the patterns in molecular interaction networks is of

foremost importance in systems biology, as it is instrumental to

understanding the functioning of the cell (Ryan et al., 2013). A large

number of studies focused on understanding the topology of these

networks (Mitra et al., 2013; Pr�zulj, 2011). Network alignment

started as a pairwise problem: given two networks, aligning them

means finding a node-to-node mapping (called an alignment) be-

tween the networks that groups together evolutionarily or function-

ally related proteins between the networks. These methods

uncovered valuable information, such as evolutionarily conserved

pathways and protein complexes (Kelley et al., 2003; Kuchaiev

et al., 2010), and functional orthologs (Bandyopadhyay et al.,

2006). Finding these allows transfer of information across species,

such as performing Herpes viral experiments in yeast or fly and then

applying the insights towards understanding the mechanisms of

human diseases (Uetz et al., 2006).

The pairwise network alignment problem is computationally in-

tractable due to NP-completeness of the underlying sub-graph iso-

morphism problem (Cook, 1971). Hence, several pairwise network

alignment heuristics have been proposed. Early methods, called

local network aligners, search for small, but highly conserved sub-

networks (Flannick et al., 2006; Kelley et al., 2004; Koyutürk et al.,

2006). As such sub-networks can be duplicated, local network align-

ers often produce one-to-many or many-to-many mappings, in

which a node from a given network can be mapped to several nodes

of the other network. While these multiple mappings can indicate

gene duplications, they are often biologically implausible (Singh

et al., 2007). Hence, global network aligners, which perform an

overall comparison of the input networks and produce one-to-one

mappings between the nodes of the two networks have been intro-

duced [see Clark and Kalita (2014) for the most recent comparison

of pairwise network aligners].

The number of known protein–protein interactions (PPIs)

increased dramatically over the last 2 decades thanks to the techno-

logical advances in high-throughput interaction detection tech-

niques, such as yeast two-hybrid (Ito et al., 2000; Uetz et al., 2000)

and affinity purification coupled to mass spectrometry (Ho et al.,

2002). With the availability of PPI networks of multiple species

came the multiple network alignment problem, where given k net-

works, aligning them means to group together the proteins that are

evolutionarily or functionally conserved between the networks.

Similar to pairwise network alignment, multiple network alignment

can be local or global, with node mappings one-to-one or many-to-

many. As the complexity of the problem grows exponentially with

the number of networks to be aligned, the proposed multiple net-

work alignment algorithms use simple and scalable alignment

schemes. The pioneering multiple network alignment algorithm is

NetworkBLAST (Kalaev et al., 2008; Sharan et al., 2005), which

greedily searches for highly conserved local regions in the alignment

graph constructed from the pairwise protein sequence similarities.

Graemlin (Flannick et al., 2006) produces local multiple network

alignments using a progressive alignment scheme, by successively

performing pairwise alignments of the closest network pairs.

IsoRank (Singh et al., 2008) and its successor IsoRankN (Liao et al.,

2009) are the first multiple network aligners that do not only use

pairwise sequence similarity to guide their alignment processes but

they also take into account the topology (i.e. wiring patterns)

around the two nodes in their corresponding networks to build up

global many-to-many multiple network alignments, using a deriva-

tive of Google’s PageRank algorithm. Smetana (Sahraeian and

Yoon, 2013) also produces global many-to-many multiple network

alignments using both pairwise sequence scores and pairwise topo-

logical scores, which are derived from a semi-Markov random walk

model. While NetCoffee (Hu et al., 2013) does not use topological

information to build its global one-to-one alignment, it is the first

multiple network aligner in which the score for mapping two nodes

does not only depend on the scores in pairs of networks but also on

their conservation across all PPI networks being aligned, by using a

triplet approach similar to the multiple sequence aligner, T-Coffee

(Notredame et al., 2000). Beams (Alkan and Erten, 2014) is a fast

heuristics that constructs global many-to-many multiple network

alignments from the pairwise sequence similarities of the nodes by

using a backbone (seed) extraction and merge strategy. CSRW

(Jeong and Yoon, 2015) follows the Smetana methodology but uses

a context-sensitive random walk model. Finally, Node-

Handprinting (NH) (Radu and Charleston, 2015) produces global

many-to-many multiple network alignments from topological infor-

mation only, by using a progressive alignment heuristic. In the

aforementioned aligners, most of the node mapping scores are local,

in the sense that they only consider the sequence similarity or the

topological similarity of the nodes. The only exception is NetCoffee,

but its global scores are only based on sequence similarity and do

not take into account the topology of the networks.

To overcome these limitations, we propose Fuse, a novel mul-

tiple network alignment method that consists of two parts. In the

first part, we compute novel similarity (association) scores between

proteins by fusing sequence similarities and network wiring patterns

over all proteins in all PPI networks being aligned. Our objective is

to link together proteins whose homology (from their sequence simi-

larity) and functioning similarity (from their wiring patterns in PPI

networks) are supported by all networks. We do this by using non-

negative matrix tri-factorization (NMTF) technique (Wang et al.,

2011), initially used for co-clustering heterogeneous data but re-

cently proposed as a data fusion technique as well. NMTF has dem-

onstrated a great potential in addressing various biological

problems, such as drug-induced liver injuries prediction (�Zitnik and
�Zupan, 2014a), disease association prediction (�Zitnik et al., 2013),

PPI prediction (Wang et al., 2013) and gene function prediction

(Gligorijevi�c et al., 2014; �Zitnik and �Zupan, 2014b). We apply

NMTF on the PPI networks of the five species that have the largest

and the most complete sets of PPIs in BioGRID database (Chatr-

Aryamontri et al., 2013). On this dataset, the fusion process changes

the values of sequence similarities between proteins based on net-

work topologies, so that some of the sequence similarities that

existed before the fusion disappear (about 40% in our experiments),

while a large set of new ones is created by the matrix completion

property of NMTF (Koren et al., 2009). This new set of similar pro-

tein pairs is 13 times larger than the set of sequence-similar protein

pairs due to fusion of sequence information with network topology.

Moreover, the new set of protein pairs has a higher functional con-

sistency (i.e. shared GO terms across the pairs) than the set of pro-

tein pairs found to be similar by sequence alignment. To control the

contribution of topology versus sequence, our final functional simi-

larity score for a pair of proteins is a weighted sum of their sequence

similarity and their similarity predicted by NMTF based on their

wiring and sequence similarity with proteins in all networks being

aligned.

In the second part of Fuse, to construct a global one-to-one mul-

tiple network alignment, first we construct an edge-weighted k-par-

tite graph, with the proteins of each of the k PPI networks being

partitions of its node set and the above described functional similar-

ity scores being edge weights. To construct a multiple network
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alignment, we find a maximum weight k-partite matching in this

graph. As finding a maximum weight k-partite matching is NP-hard

(Karp, 1972), and because NMTF predicts a large number of simi-

larities in the Fuse’s k-partite graph, we propose a novel k-partite

matching heuristic algorithm.

We evaluate the performance of Fuse against other state of the art

multiple network aligners and show that Fuse produces the largest

number of functionally consistent clusters that map proteins over all

aligned networks. Unlike other aligners, Fuse is able to predict func-

tional associations between proteins that are not sequence related (i.e.

whose sequence similarity is not significant). These associations can

contribute to the identification of functionally consistent clusters that

cannot be identified by the previous aligners, as the previous aligners

cannot predict new protein associations that are not sequence based.

Furthermore, these predicted clusters could be used for transfer of an-

notations across proteins of different species that are not sequence

related. Moreover, we show that Fuse is scalable and computationally

more efficient than all of the previous aligners except Smetana (but

Smetana’s aligned proteins are not as functionally consistent as Fuse’s;

detailed below). Specifically, the data-fusion step is the most time con-

suming in Fuse with the time complexity of Oðn3Þ, where n is the total

number of proteins in all PPI networks being aligned, while the align-

ment step has a smaller time complexity of Oðkn2log nþ kneÞ, where

k is the number of networks and e is the number of functional associa-

tions (similarity scores) between the proteins in them.

2 Approach

The PPI of each species i is represented by a graph (network),

Ni ¼ ðVi;EjÞ, where the nodes in Vi represent proteins and where

two proteins are connected by an edge in Ei if they interact. Our

multiple network alignment strategy consists of two steps. In the

next two paragraphs, we give a short overview of these steps, before

giving the full details of the methodology.

First, we use all PPI networks to be aligned and all the protein

sequence similarities between them, as inputs into the NMTF-based

data fusion technique to compute new protein similarity scores

between the proteins of the networks. Considering the obtained nor-

mal distribution of similarity scores for aligning the five PPI net-

works described above, we define as significant the scores that are in

top 5%. We combine significant scores with the original sequence

similarities to derive the final functional scores between pairs of pro-

teins for the reasons explained in Section 4.1. We construct an edge-

weighted k-partite graph G ¼ ð[k
i¼1Vi;E;WÞ, where the node set is

the union of the nodes sets (proteins) Vi of the input PPI networks;

two nodes u 2 Vi; v 2 Vj; i 6¼ j, are connected by an edge (u, v) in E

if their functional score is greater than zero; the corresponding edge

weight in W is their functional score. No edge exists between nodes

coming from the same subset Vi by definition of a k-partite graph.

Second, we construct a one-to-one global multiple network

alignment by using an approximate maximum weight k-partite

matching solver on G.

2.1 Datasets
From BioGRID (v3.2.111, April 25, 2014) (Chatr-Aryamontri et al.,

2013), we obtained the PPI networks of the five organisms having

the largest and the most complete sets of physical PPIs: Homo sapi-

ens, Saccharomyces cerevisiae, Drosophila melanogaster, Mus mus-

culus and Caenorhabditis elegans. We retrieved the corresponding

protein sequences from NCBI’s Entrez Gene database (Maglott

et al., 2005) and computed their pairwise similarities using BLAST

(Altschul et al., 1990). We also retrieved from NCBI’s Entrez Gene

database the Gene Ontology (GO) annotations of the proteins. Note

that we only used experimentally validated GO annotations (i.e.

excluding the annotations from computational analysis evidence

such as sequence similarity) and that we additionally excluded anno-

tations derived from PPI experiments (code IPI). To standardize the

GO annotations of proteins, similar to the evaluation methods of

Singh et al. (2008), Liao et al. (2009) and Alkan and Erten (2014),

we restrict the protein annotations to the fifth level of the GO-

directed acyclic graph by ignoring the higher-level annotations and

replacing the deeper-level annotations with their ancestors at the

restricted level. The network statistics are detailed in Table 1.

3 Methods

3.1 Non-negative matrix tri-factorization
NMTF is a machine learning technique initially designed for co-

clustering of multi-type relational data (Wang et al., 2008, 2011). In

this article, we consider proteins belonging to different species as

different data types. In the case of two species, i and j, the sequence

similarity scores between their proteins are recorded in the high-

dimensional relation matrix, Rij 2 R
ni�nj , where ni is the number of

proteins in the species i and nj is the number of proteins in the spe-

cies j. Entries in the relation matrix are e values of the protein

sequence alignments computed by using BLAST. Specifically, we use

1� eval (for eval � 1) as a measure of association between protein

pairs. NMTF estimates the high-dimensional matrix, Rij as a prod-

uct of low-dimensional non-negative matrix factors: Rij � GiSijG
T
j ,

where, Gi 2 R
ni�ki
þ and Gj 2 R

nj�kj

þ correspond to the cluster indica-

tor matrices of proteins in the first and the second species, respec-

tively, and Sij 2 R
ki�kj is a low-dimensional, compressed version of

Rij, where the choice of rank parameters, ki;kj � minfni; njg, pro-

vides dimensionality reduction. The close connection between non-

negative matrix factorization problem and the clustering problem is

well established (Ding et al., 2005, 2006; Wang et al., 2011).

In addition to co-clustering, NMTF technique can also be used

for matrix completion. Namely, some entries in the initial relation

matrix Rij are zero (due to lack of sequence similarities between the

corresponding proteins) and they can be recovered from the

obtained low-dimensional matrix factors using the reconstructed

relation matrix: R̂ij ¼ GiSijGj (detailed below). Here we use this

property to predict new and recover the existing association between

proteins. To obtain the low-dimensional matrix factors, Gi; Sij;Gj,

we solve the following optimization problem:

min
Gi�0;Gj�0

J ¼k Rij �GiSijG
T
j k2

F (1)

Table 1. The five PPI networks considered in this study

Id No.

nodes

BP

Ann.

(%)

MF

Ann.

(%)

CC

Ann.

(%)

No.

edges

Homo sapiens 14 164 37.2 23.2 9.6 127 907

Saccharomyces cerevisiae 6004 65.0 41.7 17.4 223 008

Drosophila melanogaster 8125 36.1 13.4 6.3 38 892

Mus musculus 5100 53.3 23.9 10.6 11 061

Caenorhabditis elegans 3841 35.0 7.3 4.2 7726

For each PPI network (row), the table presents its Id (column 1), its number

of nodes (column 2), its percentage of nodes that are annotated with at least

one GO term from BP category (BP, column 3), MF category (MF, column 4)

or cellular component (CC, column 5) and finally, its number of edges (col-

umn 6).
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We incorporate PPI network topology as constraints into our

optimization problem; violation of these constraints causes penalties

to our objective function. This is motivated by the co-clustering

problem which uses networks as prior information to cluster pro-

teins. Namely, the aim is to allow proteins interacting within a PPI

network to belong to the same cluster. Interactions between proteins

in PPI network, i, are represented by a graph Laplacian matrix,

Li ¼ Di � Ai, where Ai is the adjacency matrix of network i and Di

is the diagonal degree matrix of i (i.e. diagonal entries in Di are row

sums of Ai). For all five of our PPI networks, we construct a

Laplacian matrix, resulting in the set: fL1; . . . ;L5g.
We use a block-based representation of relation (R) and

Laplacian (L) matrices and matrix factors (S and G) for our 5 PPI

networks as follows:

R ¼

0 R12 . . . R15

RT
12 0 . . . R25

..

. ..
. . .

. ..
.

RT
15 RT

25 . . . 0

2
6666664

3
7777775
; L ¼

L1 0 . . . 0

0 L2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . L5

2
6666664

3
7777775

;

S ¼

0 S12 . . . S15

ST
12 0 . . . S25

..

. ..
. . .

. ..
.

ST
15 ST

25 . . . 0

2
6666664

3
7777775
; G ¼

G1 0 . . . 0

0 G2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . G5

2
6666664

3
7777775

To simultaneously factorize all relation matrices, Rij � GiSijG
T
j ,

0 � i; j � 5, under the constraints of PPI networks, we minimize the

following objective function:

min
G�0

J ¼ ½k R�GSGT k2
F þcTrðGTLGÞ� (2)

where Tr denotes the trace of a matrix and c is a regularization

parameter which balances the influence of network topologies in

reconstruction of the relation matrix. The second term of Equation

2 is the penalization term. It takes into account protein connections

within the PPI network in the following way: connected pairs of pro-

teins are represented with negative entries in the Laplacian matrix of

the corresponding PPI network, and these entries act as rewards that

reduce the value of the objective function, J, forcing the proteins to

belong to the same cluster. Note that when c ¼ 0, the topology is

ignored and thus Equation 2 is equivalent to Equation 1.

The optimization problem (Equation 2) is solved by applying the

algorithm following multiplicative update rules used to compute

matrices G and S and under which the objective function, J, is non-

increasing (Wang et al., 2008). These update rules are derived by

minimizing the Lagrangian function, L, constructed from the objec-

tive function and all additional constraints, including positivity of

matrix factors G, as in article by Wang et al. (2008). The update

rule for S is obtained by fixing the other matrix factor, G, and find-

ing the roots of the equation: @L=@S ¼ 0. A similar procedure is fol-

lowed for obtaining the update rule for matrix factor G. The

multiplicative update rules, their derivation and the proof of their

convergence can be found in Wang et al. (2008).

The central idea of the NMTF-based data fusion approach lies in

the fact that the relation matrices are not factorized separately, but

instead are coupled by the same low-dimensional matrix factors, Gi,

which participate in their simultaneous decomposition (�Zitnik et al.,

2013) (see Fig. 1 for an illustration). This corresponds to the inter-

mediate data fusion approach (which keeps the structure of the data

while inferring a model) that has been shown to be the most accu-

rate from all data fusion approaches (Gevaert et al., 2006; Lanckriet

et al., 2004; �Zitnik et al., 2013).

In our study, we use the following values of parameters for

NMTF: (i) factorization ranks, k1 ¼ 80; k2 ¼ 90; k3 ¼ 80; k4 ¼ 70

and k5 ¼ 50, which we estimated by computing principal compo-

nents of relation matrices by using principal component analysis

(Jolliffe, 2005) and (ii) we chose the regularization parameter,

c ¼ 0:7, since it gives the best biological quality of the predicted

associations. Namely, for each value of

c 2 f0:; 0:001; 0:01; 0:1; 0:5; 0:7; 0:9g, we compute the functional

consistency of the NMTF-predicted protein similarities. We find

that the highest number of highly associated and biologically consis-

tent protein pairs is obtained when c ¼ 0:7, which highlights the

importance of incorporating the network topology in the factoriza-

tion scheme (see Supplementary Section S1 for details).

After the convergence of NMTF, we compute the reconstructed

relation matrices over all pairs of networks, i and j: R̂ij ¼ GiSijGj.

Further, we threshold the matrices by keeping only the top 5% of all

associations of each protein of each species. This thresholding strat-

egy leads to better biological results than sampling strategies based

on statistical significance (see Supplementary Section S4).

Since a large number of initial associations is not recovered after

the NMTF procedure (see Section 4.1 for details), to balance

between the contribution to protein similarity from sequence and

from NMTF, we compute the final protein functional score wu;v

between proteins u 2 ni and v 2 nj in the k-partite network, as a lin-

ear combination of their sequence similarity seq(u, v) and their

NMTF-predicted score R̂ij½u�½v�:

wu;v ¼ a� seqðu; vÞ þ ð1� aÞ � R̂ij½u�½v�; (3)

where a is a balancing parameter in ½0; 1� to either favour the

sequence similarities (when a ¼ 1, only sequence similarities are

used) or the novel predicted associations (when a ¼ 0, only NMTF

scores are used). These are the weights in the k-partite network.

Fig. 1. An illustration of the basic principle of NMTF-based data fusion of 5

PPI networks. Low-dimensional matrix factor G1, shown in red, is shared in

the decompositions of data sets represented by relation matrices:

R12;R13;R14 ;R15. Therefore, the decomposition of R12 depends on the other

relation matrices through the shared matrix G1
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3.2 Approximate maximum weight k-partite matching
Using the weighted k-partite graph representation described above,

we globally align multiple networks by finding a maximum weight

k-partite matching in G (defined above). The maximum weight

k-partite matching problem is known to be NP-hard for k � 3

(Karp, 1972; Papadimitriou, 1994). Given the large number of links

between the proteins across the networks produced by NMTF, we

must use a heuristic for finding an approximate solution.

To handle this large number of link and to achieve a better

approximation of the maximum weight k-partite matching problem,

we propose a novel maximum weight k-partite matching heuristic,

which we base on the clique clustering algorithm proposed by He

et al. (2000) that has a low time-complexity. To this aim, we define

the following graph merge operation. Let G ¼ ð[k
i¼1Vi;E;WÞ be an

edge-weighted k-partite graph, and G½Vi;Vj� be the edge-weighted

bi-partite subgraph of G that is induced by the two subsets of nodes

Vi and Vj. Let Fi;j ¼ fu1 $ v1; u2 $ v2; . . . ;ul $ vlg be a matching

of G½Vi;Vj�, where uk $ vk means that node uk 2 Vi is matched

with node vk 2 Vj. We merge Vi with Vj into Vij by identifying the

mapped nodes uk $ vk and by creating a corresponding merged

node ukvk 2 Vij. These merged nodes inherit the edges from their

parent nodes, and multiple edges are replaced by a single edge with

the sum of weights of the multiple edges as the new weight of the

edge. We also move into Vij the nodes of Vi and Vj that are not

matched. The new weighted graph Gij is called the merge of Vj to Vi

from G along Fi;j. We note that Gij is an edge-weighted ðk� 1Þ par-

tite graph.

Our approximated maximum weight k-partite matching algo-

rithm can be seen as a progressive aligner which first maps and

merges the two first networks and then successively adds into the

‘merge graph’ the remaining networks (see Algorithm 1).

The performance of our algorithm depends on the order in which

the networks (i.e. the partitions in the k-partite graph) are merged.

We tested two different ordering strategies: merging starting from

the smaller towards the larger networks and merging networks

according to the phylogenetic tree constructed from the weights of

the maximum weight bi-partite matchings between the networks

(i.e. merging the most similar networks first). In the rest of this

article, we only report the alignments obtained by merging from the

smaller network to the larger one, as it leads to the best multiple net-

work alignment results (the comparison of the multiple network

alignments that are obtained using each strategy is presented in

Supplementary Fig. S5).

The main operation in Algorithm 1 is finding a maximum

weight matching in an induced bi-partite graph, which takes Oðn2

log nþ neÞ time (Bondy and Murty, 1976; Lov�asz and Plummer,

1986), when the k-partite graph has n nodes and e edges. There

are k – 1 such operations, hence Algorithm 1 computes an approxi-

mate solution for the maximum weight k-partite matching problem

in Oðkn2log nþ kneÞ time.

4 Results and discussion

4.1 Biological assessment of NMTF-predicted protein

similarities
The input data consist of 1 477 372 sequence similarities between

all proteins in the PPI networks of the five species. Using these simi-

larities as input along with topologies of the five PPI networks,

NMTF outputs 19 175 378 significant similarities (i.e. those

obtained by keeping the top 5% of the associations of each protein

that are obtained from the reconstructed relation matrices). These

associations, resulting from NMTF, cover 60% of the input

sequence similarities (reconstructed), while the remaining associa-

tions resulting from NMTF are predicted.

To estimate the impact of PPI network topology on prediction of

protein associations and to understand why 40% of the initial

sequence similarities are not reconstructed through factorization

process, we perform the following experiment: for each recon-

structed, predicted and non-reconstructed protein pair, we count

the number of sequence similarities between their neighbours in the

corresponding PPI networks. For the protein pairs with recon-

structed sequence similarities, we find that their neighbours share

the highest number of sequence similarities, 20.4 on average. We

also find that protein pairs with predicted associations share 12.1

sequence similarities between neighbouring proteins on average. In

contrast, a much smaller number of sequence similar neighbours,

8.6 on average, is observed for the protein pairs with non-

reconstructed similarities. This means that NMTF induces new and

reconstructs existing associations between proteins that have many

sequence similar neighbours in the corresponding PPI networks.

Hence, the sequence similarity of protein pairs without many

sequence similar neighbours in their PPI networks will be lost in

NMTF process.

To assess the functional consistency of NMTF’s protein associa-

tions, we compute the cumulative number of associations between

annotated proteins and the percentage of them sharing GO term (we

considered BP and MF annotations separately). Compared with

input sequence similar annotated proteins, NMTF achieve both

larger numbers of functionally consistent paired proteins and higher

functional consistency for the top-scoring pairs (Fig. 2). This higher

functional consistency is very important in the context of clustering

and alignment, where the highest associations are considered first.

Also, the best NMTF scores are obtained with c ¼ 0:7. This means

that topologies of PPI networks contribute to functional coherence

of protein pairs predicted to be similar by NMTF.

To illustrate the cases where NMTF predicts functionally consis-

tent proteins that cannot be identified by using only sequence simi-

larity, we extracted from the NMTF’s predictions the pairs of

proteins such that (i) their sequence similarity is not significant (i.e.

e value � 1) and (ii) that share at least one level 5 molecular function

(MF) GO annotation. We investigated the top scoring such pairs

and found that these new associations are relevant. For example, the

five highest scoring pairs are CTK1 (yeast) and MAP3K7 (mouse),

SGV1 (yeast) and MAP3K7 (mouse), MEK1 (yeast) and MEK2

(worm), MAP3K7 (human) and CTK1 (yeast) and SVG1 (yeast) and

MAP3K7 (human). All these proteins are kinases that catalyse phos-

phorylation reactions.

Algorithm 1. Approximate maximum weight k-partite

matching.

Input G ¼ ð[k
i¼1Vi;E;WÞ

for i ¼ f2; . . . ; kg do

Find maximum weight bipartite matching F1;i of G½V1;Vi�
Construct G1i, the merge of V1 and Vi from G along F1;i

Set G ¼ G1i and relabel V1i as V1

C ¼ f;g
for each merged node u in V1 do

Cluster Cu is the set of nodes that are merged into u

Add Cu to C

Output C
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4.2 Fuse-ing PPI networks
We Fuse the five PPI networks and assess its results against state-of-

the-art multiple network aligners: Beams (Alkan and Erten, 2014),

Smetana (Sahraeian and Yoon, 2013), CSRW (Jeong and Yoon,

2015) and NH (Radu and Charleston, 2015). We tried to obtain

alignments from IsorankN (Liao et al., 2009) and NetCoffee (Hu

et al., 2013), but the computations did not finish after more than 1

week. We use BLAST e values as input sequence scores for all meth-

ods, using 1� e value as the similarity measure. Both Fuse and

Beams use parameter a 2 ½0; 1� to balance the amount of input pro-

tein sequence similarity versus network topology. For these meth-

ods, we sample a from 0 to 1, in increments of 0.1. We left the other

parameters of Beams and all the parameters of Smetana, CSRW and

NH at their default values.

4.2.1 Evaluation based on coverage

First, we compare the network alignment methods on their ability to

form protein clusters that cover all five of the input PPI networks.

We refer to these clusters as ‘good’ clusters, as opposed to ‘bad’ clus-

ters that cover proteins from fewer than 5 PPI networks. The k-

coverage is the number of clusters containing proteins from k differ-

ent PPI networks. Because the number of proteins per cluster may

vary, the k-coverage is also expressed in terms of the number of pro-

teins that are in these clusters. The total coverage considers all clus-

ters containing proteins from at least two networks. The coverage

statistics of the alignments are summarised in Figure 3.

Fuse produces a larger number of good clusters (i.e. containing

proteins from all five species; in dark blue in Fig. 3), producing 3841

of such clusters. Beams achieves the highest total coverage (with up

to 11 302 clusters containing proteins from two to five species), but

it does so by producing the largest number of bad clusters (i.e. con-

taining proteins from only two species; in red in Fig. 3), producing

up to 6046 of such clusters and the smallest number of good ones

(937 clusters containing 4803 proteins).

When the coverage is expressed in terms of number of protein in

the clusters (right panel of Fig. 3), the total coverages of all methods

are similar. However, Fuse outperforms all other methods by put-

ting the largest number of proteins (19 205) in good clusters.

Interestingly, when Fuse uses sequence information only (i.e.

when a ¼ 1), it already outperforms all the other approaches, which

demonstrates the superiority of our alignment heuristic (Fig. 3).

Moreover, Fuse achieves the best coverage for a � 0:8, when the

functional similarity between the proteins is a combination of their

sequence similarity and of their NMTF predicted similarity, which

shows the complementarity of network topology and protein

sequence as sources of biological information.

4.2.2 Evaluation based on functional consistency

We assess functional homogeneity of the clusters obtained by each

method. We say that a cluster is annotated if at least two of its pro-

teins are annotated by a GO term. We say that an annotated cluster

is consistent if all of its annotated proteins have at least one common

GO term. The ratio of all consistent clusters to all annotated clusters

we call specificity. Another consistency measure that is used in pre-

vious studies (Alkan and Erten, 2014; Liao et al., 2009; Sahraeian

and Yoon, 2013) is the mean normalized entropy (MNE). The nor-

malized entropy of an annotated cluster c is defined as

NEðcÞ ¼ � 1
log d

Pd
i¼1 pi � log pi, where pi is the fraction of proteins

in c with the annotation GOi and d represents the number of differ-

ent GO annotations in c. MNE is the average of the normalized

entropy of all annotated clusters. We compare Fuse, Beams,

Smetana, CSRW and NH on their ability to uncover functionally

conserved proteins across all input networks, by measuring the con-

sistency, specificity and MNE of their clusters that contain proteins

from all five networks (Fig. 4 and Table 2). We consider GO annota-

tions from biological process (BP) and MF separately and do not

consider cellular component (CC) annotations, as CC only annotate

9.7% of the proteins in the five networks.

When using sequence information only (i.e. a ¼ 1), Fuse already

outperforms other aligners, by creating a larger number of function-

ally consistent clusters that consist of a larger number of proteins

than previous methods (Fig. 4). Fuse creates 418 clusters that are

functionally consistent with respect to GO BP (containing jointly

2090 proteins), while the best competing method, Smetana, produ-

ces only 188 BP consistent clusters (containing jointly 1086 pro-

teins). Fuse also creates 564 functionally consistent clusters with

respect to GO MF (containing jointly 2820 proteins), while the best

competing method, CSRW, produces only 308 MF consistent clus-

ters (containing jointly 2205 proteins).

Fuse obtains the best results when it uses a combination of

sequence similarities and NMTF predicted similarities. Including

predicted similarities (a ¼ 0:8) allows for finding up to 9% more of

BP consistent clusters and for up to 4% more of MF consistent
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Fig. 3. Coverage analysis. Left: for each alignment produced by the compared

alignment methods (for a specific value of a for Fuse and Beams), the bar

chart shows the number of clusters containing proteins from k species (see

the colour coding on the top). Right: the figure shows the same but in terms

of the number of proteins in these clusters
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of them sharing GO terms (y-axis). BP and MF annotations are considered
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clusters than when using sequence similarity alone (a ¼ 1). Also,

we note that these larger numbers of consistent clusters and proteins

in them are not obtained at the cost of specificity or of MNE

(Table 2).

Because Fuse produces almost twice as many consistent clusters

as the competing approaches, comparing methods’ outputs directly

may not be fair. To this end, first we score each cluster produced by

Fuse with the sum of its proteins’ pairwise similarity scores. Then,

we sort Fuse’s clusters by decreasing scores (i.e. from the cluster

whose proteins are the most similar to the cluster whose proteins are

the least similar) and consider the number of consistent clusters in

that ordering. To compare Fuse against other methods, but on the

same number of clusters that other methods produce, we take from

Fuse’s output the same number of clusters as produced by other

methods, that are top scoring in Fuse. For example, Smetana outputs

1279 BP annotated clusters out of which 188 are functionally consis-

tent (note that Fuse outputs 3080 BP annotated clusters out of which

459 are functionally consistent). When we take from Fuse’s output

the 1279 BP highest scoring annotated clusters, we get 247 that are

BP functionally consistent (in contrast to the 188 that are BP consis-

tent by Smetana). Similarly, Fuse outperforms Smetana, CSRW and

NH in both BP and MF consistent clusters (Supplementary Fig. S3)

and it outperforms Beams in BP consistent clusters. For MF, Beams

achieves a slightly larger number of MF consistent clusters, 312 of

them out of 457 MF annotated clusters, as opposed to Fuse’s 299

clusters that are MF consistent (out of the 457 top scoring Fuse’s

MF annotated clusters, Supplementary Fig. S3). However, the num-

ber of proteins in the 312 of Beam’s MF consistent clusters is only

1628, while Fuse produces in total 588 MF consistent clusters that

contain in total 2940 proteins.

Another advantage of Fuse over other aligners is that in the

NMTF step, it can predict new associations between proteins whose

sequence similarity is not significant (i.e. e value � 1). These associa-

tions can contribute to the identification of functionally consistent

clusters that cannot be identified by other aligners. For example,

Fuse can identify a cluster of five proteins (across five species) where

only a subset of them have similar sequences (e value < 1), while

others are predicted to be related based on the NMTF scores. In this

case, the other aligners cannot identify five-protein clusters because

their performance is based only on sequence similarity scores, and

they cannot predict new protein associations. We identify 18 clusters

covering all 5 species (see Supplementary Section S5). One of them

includes proteins: HPS6 (human), HPS6 (mouse), SEC72 (yeast),

ABU-1 (worm) and NIMC2 (fly); since the first three and the last

two proteins have similar sequences, if the alignment was based only

on sequence similarity, it would have resulted in two clusters cover-

ing three and two species, respectively. However, because of the pre-

dicted association between HPS6 (mouse) and ABU-1 (worm), Fuse

was able to identify a cluster of related proteins in all 5 species.

These proteins are all involved in the immune response and also the

first four proteins are located in the endoplasmic reticulum (details

are in Supplementary Section S5).

Fuse is also computationally efficient and scalable. The matrix

factorization step is an Oðn3Þ time operation, where n is the total

number of proteins in all PPI networks. On our dataset, the matrix

factorization step is the most time consuming and requires �10 h to

complete. The alignment step has a smaller time complexity of

Oðkn2log nþ kneÞ, where n is the number nodes in Fuse’s k-partite

graph (i.e. the total number of proteins in all PPI networks), and e is

the total number of edges in Fuse’s k-partite graph and on our data-

set, the alignment process requires less than 15 min. The time com-

plexity of Beams is Oðndkþ1Þ, where d is the maximum degree of a

node in Beams’ k-partite graph. Beams complexity becomes larger

than Fuse’s one when its k-partite graph becomes denser (i.e. when d

tends to n). Aligning our PPI networks with Beams requires �78 h.

NH also has a large time complexity, Oðkn4Þ, although on our data-

set it takes a short running times of �1 h. Finally, Smetana and

CSRW have the smallest time complexities of Oðk3neÞ and on our

dataset their computations require �1 h for Smetana and �3 h for

CSRW.

Table 2. Functional consistency analysis

Fuse Beams Smetana CSRW NH

a ¼0 0.4 0.6 0.8 1 a ¼ 0 0.2 0.3 0.7 1

BP #C 159 439 452 459 418 147 158 159 154 149 188 185 108

#P 795 2195 2260 2295 2090 751 809 815 790 762 1086 1103 540

Spec. 6.7% 14.3% 14.8% 14.9% 14.2% 18.3% 19.2% 19.4% 18.8% 18.2% 14.7% 15.3% 6.3%

MNE 1.97 2.05 2.05 2.05 2.07 1.97 2.19 2.22 2.22 1.97 2.16 2.06 2.04

MF #C 189 575 586 588 564 303 308 312 312 309 300 308 17

#P 945 2875 2930 2940 2820 1573 1601 1619 1628 1610 2262 2205 85

Spec. 21.0% 40.7% 41.1% 41.3% 41.8% 66.4% 65.8% 66.0% 68.3% 68.2% 42.1% 45.8% 2.4%

MNE 0.91 0.85 0.83 0.84 0.84 0.73 0.72 0.75 0.73 0.73 0.80 0.79 0.95

Each column represents one of the compared alignment methods (for a specific value of a for Fuse and Beams). Numbers in cell report (from top to bottom):

the number of consistent clusters (#C), the number of proteins in consistent clusters (#P), the specificity (Spec.) and the MNE. In each row, the highest value is

shown in bold.
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Fig. 4. Functional consistency analysis. Left: for each alignment produced by

the compared alignment methods (for a specific value of a for Fuse and

Beams), the bar chart shows the number of clusters that contain proteins

from all five species and that are BP consistent (in green) or MF consistent (in

blue). Right: the figure shows the same, but in terms of the number of pro-

teins in these clusters
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5 Conclusions

In this article, we propose Fuse, a novel global multiple network

alignment algorithm which can efficiently align even the largest cur-

rently available PPI networks. Fuse computes novel similarity scores

between the proteins in PPI networks by fusing all PPI network top-

ologies and their protein sequence similarities by using NMTF. We

show that these new similarities complement solely sequence-based

ones: NMTF predicts as similar 13 times more protein pairs than

sequence alone does and these predicted protein pairs are function-

ally consistent. This demonstrates the power of data integration and

contribution of network topology to sequence-based methods for

finding functionally consistent proteins in different species.

We define new functional similarity scores between the proteins

by combining the similarity scores obtained by NMTF with the

sequence-based ones using a user-defined balancing parameter a to

either favour one or the other. Fuse uses these functional scores to

construct global one-to-one multiple network alignment by using a

novel maximum weight k-partite matching heuristic algorithm.

We compare the alignments of Fuse to the ones of the state-of-

the art aligners, Beams, Smetana, CSRW and NH. We find that even

when using solely protein sequence similarity, Fuse already outper-

forms all other network aligners by producing a larger number of

functionally homogeneous clusters that cover all aligned networks.

This shows the superiority of our k-partite matching heuristic to

produce biologically meaningful multiple network alignments.

Additionally, we find that the results of Fuse are even better when

functional similarity scores are created from both sequence and

NMTF scores (when a ¼ 0:8) rather than when using sequence in-

formation only (when a ¼ 1). This again demonstrates complemen-

tarity of sequence and network topology in carrying biological

information.
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