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S1 Bayesian framework of I-value and its statistical properties

The principles and main features of the Minimum Message Length (MML) framework are de-

scribed in the main text. To summarise, given a structural alignment as a one-to-one correspon-

dence (denoted as A) between coordinate data of a pair of protein structures (denoted by 〈S, T 〉),

I-value estimates the Shannon information content1 (denoted as I(A & 〈S, T 〉)) as the negative

logarithm of the joint probability of the alignment hypothesis A and the data 〈S, T 〉:

I-value = I(A & 〈S, T 〉) = − log2(Pr(A & 〈S, T 〉)).

*to whom correspondence should be addressed
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From product rule of probabilites over the events A, S and T , we have

Pr(A & 〈S, T 〉) = Pr(A) Pr(〈S, T 〉 |A) = Pr(〈S, T 〉) Pr(A| 〈S, T 〉)

where Pr(A, 〈S, T 〉) is the joint probability of alignmentA and the structural coordinates in S and

T , Pr(A) is the prior probability of the alignment Pr(〈S, T 〉 ,A) is the likelihood, Pr(〈S, T 〉) is

the prior probability of the structural coordinates in S and T , and Pr(A| 〈S, T 〉) is the posterior

probability of the alignment.

This product rule can be restated in Shannon’s information1 terms by applying negative log-

arithm on both sides:

− log (Pr(A & 〈S, T 〉))︸ ︷︷ ︸
I(A & 〈S, T 〉) or I-value

= − log(Pr(A))︸ ︷︷ ︸
I(A)

− log(Pr(〈S, T 〉 |A))︸ ︷︷ ︸
I(〈S, T 〉 |A)

= − log(Pr(〈S, T 〉))︸ ︷︷ ︸
I(〈S, T 〉)

− log(Pr(A| 〈S, T 〉))︸ ︷︷ ︸
I(A| 〈S, T 〉)

As mentioned in the main text, I(A & 〈S, T 〉) or I-value is computed as a length of a

two-part message:

I(A & 〈S, T 〉)︸ ︷︷ ︸
I-value

= I(A)︸ ︷︷ ︸
First part

+ I(〈S, T 〉 |A)︸ ︷︷ ︸
Second part

= I(A) + I(S|A) + I(T |S&A)

= I(A)︸ ︷︷ ︸
First part

+ Inull(S) + I(T |S&A)︸ ︷︷ ︸
Second part

bits. (1)

The I-value measure has several desirable statistical properties:

1. The I-value varies according to the posterior probability ofA: I(A& 〈S, T 〉) ∝ − log(Pr(A| 〈S, T 〉)).
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2. The difference between the I-values of any two competing alignments, say A1 and A2,

gives the log-odds posterior ratio:

I(A1& 〈S, T 〉)− I(A2& 〈S, T 〉) = − log(Pr(A1& 〈S, T 〉)) + log(Pr(A2& 〈S, T 〉))

= log

(
Pr(A2| 〈S, T 〉)
Pr(A1| 〈S, T 〉)

)
.

This property makes the comparison and selection of competing alignments statistically ro-

bust.

3. This framework provides a natural null hypothesis test. If the I-value of an alignment A

is worse (longer) than that of the null model encoding of the structural coordinates, then A

must be rejected. That is, rejectA if I(A & 〈S, T 〉)≥ Inull(S) + Inull(T ). See Section S2 for

details.

The computation of I-value involves message length terms such as I(A), I(〈S, T 〉 |A),

Inull(S), Inull(T ) et cetera rely on probabilistic models of encoding, described below.

S2 Computation of Null model message length: Inull(S) and Inull(T )

Kasarapu and Allison (2015)2, 3 recently proposed an MML-based unsupervised learning method

to infer a probabilistic mixture model using directional probability density functions. In partic-

ular, they looked at three-dimensional (3D) von Mises-Fisher and Kent probability distributions

wrapped on a 3D unit sphere 2, 3. These mixture models were inferred on the empirically observed
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directions† of Cα coordinate data from wwPDB. (See http://lcb.infotech.monash.

edu.au/kent-mixture-modelling/.)

A mixture model is a probability density function of the form:

M(x̂; ~Ψ) =

|M|∑
k=1

wkfk(x̂; ~ϑk) (2)

where, x̂ is the random variable denoting a direction, ~Ψ = {|M|, {(wk, ~ϑk)∀1≤k≤|M|}} gives a

vector of parameters of the mixture model containing |M| component directional probability den-

sity functions, fk, (∀1 ≤ k ≤ |M|), with their respective component probabilities wk (note,∑|M|
k=0wk = 1) and component parameters ~ϑk.

This work employs the Kent mixture model inferred by Kasarapu (2015)3 on protein coor-

dinate data. As a demonstration of the fidelity of their inferred mixture model, Fig. S1 shows the

empirical distribution of Cα directions (left frame) along with the distribution of randomly sampled

directions from the mixture model of Kasarapu (2015)3 (right frame). The similarity between the

two distributions clearly suggests that the mixture model faithfully characterises, into a parametric

form, the empirical distribution of Cα directions.

To describe the computation of the null model message length terms using the 23-component

Kent mixture model3, Inull(S) and Inull(T ), consider an arbitrary chain C containing n successive

Cα coordinates C = {~c1,~c2, · · ·~cn}. The length of the null model message we use to transmit this

†Directions are given by the spherical coordinates of Cα atoms, denoting the zenith angle (or co-latitude) and

azimuth angle (or longitude), measured in a canonical frame of reference.
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Figure S1: Fidelity of the 23-component Kent mixture model of Kasarapu (2015).3 Left frame: The empirical distribution of canonical

directions of Cα atoms from a set of 1,802 SCOP domains. Each observed direction is represented here using the spherical coordinates (θ, φ)

denoting the spherical coordinates (also co-latitude and longitude. Right frame: The distribution of randomly sampled directions drawn from the

probability distribution defined by the 23-component Kent mixture model.

chain is given by:

Inull(C) = Ilog∗(n) +
n∑
j=1

Inull(~cj) (3)

where term Ilog∗(n) represents the number of bits needed to transmit number n over a log∗ integer

code.4 The term Inull(~cj) represents the number of bits needed to transmit a single ~cj using the

23-component Kent mixture model whose computation is described below.

Let rj and x̂j be the spherical coordinates, radius and direction (co-latitude and longitude),

respectively of any coordinate ~cj ∈ C. The null model message length to transmit ~cj is given by

Inull(~cj) = Iradius(rj) + Idirection(x̂j) bits, that is, by the sum of the code lengths required to transmit

the radius and the direction respectively. The transmission of the radius relies on the observation

that the partial double bond character of the peptide bond in proteins imposes a strict constraint

on the distances between successive Cα atoms. Hence, each rj is the distance between Cα atom
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~cj−1 and ~cj , and can be encoded efficiently using a normal distribution N with the parameters

µ = 3.8Å and standard deviation of σ = 0.2 Å.4 This code length is computed as Iradius(rj) =

− log2(ε · N (rj;µ, σ)).

The receipt of rj by the receiver reduces their uncertainty of the position of ~cj to lie anywhere

on the surface of a sphere with radius rj centered at ~cj−1. However, the direction x̂j of ~cj is still

unknown to the receiver and must be transmitted so that the receiver can decode ~cj without loss of

information. Each x̂j ≡ 〈θj, φj〉 pair is encoded and transmitted in the context of the preceding

three transmitted coordinates‡ using the 23-component Kent mixture model, denoted as M as

shown in Equation 2. The code length to encode the direction is computed as Idirection(x̂j) =

− log2(ε
2 · M(x̂j; ~Ψ)) = − log2

(
ε2 ·
∑|M|

k=1wkfk(x̂j;
~ϑk)
)

.

Time Complexity of computing the null model message length The computation of the null

model message length for any chain of Cα coordinates with n atoms requires O(n) effort. This

is easy to see: the computation of each Idirection(x̂j) requires computing the likelihood of x̂j given

each component density function in the null mixture. The mixture model3 contains a constant

(|M| = 23) number of component Kent probability density functions. So the likelihood of each x̂j

can be computed in constant time. Similarly, the computation of Iradius(rj) of each Cα atom is also

a constant time operation. Therefore, over all n atoms, the computation of the null model message

length of a given chain is O(n).

‡Since this encoding requires a context of three preceding residues, as a boundary case, the first three Cαs are

transmitted using the null model.
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S3 Computing relationship model messagelength: I(A & 〈S, T 〉)

As described in the main text, the relationship model message is encoded over two-parts. In the first

part the alignment A is transmitted as a string over match (m),insert (i),delete (d)

states, followed by the coordinate data of the structures, 〈S, T 〉, given this alignment relationship.

The length of this two-part message is shown in Equation 1. The details of encoding required for

the two parts are explained under their respective subheadings.

Computing the first part message length, I(A): A three-state probabilistic model for align-

ment encoding is used here, described originally by Allison et al. (1992)5 to encode alignments

of macromolecules, specifically over the match (m), insert (i), and delete (d) states. The com-

munication of an alignment A from transmitter to receiver can be achieved by first sending its

length, |A|, over the log∗ integer code, followed by sending each state symbol over a probability

distribution modeled using a first-order Markov model. Such a model permits 9 possible state tran-

sitions: mm, im, dm, mi, ii, di, md, id, dd. Associated with each possible state

transition is a transition probability: Pr(mm), Pr(im), Pr(dm), and so on. These probabilities

are subject to the total probability and symmetry constraints: Pr(mm) + Pr(mi) + Pr(md) = 1,

Pr(im)+Pr(ii)+Pr(id) = 1, Pr(dm)+Pr(di)+Pr(dd) = 1, Pr(mi) = Pr(im) = Pr(md) =

Pr(dm), Pr(dd) = Pr(ii), and Pr(id) = Pr(di).

While these probabilities can be computed for any given alignment string on the transmitter’s

side, the receiver however will need to know these values in advance to decode the alignment string.

An adaptive code similar to the one described by Wallace and Boulton6 can be used to construct a

7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/7/1005/2585029 by guest on 24 April 2024



decodable message over this first-order Markov model. This approach requires maintaining only 4

counters (cntr1,...,cntr4), one for each distinct probability term. These four counters are

initialized to 1. The first state symbol (eg: ‘m’) is transmitted with a uniform probability of 1/3.

Subsequently, each state symbol (eg: ‘i’) is transmitted over the probability that can be computed

by dividing the counter pertaining to the current state transition (eg: ‘mi’) with the sum total of

all counters starting with the previous state symbol (eg: ‘mm’ or ‘mi’ or ‘md’). Note that both

the transmitter and receiver can encode and decode (respectively) the state symbols over such a

transmission. Once the current state symbol is transmitted, the counter pertaining to this state

transition is incremented by one.

The code length to encode a state transition is the negative logarithm of its estimated proba-

bility. Summing up over all state transitions in the alignment string, and adding to it the code length

required to transmit the size of the alignment over an integer code results in the estimation of I(A)

used in this work. (The symmetry constraints make the formulation of I(A) into a closed-form

formula rather inconvenient. Nevertheless, the computation of I(A) is computationally efficient

as discussed below.)

Time Complexity of computing I(A) Assume |S| = m and |T | = n. Without loss of generality,

assume also that m ≤ n. The maximum string length of any possible alignment A between S and

T is m + n ≤ 2n = O(n). Using the adaptive code the computation of I(A) is efficient as it

requires maintaining a fixed set of counters and, for each symbol in A, dividing two numbers and

performing a negative logarithm of that ratio. Therefore, the computation of I(A) is O(n).
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Computing the second part message length, I(〈S, T 〉 |A): The transmission of the coordinates

of S and T using the alignment information forms the second part of the message. To achieve this,

the coordinates in S are transmitted over the null model approach described in Section S2 over a

message that is Inull(S) bits long. After decoding this information the receiver knows bothA (from

receiving the first part) and the coordinates of S. The goal now is to transmit the coordinates of T

based on this available information.

Given A and S, each Cα in T is either aligned with some Cα in S or remains unaligned.

Therefore, T can be partitioned into successive monotonic blocks alternating between aligned

and unaligned Cα coordinates. By monotonic block, we mean any run of successive Cαs that

are all either aligned or unaligned in T . For example, the alignment iiidmmmmmmim can be

partitioned in 5 blocks (delimited by ‘|’ symbols) as iii|d|mmmmmm|i|m, where the blocks of

i’s represent the unaligned coordinates of T while the blocks of m’s represent the coordinates in T

that are aligned with corresponding coordinates in S. (Note that the blocks containing d’s can be

ignored since they represent the unaligned coordinates in S, which have already been transmitted,

and for this part of the transmission we are only interested in the coordinates of T .)

The unaligned coordinates of T (i.e., each chain of successive coordinates that forms any

block of i’s in the alignment) are transmitted using the null model method described in Sec-

tion S2. Thus, these unaligned coordinates offer no compression with respect to the null model

transmission. Let us denote the code length to transmit these unaligned coordinates in T as

Iunaligned(T |S,A).
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The source of compression in this scheme potentially comes from encoding the aligned co-

ordinates in T , building on the information of their corresponding coordinates in S. Below, we

propose an efficient encoding method for such coordinates.

In this work, the estimation of the code length term, Ialigned(T |S,A), to transmit the aligned

coordinates of T given S and A, is achieved using a mixture of two encoding schemes. One

takes into account the global spatial similarity of positions of aligned coordinates between S and

T , while the other takes into account the local similarity in the directions of the coordinates.

Appropriately, we call these two models the global and local models of encoding, respectively.

Encoding the aligned coordinates of T using the global model: To compute the code length of

stating any ~tj ∈ T that is aligned with a ~si ∈ S over the global model, the following procedure is

employed. The two structures are first superposed based on their coordinates defined by alignment

A. Subsequently, the set of residuals (norm of the error vectors) {δij}’s between each si and

tj is transmitted over a chi-squared distribution (with three degrees of freedom) using the MML

approach of 7. Further, the set of distances {rj}’s between successive tj−1 and tj is transmitted

using the method described in Section S2 (see Fig. S2).

The information of δij and rj permits the construction of two spheres centered at ~tj−1 and at

~si. These two spheres will intersect in a circle§, reducing the uncertainty of tj to lie on the circle

of intersection. Given this, the coordinates of ~tj can be transmitted over a uniform distribution on

§ignoring the pathological case when tj−1 = si or in the best case when si = tj
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Figure S2: An illustration of the global alignment relationship model to transmit the coordinate of tj as a deviation with respect to si. The

receiver is sent δij and rj terms (see main text) which reduces the uncertainty of tj to be on a circle derived by intersecting spheres centered at si

and tj−1.

the circle (see Fig. S2).

Encoding the aligned coordinates of T using the local model: The first three coordinates in

every aligned block of T are encoded using the global model described above. For the remaining

of matches in each mathced block, the following local encoding method is employed.

Recall from Equation 2 in Section S2, that the mixture model is of the formM =
∑|M|

k=1wk ·

fk(~ϑk), where wk is the associated probability of the kth component (which in turn is a Kent

directional probability distribution.) If no (extra) information were available about ~tj , then the

transmitter would have no choice but to encode it using the null model. However, extra informa-

tion is available in the form of the correspondence of ~tj with ~si. Thus, the probabilities of each

component can be updated based on this relationship. Specifically, the null component probabili-
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ties (wk’s) can be systematically updated given the expectation provided by the alignment that ~tj

is near ~si.

Bayes theorem allows updating allwk’s given the knowledge of ~si. Consider the computation

of the posterior probability of the kth component given the direction ŝi, Pr(Componentk|ŝi):

w′k (unnormalized)︷ ︸︸ ︷
Pr(Componentk|ŝi) =

wk︷ ︸︸ ︷
Pr(Componentk)

likelihood︷ ︸︸ ︷
Pr(ŝi|Componentk)

Pr(ŝi)︸ ︷︷ ︸
constant over k terms of the mixture model

Note that Pr(Componentk) is equal to wk of the null model, and Pr(ŝi|Componentk) is the

likelihood of the direction ŝi given the component probability density function, fk(ŝi|~ϑk). While

these two can be computed trivially using the null mixture modelM, Pr(ŝi) is unknown. How-

ever, each Pr(Componentk|ŝi) needs to be normalised (so that their sum over all components adds

to 1) by dividing the numerator by
∑|M|

k=1 Pr(Componentk|ŝi), the term disappears. Call these nor-

malised posterior weights w′k. The old wk’s are now replaced with the new w′k’s in the null mixture

modelM and tj can now be encoded using the updated mixture model.

Time Complexity of computing I(T |S,A) Assuming again that |S| = m and |T | = n and

m ≤ n, the global model of encoding requires the superposition of the aligned coordinates be-

tween S and T . The maximum number of aligned coordinates in any A is bounded by m. The

computational effort to find the best superposition of two corresponding vector sets containing m

vectors is O(m).
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For the global model the estimation of code length for δij and rj , as well as the encoding

over the circle of intersection (between spheres) takes constant time. Over all aligned coordinates,

the time complexity to estimate the message length over the global model takes worst-case O(m)

time as the number of matches is bounded by m. This is the same for the local encoding as each

aligned ~tj ∈ T requires the computation of the re-weighted probabilities (w′k’s) that take a constant

O(|M| = 23) effort.

On the other hand, the encoding of unaligned coordinates of T (encoded using the null

model) is O(|T |) = O(n) in the worst-case. Therefore, the estimation of I-value given the

coordinates of S and T and any alignment between them, A, takes O(n) time overall.

S4 MMLigner search heuristic

MMLigner’s search method is carried out in two phases. In the first phase, seed structural align-

ments are quickly generated using a deterministic approach that efficiently clusters and consistently

assembles well-superposable fragment pairs for the two given structures S and T . These seed

alignments are refined in the second phase using the I-value criterion over a heuristic search.

Phase 1: Generating alignment seeds Identification of a library of maximal fragment pairs

(MFPs). Given a pair of structures S and T , we first identify all well-superposable, maximally-

extended fragment pairs (MFPs) that fit within a threshold of RMSD (= 2.5 Å). This results in a

library of MFPs for the given pair of structures being aligned.
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Filtering the library of MFPs. The library of MFPs is then filtered to contain only those MFPs

that can be jointly superposed with at least two other MFPs in the set. Specifically, every pair

of non-overlapping MFPs are jointly superposed under the threshold of RMSD of (= 3 Å). Any

MFP that does not superpose within this threshold will be discarded since it shows no evidence of

being spatially consistent with other MFPs in the set. This eliminates MFPs that are locally but not

globally meaningful.

For each pair that jointly superposes within the threshold of RMSD, we look to extend the

superposition using yet another (non-overlapping) MFP. Any pair of MFPs that is not extendible

and whose combined length is < 15 residues is again discarded. This further prunes the original

library of MFPs.

We note that, if carried out naively, this filtering step can be computationally expensive.

However, we are able to achieve an exhaustive and extremely efficient joint superpositions over

all pairs of MFPs (and their further extensions to triples) by benefiting from our recent work that

has identified the sufficient statistics for orthogonal least-squares superposition of vector sets 8.

To do this, when the original library of MFPs is computed, we store the sufficient statistics of the

superposition in each MFP. The RMSD of joint superposition of pairs of MFPs as well as their

sufficient statistics can be computed as a constant time update using the sufficient statistics of

individual MFPs.8 Similarly, extensions of pairs of MFPs to triples can also be updated in constant

time. As a result, the identification of MFPs and the pruning can be carried out exhaustively in

seconds.
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Clustering the filtered set of MFPs. The aim of this step is to partition the filtered set of MFPs into

groups (or clusters) of related MFPs so that a seed alignment can be explored within each cluster.

Our iterative clustering heuristic proceeds as follows. First, the filtered set of MFPs is sorted

in decreasing order of length (in terms of number of residue pairs in each MFP) and the longest

MFP in the filtered set is assigned as the initial singleton cluster. The iterative process of clustering

then starts by traversing the remaining sorted list of filtered MFPs, starting from the longest. For

each MFP in the list, we attempt to add it to any of the existing clusters. Otherwise, a new cluster

is created with this MFP as its singleton member. In general, the MFP can be added to a cluster if

that MFP jointly superposes with at least 40% of the cluster’s existing MFPs.

At the end of this procedure, the clusters whose combined length is less than 18 residues are

deleted and the remaining ones are used in the next step to identify seed alignments.

Finding a seed alignment using the clustered MFPs. For the MFPs represented in each cluster,

a scoring matrix is computed. Each cell in this matrix represents a score for aligning a specific

residue-pair between the two structures being aligned. For each triplet of MFPs in the set that

superpose within the threshold of RMSD (3 Å), scores (computed from the combined lengths of

MFPs involved and their RMSD) are populated in the weight matrix for the residue-pairs involved

in those MFPs. A rough seed alignment using a dynamic programming algorithm described in the

pairwise step of MUSTANG.9

15

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/7/1005/2585029 by guest on 24 April 2024



Phase 2: Iterative refinement of the seed alignment using I-value criterion Using each seed

alignment identified in the previous phase as the starting point, a series of perturbations to these

alignments are carried out to identify the final alignment(s) that MMLigner reports. The fitness

of each perturbed alignment is evaluated using the I-value measure based on the amount of

compression achieved compared to the null model.

This approach that is similar to the Expectation-Maximization (EM) technique common in

statistical learning. Each alignment is efficiently represented as a vector of blocks (where each

match block stores the start indices in S and T of that match block, followed by the length of

the block). Until the method converges (or reaches a maximum of iterations), the current best

alignment at each iteration is operated upon by performing the following primitive permutation

operations, on each of the blocks.

ExtendMatchBlock(i, l,direction): This search primitive tries to extend the i-th block

in an alignment by l residues either on the left side or on the right side (depending on the given

direction) of the match block. That is, it tries to create new matches out of the deletes and

inserts (if any) flanking the specified block in the specified direction. The number of new matches

is limited by min(‖inserts‖, ‖deletes‖).

ShrinkMatchBlock(i, l,direction) This primitive tries to shrink the i-th match block by

l residues either on the left or right of the match block. That is, it tries to remove macthes by

creating new insertions and deletions (indels) flanking the current block in the specified direction.

The number of new indels is limited by ‖matchblock‖.
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ShiftMatches(i, l,direction): This primitive tries to shift l aligned residues from the start of the

current block to the end of the previous one, or vice versa. This can only be done when the gap

separating two successive match blocks is monotonous (that is, the gap is either entirely inserts,

or entirely deletes). Upon this perturbation, the gap length between the successive blocks remains

unchanged, but the size the specified match block either increases or decreases by l. The shift size,

in turn, is limited by the size of the previous or current block, depending on the direction of shift.

SlideMatchBlock(i, l,direction): This primitive tries to change the residue-residue correspon-

dences of a block by moving (or sliding) l residues in S left or right relative to T . Note that the

number of correspondences in a block remains constant. The size of the shift is limited by the size

of the block being operated upon plus the number of gaps available in the direction of the shift.

RealignClosest(i): This primitive perturbs the current alignment by realigning the (subsets of)

residues in S and T around a specified match block. Before this perturbation is explored, T is

superposed on S based on the current (full) state of the alignment. For any i-th match block,

consider the subsets of residues in S and (transformed) T covering the specified match block, and

its left and right flanking gap region. A Euclidean distance matrix is computed for each residue-

residue pairs within this subsets. The residue-pairs within these subsets that exceed the maximum

match distance observed with the current match block are ignored from the realignment. For

the permissible residue pairs, a Needleman-Wunsch10 dynamic programming algorithm is used to

realign the residues around this specified region.

DeleteMatchBlock(i): This primitive perturbs the current alignment by deleting the entire match

17

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/7/1005/2585029 by guest on 24 April 2024



Algorithm 1: MMLigner’s Expectation-Maximization search heuristic
input : An initial (seed) alignment, A, a reference structure, S, and a target structure, T
output: A MMLigner alignment, Abest

1 nIters← 1; Abest←A;
2 while nIters ≤ 50 do
3 best ivalur ← I(A,〈S ,T 〉);
4 perturbed[ ]← [ ]; perturbed ivalue[ ]← [ ];
5 for i← 1 to ‖match blocks‖ do
6 for l← 1 to 3 do
7 for perturbType = {ExtendMatchBlock, shrinkMatchBlock,

shiftMatches slideMatchBlock} do
8 Atmp← perturbType(i, l, left);
9 perturbed ivalue.append(I(Atmp,〈S ,T 〉)); perturbed.append(Atmp );

10 Atmp← perturbType(i, l, right);
11 perturbed ivalue.append(I(Atmp,〈S ,T 〉)); perturbed.append(Atmp );
12 Atmp← RealignClosest(i);
13 perturbed ivalue.append(I(Atmp,〈S ,T 〉)); perturbed.append(Atmp );
14 Atmp← DeleteMatchBlock(i);
15 perturbed ivalue.append(I(Atmp,〈S ,T 〉)); perturbed.append(Atmp );
16 Atmp← best(perturbed ivalue[ ], perturbed[ ]);
17 if perturbed ivalue[Atmp ] < best ivalue then
18 Abest←Atmp;
19 best ivalue← perturbed ivalue[Atmp ];
20 nIters← nIters+ 1;
21 else
22 break;
23 return Abest;

block and replacing it with appropriate inserts and deletes.

Search using the above primitives: Any given seed alignment is refined using the above primi-

tives over an Expectation-Maximization algorithm defined in Algorithm ??. At each iteration, the

algorithm attempts to exhaustively perturb each match block using the above perturbation prim-

itives and greedily chooses the best perturbation using the I-value criterion. This continues

until either the alignment converges (it always will but might take long) or reaches the maxi-

mum number of iterations. This behaviour is intended to ensure the algorithm explores the local
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space thoroughly around the (reasonably good) starting point provided by the seed alignment of

MMLigner.

S5 Selecting the SCOP domain dataset used for software benchmarking

In the results section of the main text, we benchmark various alignment program on a dataset

containing 2500 structural domain pairs selected randomly from SCOP domain database. 11, 12 No

two domains in our dataset share more than 40% sequence identity.

The dataset is identified using the following procedure. ASTRAL SCOP 4012 domains are

used and separated out into buckets depending on their sizes (number of residues). Two domains

in the same bucket differ no more than 50 residues in their lengths. The SCOP hierarchy for all

the domains within each bucket is recorded. A pivot domain is randomly chosen from the entire

ASTRAL SCOP 40 collection. Assume that this pivot domain falls with the i-th bucket. Using the

SCOP hierarchy in this bucket, we select:

• one domain (randomly) that belongs to the same SCOP Family as the pivot

• one domain (randomly) that belongs to the same SCOP Superfamily as the pivot, but not the

Family

• one domain (randomly) that belongs to the same SCOP Fold the pivot, but not the Family or

Superfamily.

• one domain (randomly) that belongs to the same SCOP Class the pivot, but not the Family,
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Superfamily or Fold.

• one domain (randomly) that belongs to a different class.

This selection process is repeated until we have 500 distinct pivots and their respective five do-

mains. This results in 2500 distinct structural domain pairs. (Dataset is available from http:

//lcb.infotech.monash.edu.au/mmligner.)

S6 Supplementary figure supporting Fig 2. in the main text

MMLigner can be run with an option to filter out alignments for structural pairs composed of

matches involving standard supersecondary structures, which nevertheless yield positive compres-

sion over their respective. These are reported by MMLigner in its default run (see Fig 2. in the

main text). Fig. S3 shows the runs with the filter option turned on, over the same dataset used in

the main text.
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Figure S3: Supplementary figure to Fig 2. in the main text. Notched Box-Whisker plots displaying the distribution of values from various

criteria across 500× 5 = 2500 alignments generated by MMLigner with a filter option turned on (default is off; see results in Fig 2. in the main

text). The filter option ignores any alignment(s) returned by MMLigner that, although yielding positive compression, is composed of matches

involving common supersecondary structures.
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S7 Benchmarking the runtimes of alignment programs

Using the SCOP dataset containing 2500 structural pairs (see Section S6) we compare the runtime

performance of MMLignerand 5 other widely used structural alignment programs (see Section 3

in the main text). The runtime statistics (measured in seconds of CPU time) are summarised in the

table below,.

Table S1: Average runtime statistics (measured in seconds of CPU time) of the structural alignment

programs MMLigner, CE, DALI, TM-Align, FATCAT, and LGA

Alignment
Program Family Superfamily Fold Class Decoy Average Statistic

MMLigner

8.74
11.06
1.89
0.75

14.93
17.59
3.21
1.12

12.23
17.57
3.60
1.32

7.85
8.74
2.67
1.02

4.37
4.83
1.76
0.66

8.88
11.95
2.51
0.92

3rd quartile
Mean
Median
1st quartile

DALI

2.66
2.60
0.75
0.38

2.50
2.68
0.74
0.40

2.64
2.72
0.77
0.38

2.65
2.21
0.77
0.39

1.85
1.72
0.58
0.34

2.51
2.39
0.71
0.38

3rd quartile
Mean
Median
1st quartile

TM-Align

0.15
0.15
0.07
0.04

0.16
0.16
0.08
0.04

0.16
0.16
0.08
0.04

0.16
0.17
0.07
0.04

0.16
0.18
0.07
0.03

0.16
0.16
0.07
0.04

3rd quartile
Mean
Median
1st quartile

LGA

3.88
6.03
0.66
0.00

2.81
5.08
0.26
0.00

1.44
4.45
0.05
0.00

1.39
4.51
0.09
0.00

1.23
4.24
0.08
0.00

2.20
4.86
0.18
0.00

3rd quartile
Mean
Median
1st quartile

CE

2.47
2.27
1.82
1.56

2.58
2.48
1.97
1.61

2.66
2.53
2.01
1.64

2.74
2.68
2.10
1.71

2.74
2.67
2.07
1.70

2.66
2.52
1.99
1.64

3rd quartile
Mean
Median
1st quartile

FATCAT

5.23
4.71
3.42
2.70

5.08
4.62
3.30
2.69

5.12
4.54
3.32
2.66

4.76
4.46
3.36
2.66

4.19
4.03
3.07
2.52

4.90
4.47
3.27
2.64

3rd quartile
Mean
Median
1st quartile
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