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1 Advantage of a Unified Algorithm for Detecting Struc-
tual Variants

MiStrVar uses a unified dynamic programming formulation, superior to tools that identify each
type of variant individually, especially because these tools misinterpret certain variants, such as
inversions, as a combination of other variants, as illustrated in Figure 1; here a single inversion
event shown in A can also be interpreted as a deletion and an insertion with several mismatches,
as shown in B. It is clear that A is the more likely/parsimonious scenario involving just one
inversion; however, each of these interpretations may receive similar score by a standard variant
caller. This happens more often than thought: Figure 1C illustrates an inversion event in SLC3A1
3’UTR discovered by MiStrVar that has been misinterpreted in dbSNP. Our unified formulation
ensures to identify the single most parsimonious microSV supported by a given contig, reducing
the number of false positives.

A

B

C

Figure 1: Example to illustrate the advantage of a unified algorithm for detecting structural
variants. (A) Optimal alignment of two sequences using the unified algorithm, in this case a
27bp microinversion in SLC3A1 3’UTR. (B) Optimal Smith-Waterman alignment of the same
two sequences.(C) Cluster of dbSNP entries in the inverted region. Blue lines are indels, red lines
are single nucleotide polymorphisms and the grey line is a multiple nucleotide polymorphism.
Most, if not all, are incorrect.
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2 Methods of Detecting Aberrations in RNA-Seq and WGS
datasets

2.1 Fusion Detection in Transcriptomic Data

We use deFuse [1] as our primary fusion detection tool. deFuse detects candidate fusion events
and constructs the fusion sequences spanning the junction of the fusion breakpoints from discor-
dantly mapped RNA-Seq reads based on maximum parsimony. deFuse maps paired-end reads to
the reference genome. All reads that can be mapped to the reference within expected distance
range and correct orientation (i.e., concordantly) are discarded. Among the remaining reads,
discordantly mapped read-pairs and one-end anchors are considered for fusion transcripts. More
precisely, (1) discordantly mapped spanning reads, where the two ends map to two different genes,
anchor the search for fusion breakpoints, and (2) split reads, where one end maps to a single gene
and the other end spans the junction of a fusion breakpoint, help pinpoint the junctions.

As a first step, deFuse identifies potential fusion events by clustering spanning reads. Many
reads can be mapped to multiple locations due to homologous genes and splice variants; the
vast majority of available tools either discard these ambiguous mappings or randomly select
one mapping location among them. The unique feature of deFuse is that it resolves mapping
ambiguity by jointly considering all mapping loci of each of the reads and iteratively identifying
the one that is shared by the maximum possible number of reads as their true mapping locus. As
a second step deFuse identifies split reads corresponding to each potential fusion event using a
dynamic programming formulation, to exactly identify the fusion breakpoints at nucleotide level
resolution.

2.2 MiStrVar: Detection of microSVs on Matching WGS and RNA-
Seq Data

We consider as microSV those genomic sequence alterations shorter than a few hundred bps
and at least 5bp. Aberrations of length <5bp are many times too short to differentiate from
single nucleotide variants (SNVs). We are interested in microSVs that exist “in” or “near”
exonic regions that may lead to translation into a novel peptide and contribute to the cancer
phenotype. For this reason MiStrVar uses a masked reference genome primarily comprised of
regions of potential transcription.

MiStrVar works in three major steps: in step A it collects all one-end anchors (see below)
from WGS data, and cluster them according to the mapping loci. In step B, unmapped ends of
the reads in each cluster are assembled into a contig representing the genomic sequence alteration
implied by a microSV. In step C, the exact nature of each microSV is determined by aligning the
associated contigs with the reference genome. (See Figure 2 for an overview.) Below we describe
each of these three steps in detail.
In step (A), MiStrVar identifies all one-end anchors (OEA) in the read data: an OEA is a
paired-end-read for which only one end maps to the reference genome within a user defined
error threshold. Once all reads are (multiply) mapped to a reference genome using mrsFAST-
ultra [2, 3], and all OEAs are extracted, the mapped ends of OEAs are clustered based on the
mapping loci. MiStrVar provides the user two options for cluster identification, each satisfying
one of the following distinct goals.

1. For applications where sensitivity is of high priority, MiStrVar employs a sweeping algo-
rithm for OEA mapping loci (introduced for VariationHunter [4]) which identifies every
possible read mapping cluster that can support a microSV in O(n+#clust) time where n is
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MicroSV

A: Extract and Cluster OEA

B: Assemble Contig

C: Approximate Alignment

D: Optimal Alignment with Variant

Figure 2: A sketch of our computational framework for detecting microSVs in tumor samples.
A. All one-end-anchors (OEA) are extracted from the mapping file and clustered based on the
mapped mates. B. The unmapped mates are then assembled into a contig. C. The contig is
aligned to the reference within 1Kb from the mapped mates. D. The reference is clipped and the
optimal alignment is found using a dynamic programming formulation allowing for a structural
alteration event.
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the total number of read mapping loci and #clust is the total number of clusters obtained
(i.e. the output size). Note that each read mapping locus can be a part of several OEA
clusters.

2. For applications where running time is of high priority, MiStrVar employs an iterative
greedy strategy, which ”anchors” the first cluster with the ”leftmost” mapping locus of
an OEA on the genome and extends the cluster to include any other OEA mapping that
overlaps with the anchor OEA mapping. Once all such OEAs mappings are added to the
cluster, the iterative strategy greedily anchors the next cluster with the first OEA mapping
not included in the previous cluster. Note that in this strategy each OEA mapping can be
a part of a single cluster.1

In step (B), for each OEA cluster identified in step (A), MiStrVar assembles the unmapped end
of the reads to form contigs (of length <400bp in practice) by aiming to solve the dominant
superstring (DSS) problem defined as follows.
Given a collection of length k strings S = {S1, . . . , Sn} from the standard DNA alphabet, identify
a subset S′ = {S′1, . . . , S′m} of S and its shortest superstring S∗ (so that each S′i is a substring
of S∗) for which Obj(S∗) = |S∗|/m is as small as possible.2

As per the well known shortest superstring problem, DSS is NP-hard [5]. However a simple
greedy strategy provides a constant factor approximation to the shortest superstring problem
- which is MAX-SNP-hard and thus a polynomial time approximation scheme is unlikely [6].
MiStrVar thus employ a similar greedy strategy to solve the DSS problem as follows. It starts
with S∗ = {Si, Sj}, a pair of strings from S whose suffix-prefix overlap is maximum possible. In
each successive iteration, it greedily identifies the string S` from S − S∗ whose inclusion in S∗

improves Obj(S∗) the most, until it can not be improved further. As a result, MiStrVar identifies
a dominant superstring for the unmapped ends of each cluster of OEAs as a contig.
In step (C), each contig associated to an OEA cluster is aligned to a region (of length several
kilobases long) surrounding the OEA mapping loci, first through a simple local-to-global sequence
alignment algorithm, that does not consider any structural alteration. (The reverse complement
of the contig is also aligned to the same region.) The start and end position of this first, crude
alignment is used to determine the approximate locus and length of the potential microSV implied
by the contig. The exact microSV breakpoints are obtained in the next step through a more
sophisticated alignment that considers structural alterations, which is applied to the portion of
the reference genome restricted by the first alignment. The dynamic programming formulation
for this alignment is an extension of the Schöniger-Waterman algorithm [7] which was designed
to capture inversions in the alignment. We give details of this extension below, which enables
the user to

1. discover the single best optimal event, rather than an arbitrary number of events 3,

2. handle gaps extending over breakpoints (in cases of missing contig sequence), and,

3. simultaneously predict duplications, insertions, deletions and SNVs in addition to inver-
sions.

1All experimental results in this paper are based on the second clustering algorithm due to running time con-
straints.

2Since this formulation ignores reads that include read errors it requires the read coverage to be “reasonably”
high and the read errors to be comparatively rare.

3In rare cases where two microSVs occur in close proximity that they would fall within the same contig, one of
the microSVs would not be reported. More commonly, if another signature exists in a contig, it is not a true SV
and this approach improves precision.
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2.2.1 MiStrVar Dynamic Programming Formulation

The basic recurrence used in the Schöniger-Waterman alignment algorithm is as follows.

U(i, j) = max{U(i− 1, j) + β,W (i− 1, j) + α+ β} (1)

V (i, j) = max{V (i, j − 1) + β,W (i, j − 1) + α+ β} (2)

W (i, j) = max{max
g,h
{W (g − 1, h− 1) + Z(g, h, i, j) + γ},

W (i− 1, j − 1) + s(ai, bj), U(i, j), V (i, j), 0} (3)

Z(g, h, i, j) = WI(Sh,j , Tg,i) (4)

This recurrence is itself an extension of the Smith-Waterman formulation for local alignment.
Equations 1 and 2 correspond to typical affine gap matrices with gap opening (α) and gap
extension (β) penalties. The recurrence includes an additional score matrix Z (Equation 4)
which produces the optimal global alignment of a subsequence from g to i with the reverse
compliment of subsequence from h to j. This score is added to the score of W (g − 1, h − 1)
as a fifth choice for function W (i, j) (Equation 3) with an additional penalty γ. This can be
interpreted as a “correction” to one of the sequences. It should also be noted, since Z is computed
with a standard global alignment, it allows for mismatches and gaps to occur within the inversion.
Therefore, germline inversions with SNPs or indels would still be detectable.

In order to limit this formulation to an optimal, single inversion, we introduce three additional
matrices (W ′, U ′, V ′), all computed with the basic Smith-Waterman algorithm. The term W (g−
1, h− 1) in Equation 3 is replaced with W ′(g− 1, h− 1). This ensures that at any position (i, j),
an alignment with a single inversion (W ′(g−1, h−1)+Z(g, h, i, j)) is compared to an alignment
with at most one inversion (W (i, j)). This approach can be easily generalized to k optimal
inversions by introducing additional matrices, at a computational cost of O(k).

Since the original formulation adds the score of Z(g, h, i, j) only to the value of W (g−1, h−1),
the affine gap matrices computed by U(g − 1, h) and V (g, h − 1) are ignored. Furthermore the
affine gap scores of the global alignment WI are not considered. Therefore a gap cannot cross
the boundary without incurring an additional gap opening penalty. This may be a rare case
in general, but in our application if the inversion is greater than the read length it is possible
for a contig to not include the entire inversion, which requires a gap over the breakpoint in the
alignment. To solve this problem , all the affine gap scores of the global, inversion alignment are
added to the corresponding affine gap functions U and V (and vice versa) with the appropriate
extension penalties. See Section 2.2.2 for the full formulation.

W (i, j) = max{max
g,h
{W (g − 1, h− 1) + Z(g, h, i, j) + γ},

max
g
{W (g − 1, j) +D(g, i) + θ},

W (i− 1, j − 1) + s(ai, bj), U(i, j), V (i, j), 0} (5)

D(g, i) = max
i′,g′
{(WT (i, i′)−WT (g, g′)− (i− g)λ)/2)} (6)

where WT is the self-alignment of T with α = β = −∞

To include duplications, we substitute Equation 3 with Equation 5 above. This modification
adds a sixth case where the score of function D(g, i) is added to (g−1, j) with an additional error
θ. D(g, i) (Equation 6) is the error of the best alignment of input string T (in this context, the
contig sequence, indexed by g and i) and itself (indexed by g′ and i′). Note that this formulation
is not restricted to tandem duplications only; specifically, (g, i) does not need to be adjacent to
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(g′, i′). This allows for the detection of “interspersed duplications”, where the “source” sequence
can be located anywhere on the contig. This error is calculated by subtracting the alignment
score from the maximum score for a sequence of length i− g, defined by multiplying the length
by the match score λ. Since gaps are disallowed, and the mismatch score is −λ, dividing this
number by 2 yields the final mismatch error. Again, this allows for the detection of SNPs within
a duplication. Indels can also be detected with an additional computational cost through an
alternate error computation. Similar to inversions, this “corrects” the contig sequence, but in
this case the score is computed as if the duplicated sequence were removed. The modifications
to the recurrence for the purposes of selecting a single optimal duplication and handling affine
gap scores are very similar to those we described for inversions.

If neither including an inversion or a duplication improves the alignment score over the basic
Smith-Waterman alignment that allows insertions, deletions and mismatches, these events are
extracted through traceback and reported.

The time and space requirements of our algorithm is O(n4) and O(n2) respectively, which
is identical to the original complexity of Schöniger-Waterman method. Although the running
time may seem impractical on a genome-wide scale, two restrictions can improve it drastically.
The first is the range of variant lengths, defined by the difference between the minimum and
maximum length (max(i − g) − min(i − g) or max(j − h) − min(j − h)). This is accurately
estimated for both inversions and duplications from the basic O(n2) alignments, and the largest
of the two ranges is selected. The second is the number of insertions and deletions within the
variant, or more specifically the difference in length between the sub-sequence (g, i) and (h, j).
Indels within variants are highly unlikely to occur in real data, especially in somatic calls, so we
disallow any insertions and deletions in the variants. These two restrictions reduce the running
time to O(n2r), where r � n is the range estimate. The restriction on indels does reduce the
scope of possible structural variants the algorithm can detect. However, for detection of somatic
calls this would likely be negligible since two mutations would need to occur one after the other
at the same location. If the first mutation leads to a phenotype, there would be no further
selection for another mutation. Indeed in the context of germline event detection, cases such as
this may occur more frequently and would be missed when using this optimization.

2.2.2 Full Formulation

This formulation uses O(n4) space for clarity of presentation. In the implementation, the Z
matrices are computed iteratively for a fixed j and g and reused for each h and i, reducing
the memory complexity. Furthermore we use global alignment [8] in practice rather than local
alignment originally used by Schöniger and Waterman. This is because we only align to a
portion of the reference genome restricted by the first alignment (as outlined above) which is
approximately the same length as the contig.

7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1672/4756097 by guest on 23 April 2024



U(0, 0) = V (0, 0) = W (0, 0) = UI(0, 0) = VI(0, 0) = WI(0, 0) = WT (0, 0) = 0 (7)

U(0, y) = UI(0, y) = α+ yβ (8)

V (0, y) = VI(0, y) = −∞ (9)

W (0, y) = WI(0, y) = α+ yβ (10)

WT (0, y) = 0 (11)

U(x, 0) = UI(x, 0) = −∞ (12)

V (x, 0) = VI(x, 0) = α+ yβ (13)

W (x, 0) = WI(x, 0) = α+ yβ (14)

WT (x, 0) = 0 (15)

UZk(g, h, g, h) = VZk(g, h, g, h) = WZk(g, h, g, h) = 0 (16)

UZ1(g, h, g + 1, y) = α+ yβ (17)

VZ1(g, h, g + 1, y) = −∞ (18)

WZ1(g, h, g + 1, y) = α+ yβ (19)

UZ2(g, h, g + 1, y) = α+ yβ (20)

VZ2(g, h, g + 1, y) = −∞ (21)

WZ2(g, h, g + 1, y) = α+ yβ (22)

UZ3(g, h, g + 1, y) = yβ (23)

VZ3(g, h, g + 1, y) = −∞ (24)

WZ3(g, h, g + 1, y) = yβ (25)

UZ1(g, h, x, h+ 1) = α+ yβ (26)

VZ1(g, h, x, h+ 1) = α+ yβ (27)

WZ1(g, h, x, h+ 1) = −∞ (28)

UZ2(g, h, x, h+ 1) = yβ (29)

VZ2(g, h, x, h+ 1) = yβ (30)

WZ2(g, h, x, h+ 1) = −∞ (31)

UZ3(g, h, x, h+ 1) = α+ yβ (32)

VZ3(g, h, x, h+ 1) = α+ yβ (33)

WZ3(g, h, x, h+ 1) = −∞ (34)

where

0 < g ≤ | S |,
0 < h ≤ | T |,
0 < x ≤ | S |,
0 < y ≤ | T |,
0 < k ≤ 3

Figure 3: Matrix initialisation.8
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UI(i, j) = max{UI(i− 1, j) + β,WI(i− 1, j) + α+ β, ZU , DU} (35)

ZU =

{
max

k
{Z(i, j, k)}+ γ, if UZk(g, h, i, j) > max{VZk(g, h, i, j),WZk(g, h, i, j)}

−∞, otherwise
(36)

DU =

{
max

g
{U(g − 1, j) +D(g, i) + θ}, if U(g − 1, j) > max{V (g − 1, j),W (g − 1, j)}

−∞, otherwise

(37)

VI(i, j) = max{VI(i, j − 1) + β,WI(i, j − 1) + α+ β, ZV , DV } (38)

ZV =

{
max

k
{Z(i, j, k)}+ γ, if VZk(g, h, i, j) > max{UZk(g, h, i, j),WZk(g, h, i, j)}

−∞, otherwise
(39)

DV =

{
max

g
{V (g − 1, j) +D(g, i) + θ}, if V (g − 1, j) > max{U(g − 1, j),W (g − 1, j)}

−∞, otherwise

(40)

WI(i, j) = max{
max{UI(i− 1, j − 1), VI(i− 1, j − 1),WI(i− 1, j − 1)}+ s(ai, bj), ZW , DW } (41)

ZW =

{
max

k
{Z(i, j, k)}+ γ, if WZk(g, h, i, j) > max{UZk(g, h, i, j), VZk(g, h, i, j)}

−∞, otherwise
(42)

DW =

{
max

g
{W (g − 1, j) +D(g, i) + θ}, if W (g − 1, j) > max{U(g − 1, j), V (g − 1, j)}

−∞, otherwise

(43)

Figure 4: Main alignment matrices.

U(i, j) = max{U(i− 1, j) + β,W (i− 1, j) + α+ β} (44)

V (i, j) = max{V (i, j − 1) + β,W (i, j − 1) + α+ β} (45)

W (i, j) = max{max{U(i− 1, j − 1), V (i− 1, j − 1),W (i− 1, j − 1)}+ s(ai, bj)} (46)

Figure 5: Global alignment without SV.

WT (i, j) = WT (i− 1, j − 1) + s(ai, bj) (47)

Figure 6: Ungapped local self-alignment.
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UZk(g, h, i, j) = max{UZk(g, h, i− 1, j) + β,WZk(g, h, i− 1, j) + α+ β} (48)

VZk(g, h, i, j) = max{VZk(g, h, i, j − 1) + β,WZk(g, h, i, j − 1) + α+ β} (49)

WZk(g, h, i, j) = max{UZk(g, h, i− 1, j − 1), VZk(g, h, i− 1, j − 1),WZk(g, h, i− 1, j − 1)}
+ s(ai, bj) (50)

Z(i, j, 1) = max
g,h
{UZ1(g, h, i, j), VZ1(g, h, i, j),WZ1(g, h, i, j)}+ U(g, h) (51)

Z(i, j, 2) = max
g,h
{UZ2(g, h, i, j), VZ2(g, h, i, j),WZ2(g, h, i, j)}+ V (g, h) (52)

Z(i, j, 3) = max
g,h
{UZ3(g, h, i, j), VZ3(g, h, i, j),WZ3(g, h, i, j)}+W (g, h) (53)

D(g, i) = max
i′,g′
{(WT (i, i′)−WT (g, g′)− (i− g)λ)/2)} (54)

Figure 7: SV alignments.

where

0 < g′ < i′ < g < i < g′ < i′ ≤ | S |
0 < h < j ≤ | T |
0 < k ≤ 3

α = β = −∞ for WT which is equivalent to W but a self-alignment of T

s(ai, bj) =

{
1, if Ti = Sj

−1, otherwise

s(ai, bj) =

{
1, if Ti = Sj

−1, otherwise

2.3 Identification of Translated Sequence Aberrations

ProTIE provides the ability to detect translated aberrations by searching mass spectra against
an aberrant peptide database. More specifically, given transcriptomic breakpoints pointing to
fusions or microSVs, ProTIE identifies respective aberrant peptides from proteomic data by first
generating a peptide database, and then identifying aberrant peptides based on mass spectrom-
etry search results.

The database is a combination of known (wildtype) human peptides and either the fusion
peptides (used for fusion discovery), derived from the fusion breakpoints suggested by deFuse
(and/or Comrad/nFuse), or microSVs breakpoint peptides, derived from the breakpoints sug-
gested by MiStrVar. For each fusion or microSV breakpoint, six different reading frames (both
forward and backward reading frames) are considered - until a stop codon. Potential peptides
(of residue length five or more) resulting from each breakpoint junction, as well as downstream
peptides that result from a shift in the reading frame, are included in the peptide database al-
lowing at most one miscleavage site (i.e. consisting of at most two amino acids of K or R for
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trypsin specificity used in the CPTAC data) as aberrant peptides.4

ProTIE uses Ensembl human protein database GRCh37.70 (Ensembl, ftp://ftp.ensembl.o
rg/pub/release-70/fasta/homo sapiens/pep/Homo sapiens.GRCh37.70.pep.all.fa.gz) to de-
rive the known (wildtype) human peptides. Note that the Ensembl database includes 104,785
peptide sequences among which 75,994 are annotated as known peptides, 10,449 are annotated
as novel peptides and an additional 18,342 are annotated as putative peptides. ProTIE includes
only the set of known peptides in the primary peptide database it establishes; however it also
provides information for the mass spectra that do not match known or aberrant peptides, but
can be matched to novel or putative sequences.5

ProTIE conducts peptide identification by searching tandem mass spectra (MS/MS) against
the peptide database it sets up, as described above. For that, it first converts raw files into Mascot
Generic Format (MGF) and uses MS-GF+ [9] engine to perform the search. We adopted the
search parameters recommended by the CPTAC Common Data Analysis Pipeline (CDAP) [10]
as follows. (1) The precursor mass tolerance is set to 20ppm. (2) The Fragment method is set
as 3 for HCD. (3) Instrument is set as 3 for Q-Exactive. (4) Number of tolerable termini is 1.
(5) Maximum length of peptide is 50. (6) Modifications include: Carbamidomythyl is fixed in
Cystine, Oxidation is set as variable modification in M, iTRAQ 4plex is fixed at N-termini and
any Lysine(K) residue.

To obtain a subset of high confidence matches, ProTIE selects only the spectra where the top
20 peaks in the PSMs have matched fragmentation ions. If fewer than 20 peaks exist, all peaks
must match. The major fragmentation ions annotated are: b-, b-neutral loss ions, y-, y-neutral
loss ions.

We apply 1% spectrum-level FDR control on the identification as suggested in CDAP. Based
on the search result, we keep a spectra in ProTIE if its best PSM (in terms of lowest q-value) can
not match any known peptides in Ensembl annotation or decoy sequences (i.e. false positives).
Spectra that match novel or putative peptides are still kept with special remarks for further
analysis.

2.4 Class-Specific Peptide-Level FDR in ProTIE

It has been argued in the literature that stringent class-specific peptide-level FDR estimates may
be necessary for reporting novel peptides in proteogenomics studies [11]. In order to address this
issue, for any search result provided from MS-GF+, we first cluster all peptide-spectra matches
into known or novel categories based on their peptide sequences: a PSM is assigned to the known
class if the peptide is a known peptide or the decoy sequence of a known peptide; otherwise it
will be assigned to the novel class. We then recalibrate FDR for records in the novel class using
original E-value from MS-GF+: a peptide p is assigned the best spectral E-value E(p) it can get
from any records in the novel class. Given a PSM M with E-value s, we collect all PSMs in the
novel class whose E-value ≤ s, and calculate the ratio of records containing decoy sequences as
the new peptide-level FDR for M . In table

4Peptides shorter than five residues are discarded due to mass spectrometry detection range limit.
5We establish a single database for the breakpoints identified in all patients, however we maintain the patient for
each potential aberrant peptide in order to make sure that mass spectra from a particular patient (or a set of
patients) can only match an aberrant peptide from the same patient.
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2.5 Identification of Transcriptomic Evidence for Genomic Aberra-
tions

Our pipeline provides the user with the additional ability to jointly analyze matching WGS and
RNA-Seq data for identifying transcribed genomic (in fact genetic) microSVs. Given a set of
genomic microSVs, along with their breakpoints detected by MiStrVar, our pipeline generates
corresponding aberrant transcripts. It then maps RNA-Seq reads to the collection of these
aberrant transcripts using mrsFAST-ultra (error threshold, 6%). An RNA-Seq read mapping
is said to provide evidence for the transcription of a microSV in two ways: either (i) an RNA-
Seq read is (uniquely) mapped across a breakpoint - providing evidence for the transcription of
the associated microSV (both in the form of inversions and duplications) ; or (ii) a paired end
RNA-Seq read is mapped to the reference transcriptome discordantly (due to change of mapping
orientation) - again providing evidence for the transcription of the associated microSV (relevant
for inversions only). Note that no read that can be mapped concordantly to a known isoform or
potential novel spliceform (through the use of the splice-aware mapper STAR [12]) is considered
to be a supportive evidence of a transcribed microSV.

3 Simulation and Cell line Results of MiStrVar

3.1 MicroSV Detection Performance of MiStrVar on Simulated Data

In order to get a sense of its true positive rate, we first applied MiStrVar to the dataset generated
by simulating reads from a modified version of the Chromosome 1 of the Venter genome. For
this modification, we randomly implanted 205 inversions and 115 duplications, satisfying the
following. (1) Minimum distance between consecutive events would be at least 10,000 bp. (2)
Inversion lengths vary between 5 and 400 bp. (3) Duplicated segment lengths vary between 5
and 50 bp and the distance between the original and duplicate copies would be no more than 50
bp. (4) Each SV is implanted in a sequence segment (of length at least 20bps longer than the SV
itself on both directions) which is uniquely mappable, i.e. reads originating from this segment
can only be mapped to the correct locus on the human reference genome hg19 (GRCh37).

On the modified Venter genome, we generated a dataset of 40M error-free paired end reads
of length 2x100 bp (providing a coverage of roughly 30x) via wgsim (https://github.com/lh3/
wgsim). The average insert length and the standard deviation were 450bp and 50bp respectively.
These reads were mapped to GRCh37.75 using BWA aln with default parameters and sorted by
coordinate using samtools. All compared tools used this BAM file as input.

We generated another dataset from chromosome 1 of the unmodified Venter genome with
high coverage (160M paired end reads of length 2x100bp, with a coverage of roughly 120X). This
dataset was used to identify microSVs already present in the Venter genome (with respect to the
human reference genome).

MiStrVar performs very well on microinversions with a precision and recall of roughly 90%
for inversions of length at most 100bp (see Table 1). For longer inversions (101-400bp) recall is
even higher, very close to 100% without a significant drop in precision.

In order to compare MiStrVar’s performance against available SV detection tools, we used
the top five tools based on their performance as assessed by two recent reviews [13, 14]. These
reviews evaluated the recall and precision of SV discovery tools across different variant length
categories. The first two of these tools are Pindel [15] and SoftSV [14], which exhibited good
performance for both inversions and tandem duplications for the shortest set of variants. In
addition, Delly [16] and Breakdancer [17] tested well for inversions and ITDetector [18] tested
well for duplications only. Note that ITDetector is designed particularly for for finding short
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Table 1: Comparison of precision, recall, false discovery rate (FDR) and false negative rate
(FNR) of MiStrVar against other SV discovery tools. All tools were run with default parameters
and the calls for each microSV type (we only considered the calls made by each tool for that
microSV) were called true or false based on the metrics provided by the tools (quality, identity or
support, if they exist). The threshold values for each metric were chosen to maximize the F-score
(Supplementary Table 2). Only inversions of length ≤400bp were considered in the calculations.
If a tool does not provide precise breakpoints, breakpoints falling within a provided range are
counted as true positives. Known insertion SNPs were filtered for all duplication results.

5-100 bp 101-400 bp
SV Type Tool Precision Recall FDR FNR Precision Recall FDR FNR
Inversions MiStrVar 91.20% 92.68% 8.80% 7.32% 93.10% 98.78% 6.90% 1.22%

Breakdancer 66.67% 1.63% 33.33% 98.37% 59.00% 95.00% 41.35% 4.88%
Delly 67.00% 1.63% 33.00% 98.37% 61.98% 91.46% 38.02% 8.54%
Pindel 82.64% 81.30% 17.36% 18.70% 88.51% 93.90% 11.49% 6.10%
SoftSV 0.00% 0.00% 100.00% 100.00% 93.75% 18.29% 6.25% 81.71%

All MiStrVar 30.85% 53.91% 69.15% 46.09% N/A N/A N/A N/A
Duplications ITDetector 13.54% 40.87% 86.46% 59.13% N/A N/A N/A N/A

Pindel 5.00% 15.65% 95.00% 84.35% N/A N/A N/A N/A
SoftSV 16.24% 16.52% 83.76% 83.48% N/A N/A N/A N/A

Tandem MiStrVar 100.00% 86.67% 0.00% 13.33% N/A N/A N/A N/A
Duplications ITDetector 3.17% 80.00% 96.83% 20.00% N/A N/A N/A N/A

Pindel 0.00% 0.00% 100.00% 100.00% N/A N/A N/A N/A
SoftSV 6.67% 46.67% 93.33% 53.33% N/A N/A N/A N/A

Table 2: Summary of cutoffs for metrics used to define the true set for each tool which maximize
the F-score. Those marked as “default” showed no improvement from using more stringent
cutoffs and therefore the entire set of results was used for precision/recall calculations.

Metric 5-100bp 101-400bp All Tandem
Inversions Inversions Duplications Duplications

MiStrVar Min. Identity 99% 99% 99% 100%
Min. Read Support default default 30 default

Breakdancer Score (0-99) default default N/A N/A
Delly Min. Read Support 10 10 N/A N/A
Pindel Min. Read Support 6 10 3 default
SoftSV Min. Read Support default default 30 default
ITDetector Grade (A,B,C) N/A N/A default default

tandem duplications; Delly and Breakdancer, can predict long duplications quite well, however
both perform relatively poorly on shorter events.

The comparative performance of MiStrVar against these methods are presented in Table 1.
Note that in this analysis a call is considered to be a true positive if the actual breakpoint(s)
was(were) within 5bps of the predicted breakpoint(s). The documentation for each tool was
examined in order to determine whether any parameters could be changed to improve the re-
sults for short structural variant discovery. Other than parameters to disable prediction of event
types not within the simulated data (i.e. translocations), we could not find any such parame-
ters. Therefore, we have run all tools with default parameters and defined the true calls based
on thresholds for the provided metrics (quality, identity or support, if they exists). We used
the metric cutoffs which maximize the F-score, shown in Table 2. Only inversions of length
≤400bp were considered in the calculations. We also filtered known germline insertions from all
duplication results.

For short inversions (5-100bp), MiStrVar outperformed the available alternatives by a sizeable
margin: Delly and Breakdancer were able to identify only 2 inversions (of length ∼90bp), while
SoftSV produced only false positives. The performance of Pindel was the closest to MiStrVar,
still ∼10% lower in both precision and recall. This is a considerable improvement when you
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Table 3: Running time comparison of all the SV detection tools on simulated data.
Tool CPU Time
MiStrVar 38m19s
BreakDancer 77m23s
Delly 10m35s
Pindel 40m4s
SoftSV 2m54s
ITDetector 138m39s

consider that the false discovery rate and false negative rate is more than halved with MiStrVar.
For longer inversions (>100bp), the performance of Breakdancer, Delly and Pindel were roughly
the same, still weaker than MiStrVar in both precision and recall. SoftSV had a very poor recall
performance, but was the most precise in this category.

For duplications, all tools we tested suffer from a high number of false positives. MiStrVar was
able to identify all duplications at low precision, the recall was down to ∼54% when the precision
was ∼31%. Even so, MiStrVar significantly outperformed all the other tools. To ensure that
our performance was not due to non-tandem duplications only, we also computed the precision
and recall values specific to tandem duplications. As shown in Table 1, with the exception of
MiStrVar, the relative performance of the tools did not change dramatically, improving the recall
and worsening the precision. In contrast, MiStrVar was able to find all the tandem duplications
with high precision. Notably, Pindel was unable to find any of the duplications in this category.
MiStrVar, on the other hand, improved significantly in recall with only a small drop in precision.

We also compared unfiltered microSV calls from all the five tools against that of MiStrVar.
Among these tools, Pindel was the most successful for inversions, correctly returning 147 of the
205 inversion breakpoints; unfortunately it could not identify any of the duplication breakpoints
correctly. SoftSV on the other was the best for duplication breakpoints, identifying 10 cor-
rect duplication breakpoint, while also returning 11 correct inversion breakpoints. In contrast,
the unfiltered results returned by MiStrVar are much more precise, with 162 correct inversion
breakpoints and and 98 correct duplications breakpoints.

Finally, the tools were compared in terms of running times. All tools were executed with the
same parameters used for the simulation predictions on the same system (AMD FX-9590, 16GB
RAM). If multiple stages were required, we report the total CPU time for all stages. BAM file
preparation was not considered, but it should be noted that MiStrVar will accept fastq, BAM
or SAM, and does not require the input to be sorted which may save users a great deal of time.
The CPU time used by each tool is summarized in Table 3. SoftSV and Delly had the best
running times (which is not surprising as they have the worst sensitivity), followed by MiStrVar
and Pindel. BreakDancer and ITDetector had relatively poor running times compared to the
other tools.

3.2 MicroSV Detection Results in HCC1143 Cell Line

3.2.1 Chromatogram interpretation for hetrozygous microSVs

Four of the inversions had amplicons with some nucleotides matching the reverse genomic strand
and some matching the forward strand. This occurred in the amplicons from all four normal
samples and two of the tumor samples. To resolve this discrepancy, the chromatogram corre-
sponding to each amplicon was examined, first for the four normal samples, for which each of the
inversion locations had either one or two peaks. In locations with two peaks, the bases always
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Table 4: Summary of microinverions (Inv.) and microduplications (Dup.) predicted by MiStrVar
in HCC1143 Cell line WGS datasets. Coding Region Calls are those predictions that overlap
with known coding regions defined in the Ensembl gene annotation for human reference genome
version GRCh37.70. Values in brackets indicate calls unique to the sample. These may be
somatic (tumor sample), or germline calls that have been lost in tumor by a large deletion
(normal sample).

Type
# Reads # Calls # Coding Region Calls
(Million) Inv. Dup. Total Inv. Dup. Total

Tumor 11,975.30 4,028 37,023 41,051 63 (53) 124 (54) 187 (107)
Normal 13,131.73 4,650 43,383 48,033 63 (53) 143 (73) 206 (126)

Figure 8: Sanger sequencing validation of the microinversion in the SLC3A1 gene we discovered
in the HCC1143 cell line. (A/B) Sequence of the cDNA produced by PCR, the assembled con-
tig, and the forward/reverse reference for that locus is given above. The cDNA is available for
both the normal (A) and tumor (B) samples from the HCC1143 cell line. Blue color indicates
matching sequences while purple color indicates palindromic sequences. (C/D) The correspond-
ing chromatogram for the normal (C) and tumor (D) cDNA is also provided above. Red, green,
blue and black peaks indicate T, A, C and G, respectively.

matched either the forward or reverse strand, exhibiting a classical case of heterozygous inversion
that only occurs on one allele. For the final two inversion predictions, the amplicons for BOK
and UBP1 corresponding to the tumor sample, only matched the forward genomic strand, which
indicates no inversion at these locations. The amplicon corresponding to the normal sample of
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UBP1 contained many N bases in the sequence. Not enough information could be drawn from
the chromatogram to conclusively say whether the amplicon supports an inversion.

Three of the duplication chromatograms showed two peaks at the insertion site and imme-
diately downstream. One of the two peaks support the reference and the other the inserted
sequence and the shifted reference, indicating that these calls are heterozygous. This was ob-
served in both normal and tumor samples for GPRIN2 and only in normal for PALM2-AKAP2
and PRSS48. The final amplicon for ADAMTS7 showed only reference sequence at the insertion
site, indicating that there is no duplication.

3.2.2 RNA-Seq Support for microSVs in HCC1143 Cell Line

In addition to matching exonic microSV calls with unique proteomic signatures, we looked for
RNA-seq level support for microinversions and microduplications detected by MiStrVar on the
HCC1143 cell line. RNA-Seq data for HCC1143 cell line was composed of 81.73M paired-end
reads of length 2x101bp each. Among these, ProTIE uses 8.75M (∼10%) reads that cannot
be mapped concordantly to known transcripts or potential spliceforms by splice-aware mapper
STAR, to validate transcribed microSVs identified at the genomic level. In short, there are 24
such microSVs with supporting RNA-Seq reads, and all but one of them are microduplications.
This is in agreement with the WGS data whose analysis revealed no no high confidence, exonic
microinversions. In fact, the single microinversion with RNA-Seq support also has low WGS
read support and contains an error.

3.3 Further Support and Evaluation of the Detected microSVs in the
HCC1143 Cell Line

Note that with the exception of one microinversion and one microduplication, all microSVs dis-
covered in the HCC1143 cell line have corresponding entries in The Database of Short Genetic
Variation (dbSNP) [19]. The microinversions are annotated as “multiple nucleotide polymor-
phisms” (MNP) microduplications are annotated as “insertion/deletions”. This is an additional
indication that MiStrVar predicts real events. Furthermore, this observation points to the much
needed differentiation of germline MNPs and insertions from inversions and duplications, cur-
rently missing in dbSNP.

It is interesting to add here that, two of the likely somatic calls made by MiStrVar also have
entries in dbSNP. The first one, the microduplication in FAM20C mentioned above, is missed by
Sanger Sequencing on the normal sample; it can still be a germline event since it is supported
by 22 WGS reads. The second microduplication in gene KIAA1009 is even more likely to be
somatic since it is not supported by WGS or Sanger Sequencing in the normal sample. Two
additional calls, a microinversion in BOK and a microduplication in ADAMTS7, could not be
validated by Sanger Sequencing in either sample, but have dbSNP entries. Both of these calls
are observed across several TCGA samples in addition to the HCC1143 cell line so it is likely
that Sanger Sequencing failed to detect them.

Another interesting observation are the calls in the genes PALM2-AKAP2 and PRSS48.
These calls were only validated in the normal sample, and in one allele. The event PALM2-
AKAP2 is likely to be present and yet missed by Sanger Sequencing in the tumor sample since
it was observed with high WGS read support. In contrast, the call in PRSS48 has no supporting
reads in the tumor sample in either WGS or RNA-Seq. Upon further investigation of this region,
we noticed that the read coverage is approximately half in the tumor sample in comparison to
the normal sample and all the reads are wildtype. This implies that this is a germline event
where the allele containing the call has be deleted in the tumor. This observation highlights the
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possibility that due to their small size microSVs could be deleted or amplified through larger
events.

4 Overview of CPTAC datasets

Table 5 provides some details on samples that were used in our analysis. Since we applied
MiStrVar and ProTIE to the complete set of 22 TCGA breast cancer patients for which match-
ing WGS, RNA-Seq and CPTAC Mass Spectrometry data were all available, we also list their
information in Table 6.

The mass spectrometry datasets released by CPTAC were selected from all four major breast
cancer intrinsic subtypes (Luminal A, Luminal B, Basal-like/triple-negative, HER2-enriched).
Each iTRAQ experiment included three TCGA samples and one common internal reference
control sample. A single mixture consists of 25 proteome and 13 phosphor-proteome data files,
in total 500 GB data. Our data analysis indicates that a two-dimensional reversed-phase liquid
chromatographytandem mass spectrometric (2D-LC/MS/MS) sample comprises of about 0.87
million MS/MS spectra (per mixture). When we search them against Ensembl Human protein
database, about 0.38 million MS/MS spectra in a mixture are matched to at least one peptide
under 1% false discovery rate. These spectra lead to 59,387 proteins (42,840 known, 6,250 novel,
10,026 putative) with some peptides being covered by at least one spectra. The remaining 0.49
million spectra (≈ 56% of the whole set) do not match to any protein in the Ensembl database.

ProTIE obtains the intersection between these (0.49 million) unidentified spectra and the
aforementioned set of fusions with missed cleaved polypeptides, to obtain 3,150,502 potential
fusion peptides from 105 breast cancer patients 6 7 ProTIE uses a similar workflow to identify
potential microSV peptides; for this case 635,125 potential microSV peptides were obtained from
22 patients.

Table 5: Available omics data for TCGA/CPTAC breast cancer samples.
WGS RNA-Seq Mass Spec.

Solid Blood Solid Solid Solid
Mixture

Number of
Tumor Normal Normal Tumor Normal Patients

X X X X X X 2
X X X X X 1
X X X X X 3
X X X X 16

X X X 10
X X 73

Total: 105

5 High-Confidence deFuse Calls in CPTAC Datasets

The first part in Table

6Each breakpoint is associated with six reading frames and thus can result in (one of) six distinct proteins, and
each such potential protein can lead to multiple potential peptides according to the number of K/R in the
sequence. (see Figure

7Note that a reversed database was also appended here to control the false discovery rate.
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Table 6: General information on all 22 TCGA breast cancer patients with both tumor/normal
WGS and tumor RNA-Seq data. (A) Clinical Data. The PAM50 mRMA cancer subtypes and
AJCC stage for each patient. (B) Data Source. Tissue Source indicates the medical facility the
sample and the relevant clinical data originates from; Sequencing Center indicates the location
of actual sequencing: WUSM indicates Washington University School of Medicine, and HMS
indicates Harvard Medical School. (C) Number of Reads. The BAM files corresponding
to the majority of the samples contain paired-end reads of length 2x100bp (data from WUSM)
or 2x51bp (data from HMS). There are only two exceptions: the solid tumor of patient A09I
contains additional 206 million paired-end reads with respective lengths of 100bp and 44bp;
the solid tumor of patient A0CM contains additional 579 million single end reads. These two
inconsistent data sets are not used in our analysis. Note that all RNA-Seq datasets are from
UNC (University of North Carolina Medical School), and on average include 76M paired-end
reads of length 2x50bp.

Patient
Cancer AJCC Tissue Sequencing Number of WGS Paired-End Reads (Millions)

Subtypes Stage Source Center Solid Tumor Blood Normal Solid Normal

A09I Basal-like IIA Indivumed WUSM 687.13 584.10

A0AV Basal-like IIIC U of Pittsburgh WUSM 954.38 558.24

A0CE Basal-like IIA Christiana Healthcare WUSM 628.67 552.64 691.68

A0CM Basal-like IIA Walter Reed WUSM 784.96 540.58

A0D0 Basal-like IIA Walter Reed WUSM 788.15 516.83

A0D1 Basal-like IIB Walter Reed WUSM 1015.35 573.74

A0D2 Basal-like IIIA Walter Reed WUSM 689.42 646.66

A0DG Basal-like I U of Pittsburgh WUSM 893.64 522.71

A0E0 HER2-enriched IB U of Pittsburgh WUSM 686.41 521.02 793.65

A0EY HER2-enriched IIA Walter Reed WUSM 907.43 579.46

A0HK HER2-enriched II U of Pittsburgh HMS 193.03 180.00

A0J6 HER2-enriched IIA MSKCC WUSM 592.48 661.74

A0JJ HER2-enriched IIIA MSKCC HMS 214.75 208.31

A0JL HER2-enriched IIIA MSKCC HMS 220.37 217.78

A0JM Luminal A IIB MSKCC WUSM 1126.03 671.57

A0TX Luminal A IIB Mayo WUSM 1018.72 642.28

A0YG Luminal A IIA Walter Reed WUSM 872.51 514.68

A12L Luminal B IIIA ILSBio WUSM 1031.04 650.09

A12Q Luminal B IIIC ILSBio WUSM 1011.50 640.57

A130 Luminal B IIB ILSBio WUSM 813.37 654.17

A18R Luminal B IIB U of Pittsburgh WUSM 1002.25 594.58

A18U Luminal B IIA U of Pittsburgh WUSM 906.82 605.45
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5.1 Proteomics Support of High-Confidence deFuse Calls

Among the remaining fusions, two stand out with respect to peptide-spectrum matching quality,
respectively observed in patients A08G and A15A. The corresponding PSMs generated by pFind
Studio [20, 21] can be found in figs. 9 to 11.

Figure 10: A PSM supporting a fusion between genes HOOK3 and CTA-392C11.1 in patient
A15A (Luminal B, Stage IIIC). The peptide crosses the fusion breakpoint predicted from RNA-
Seq data at amino acid M.

6 Summary of microSVs in CPTAC datasets

6.1 MicroSVs Detection Results is WGS datasets

We applied MiStrVar to WGS datasets of 22 CPTAC patients. The number of detected mi-
croSVs varies between samples, ranging from one to several thousand. See Table 8 for details.
In addition, Table 9 and Table 10 provide information of high confident microinversions and
microduplications among 22 patients.
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Figure 11: Another PSM supporting the fusion in figure 10 between genes HOOK3 and CTA-
392C11.1 in the patient A15A (Luminal B, Stage IIIC). The peptide is located downstream of
the breakpoint.

Patient
Cinical

Gene 1 Gene 2
deFuse Breakpoint Peptide # of

BP
Str

Info Score Location Sequence Spectra FDR

Additional Fusions with Multiple Supporting Spectra

A06Z LB, IIB RAB15 TMEM98 0.01 coding, utr5p QIWDTAGQENR 2 X
A0C1 LA, IIIA RPL14 FAM155A 0.02 coding, coding ASAAAAAAAAK 2 X X
A0D2 BL, IIB ACTG1 ACTB 0.52 coding, coding HHGIVTNWDDMEK 4 X
A0E0 BL, IIIC PEA15 CPEB2 0.05 coding, coding YPGTLLQDLTNNITLEDLEQLK 2 X X
A0EX LA, IIB RAB6B CFL1 0.02 utr3p, coding EAGVAVSDGVIK 3 X
A0TR LA, II ZNF587 TMEM163 0.12 utr3p, intron QSETLSQNKK 2 X
A12D H2, IIA RPL19 CALR 0.04 coding, coding PAGQGVFPASSPGMDGEWEPPVIQNPEYK 5 X X
A12D H2, IIA SCGB2A2 EEF1A1P5 0.05 coding, pseudogene ATAFIDQMASSGGLARIYVSNDDNATTNAIDELK 2 X
A12D H2, IIA EIF4A1 ABL2 0.16 utr3p, intron SLNKCHFLR 3 X
A12U LB, IB NME1 RP11-111A21.1 0.01 coding, downstream SVMLGETNPADSKPGTIR 2 X X
A12W LB, IIIB CTNNA3 CEP120 0.007 intron, intron LALDIEIATYKT 2 X
A13F LB, IIIA RPL14 S100A16 0.17 coding, utr3p SAAAAAAAAAK 2 X X
A142 BL, IIB HSP90AB1 AC096579.7 0.01 coding, ncRNA FEINPDHPIVETLR 4 X X
A150 BL, IIA HSPA8 RP11-537H15.3 0.03 coding, intron (*)HVAMNPTNTVFDAK 2 X X
A159 BL, IIA DLG4 VIM 0.36 intron, coding SYVTTSTRR 2 X
A15A LB, IIIC WASH4P ABC7-42389800N19.1 0.07 coding, pseudogene PKSGSGGEGVMEPPR 2 X
A18Q BL, IIB MGP EEF1A1P5 0.01 coding, pseudogene FFFFPQSHLVTFAPVNVTTEVK 5 X X
A18U LB, IIIA ZNF354A RP11-383H13.1 0.47 coding, intron DGSGVSSLGVTPESR 2 X X
A1AQ BL, II CDKN2A LINC00486 0.01 coding, intron GGGGGGGGCCPR 2 X
Additional Cancer-related Genes in Fusions

A0BZ LB, IIIA MDM2 ZC4H2 0.69 utr3p, downstream ISFFLEVLQALFGVDNTSATTK 1 X
A0C1 LA, IIIA USP42 CD44 0.19 intron, utr3p YEKENWSGFFFFFLK 1 X

A0EQ H2, IIA BLOC1S6/NEDD4
0.85 coding, utr3p

ISGKLEELEK 1 X XANKRD30A
0.76 coding, intron

A09I LB, IIA YARS/ZNFX1
0.08 intron/utr3p

GQEFKTSLTNMAK 1 XGRB7
0.02 upstream/intron

A09I LB, IIA ERBB2 NME2P1 0.01 coding, pseudogene IQHYIDLK 1 X

6.2 RNA-Seq support for microSVs in CPTAC Breast Cancer Patients

Among 22 breast cancer patients with matching WGS and RNA-Seq data, MiStrVar detected
69,876 exonic microinversions and microduplications. Out of these microSVs, 905 microinversions
and 1310 microduplications (among which 33 are tandem), i.e. 2,215 calls overall, are supported
by at least one RNA-Seq read (as determined by the splice-aware mapper STAR) which can not
be concordantly mapped to any other known transcript.
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Table 8: Number of exonic microinversion and microduplication calls made by MiStrVar in each
of the 22 TCGA breast cancer patients with both tumor/normal WGS and tumor RNA-Seq
data. Even though few of these patients, especially A0CM, have microSV profiles with a high
number of inversions, the sequencing quality is consistent with others. Additionally their copy
number profiles are also similar to others.

Patients Cancer Subypes AJCC Stage
Microinversions Microduplications

Solid Blood Solid Solid Blood Solid
Tumor Normal Normal Tumor Normal Normal

A09I Basal-like IIA 62 1071 89 169
A0AV Basal-like IIIC 79 56 151 122
A0CE Basal-like IIA 559 151 58 156 54 79
A0CM Basal-like IIA 36402 274 2867 74
A0D0 Basal-like IIA 429 1335 135 169
A0D1 Basal-like IIB 765 1373 150 163
A0D2 Basal-like IIIA 2031 552 484 109
A0DG Basal-like I 64 35 128 96
A0E0 HER2-enriched IB 281 67 991 100 73 134
A0EY HER2-enriched IIA 2075 1762 194 168
A0HK HER2-enriched II 5 0 10 6
A0J6 HER2-enriched IIA 7305 53 1220 58
A0JJ HER2-enriched IIIA 2 3 9 10
A0JL HER2-enriched IIIA 2 0 10 13
A0JM Luminal A IIB 502 80 128 82
A0TX Luminal A IIB 134 293 90 84
A0YG Luminal A IIA 105 696 70 73
A12L Luminal B IIIA 397 109 151 88
A12Q Luminal B IIIC 107 57 112 86
A130 Luminal B IIB 198 57 79 60
A18R Luminal B IIB 428 47 99 75
A18U Luminal B IIA 142 52 81 72

21

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1672/4756097 by guest on 23 April 2024



Table 9: The top microinversions found in introns (WGS read support > 40, sequence identity
100%) and UTRs (WGS read support > 10, sequence identity 100%). Boldface microinversions
are also observed in the HCC1143 cell line, and all except BOK are validated. The “Pali.”
column provides the length of flanking palindromic sequences. The “Support” column indicates
the minimum per base coverage of the inverted region, in the sample with the highest support for
the call. The dbSNP ID refers to the multiple nucleotide polymorphism (MNP) corresponding
to the microinversion. If more than one ID is shown, these are SNPs with equal allele frequency
that can be explained by the inversion.

# of Samples WGS Support RNA-Seq
Chr. Location Len. Pali. Gene Region Tumor Normal Tumor Normal Support dbSNP ID
2 44545739 27 6 SLC3A1 3’UTR 18 22 88 36 X rs71416108
7 24745614 21 5 DFNA5 3’UTR 2 2 16 9 rs386711358
1 226259222 7 3 H3F3A 3’UTR 17 20 33 24
6 170859029 26 0 PSMB1 3’UTR 1 2 17 33 X
17 416906 87 5 VPS53 3’UTR 1 0 21 0
13 49000665 1267 0 LPAR6 5’UTR 1 0 14 0
3 170821851 26 3 TNIK Intron 20 23 78 47 N/A rs781523247
7 117357036 29 3 CTTNBP2 Intron 22 24 48 39 N/A rs386717124
19 56389843 32 2 NLRP4 Intron 20 23 61 43 N/A rs386811126
22 31291523 23 2 OSBP2 Intron 15 18 67 40 N/A rs67147751
9 28014540 29 3 LINGO2 Intron 10 13 49 40 N/A rs386733960
2 242500549 12 4 BOK Intron 15 14 55 40 N/A rs386657165
3 85078096 6 31 CADM2 Intron 17 19 57 44 N/A rs71616888
1 223947597 8 11 CAPN2 Intron 5 7 73 25 N/A rs386639771
8 3904131 21 5 CSMD1 Intron 4 4 46 46 N/A rs768996207
17 72953704 5 3 HID1 Intron 7 7 47 12 N/A rs374377884
12 75573538 5 19 KCNC2 Intron 10 10 61 45 N/A rs201249335,rs201655437,rs200375416

rs201997536,rs201455075
6 151077062 23 6 PLEKHG1 Intron 6 5 43 25 N/A rs12662499,rs71570234,rs71570235,rs71570235

rs71570236,rs56028508,rs56028508
13 49002453 868 0 RB1 Intron 1 0 45 0 N/A
9 92084244 35 3 SEMA4D Intron 9 11 52 36 N/A rs71497306
5 179256683 22 3 SQSTM1 Intron 18 19 61 38 N/A rs71577407
2 64117422 25 2 UGP2 Intron 4 5 45 37 N/A rs543356344,rs543356344,rs529034843

rs540886904,rs559363558,rs139485198
8 100686027 5 4 VPS13B Intron 5 7 84 26 N/A rs386728165
5 15840451 30 2 FBXL7 Intron 14 14 63 34 N/A rs386685795
6 108787955 12 23 LACE1 Intron 13 16 42 25 N/A rs71553768
3 197731404 85 0 LMLN Intron 1 1 29 58 N/A
2 214485778 5 13 SPAG16 Intron 5 6 59 44 N/A rs74181305

Table 10: The top exonic microduplications (WGS read support > 40, sequence identity 100%)
and somatic microduplications (WGS read support > 10, sequence identity 100%). Boldface
microduplications are also observed in the HCC1143 cell line. The “Type” column indicates
if the inversion is tandem or interspersed. The “Support” column indicates the minimum per
base coverage of the duplicated region, in the sample with the highest support for the call. The
dbSNP ID refers to the indel corresponding to the microduplication.

# of Samples WGS Support RNA-Seq Support

Chr. Location Len. Gene Region Type Tumor Normal Tumor Normal Tumor Normal dbSNP ID

1 186365852 8 AL596220.1 Exon Tandem 9 10 42 20 0 0 rs145764138

1 203186950 24 CHIT1 Exon Tandem 2 2 54 14 0 N/A rs386369359

19 51857874 6 ETFB Exon Tandem 2 2 41 20 0 N/A rs61361626

12 121434630 8 HNF1A Exon Tandem 18 23 50 33 0 0 rs58371019

10 91497902 6 KIF20B Exon Inter. 12 13 43 25 24 7 rs144593231

16 2185524 7 PKD1 Exon Tandem 5 3 75 31 0 0 rs3072277

4 152201018 5 PRSS48 Exon Tandem 7 8 47 20 0 0 rs71901196

22 20458100 6 RIMBP3 Exon Tandem 2 3 45 29 0 0 rs374606390

1 180199692 24 LHX4 Exon Tandem 1 0 12 N/A 0 N/A -

18 34366699 5 TPGS2 3’UTR Tandem 1 0 11 N/A 2 N/A -

7 102222821 12 RASA4 3’UTR Tandem 1 0 10 N/A 3 N/A -

12 76443235 6 NAP1L1 3’UTR Tandem 1 0 13 N/A 0 N/A -
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7 Mechanistic and Functional Interpretation of microSV
and Fusion Peptides Detected in TCGA/CPTAC BRCA
Dataset

7.1 Fusions Peptides

Many of the fused genes with detected novel peptides (each typically observed in a single patient)
are associated with breast cancer. A selection of these fusions are listed in Table

The remaining fusions associated with highlighted genes in Table
In addition to fused tumor suppressors, we also detected peptide evidence for fused onco-

genes. The discovered fused oncogenes are: ANKRD30A, also known as NY-BR-1, a breast
differentiation antigen observed in many breast cancer cells [22]; GRB7, a breast cancer driver
gene which participates in Development ERBB-family signaling pathway [23, 24]; ERBB2, a well
known breast cancer oncogene and biomarker [25] as well as the coexpressed gene Ribosomal
protein L19 (RPL19); CALR, a gene highly expressed in approximately 5% of breast cancer
cells and associated with metastasis [26]; and finally VIM, a protein involved in the epithelial to
mesenchymal transition which drives metastasis [27]. The fusions involving ANKRD30A, RPL19
and CALR meet our stringent FDR criteria, while the others do not. In a number of cases, we
can not pinpoint its fusion partners based on RNA-Seq data alone. The proteogenomics results
help to increase our confidence of these fusions, and reduce the number of fusion partner candi-
dates in the corresponding patients. The ERBB2 fusion is particularly interesting since ERBB2
is amplified in 15% of breast cancers and targeted with a variety of FDA approved drugs, making
it a possible target for clinical analysis.

In the final list of 295 candidate fusions, 107 of the involved genes are also reported to be
involved in a fusion according to TCGA Fusion gene Data Portal 8. 58 of these genes have
records in breast cancer (BRCA), and among them 19 genes are reported in the breast cancer
database alone.

Among the ten cancer-related fusion genes in Table

7.2 Genomic MicroSVs Peptides

Analysis of cell line and TCGA data allowed us to investigate the prevalence of microSVs in
cancer. In particular, we present here the very first analysis of transcribed and translated mi-
croinversions in any cancer dataset. The only study in the literature on microinversions focus
exclusively on a small number of “easier to detect”’ intronic and intergenic events, for phylo-
genetic purposes [28, 29, 30]. Our validation results on the HCC1143 breast cancer cell line
confirmed the presence of several high-confidence, germline calls in intronic regions, in agree-
ment with this study. Interestingly, many of these inversions are flanked with short palindromic
sequences. This appears to support the microinversion mechanism proposed earlier by Kelchner
et al. [31] where these palindromes form stems through base pairing. We note here though that
the palindromic sequences we observe typically include two to six nucleotides, shorter than those
with eleven or more nucleotides observed by Kelchner et al.

The importance of small duplications has already been well established in AML [32], however
little work has been done on other types of cancer. Our Sanger sequencing based validation
results in the HCC1143 cell line confirms the presence and expression of microduplications in
breast cancer. One of the microduplications we discovered in gene FAM20C has been shown [33]

8Note that results in this database are based on 10431 calls from 2961 TCGA patients, which contains much
broader scope than 105 breast cancer patients selected by CPTAC.

23

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1672/4756097 by guest on 23 April 2024



to have a dramatic effect on cell adhesion, migration, and invasion of breast cancer cells. This
could be of interest because the HCC1143 cell line that includes the aberrant FAM20C gene was
derived from a non-metastatic tumor.

We observed that the number of microinversion calls varies between samples, ranging from two
calls to several thousand. Much of this variation can be explained by the number of reads in the
sample (e.g. A0HK, A0JJ and A0JL have the smallest WGS datasets); see Table 6). Other cases
are explained by the variation in read quality (e.g. A0J6 has the highest number of low quality
reads). However one patient, A0CM-01A, is a clear outlier and cannot be explained by either of
these factors, e.g., the proportion of high quality calls for this patient is similar to that of other
samples so the calls here are not inflated by false positives. It remains unclear what differentiates
this patient from the others from a clinical point of view [34]. In addition, the number of SNVs,
indels and fusions observed in this sample are in the normal range (Supplementary Table 7) even
though the number of duplications are on the higher end. This may indicate that microinversions
may have a dominant role in cancer progression under certain circumstances, even though further
research is needed to identify the specific microinversion mechanism underlying these events.

The number of exonic microduplications in the TCGA patient samples were similar to that
we observed for microinversions. The variance in the number of calls is also similar to that of
microinversions. The patient A0CM again has the highest number of calls, but not drastically
so.

As per our results from the HCC1143 cell line, most of the germline calls MiStrVar returned for
the TCGA samples have corresponding dbSNP entries. This is particularly evident among high
confidence intron and UTR microinversions (Table 9). Out of these calls, three microinversions
found in the genes KCNC2, PLEKHG1 and UGP2 are especially interesting. These calls have
multiple SNPs between the two associated breakpoints. Most (sometimes all) of the remaining
inversion sequence are palindromic, i.e. the reverse complement is identical to the reference. The
minor allele frequency of these SNPs is identical, implying that they are a consequence of a single
event. It is likely that these SNPs are miscategorized in dbSNP and are actually part of germline
microinversions. Several other microinversions that actually have a single MNP entry also have
several redundant SNPs found in the same location with the same allelic frequency. This appears
to be a common occurrence and may warrant an additional variant class in dbSNP as well as
the removal of potentially incorrect and/or redundant entries. Many of the microinversion calls
validated in the HCC1143 cell line appear in more than half of the TCGA samples (Table 9).
The single validated UTR call in gene SLC3A1 also has RNA-Seq support in five samples. In
addition, an entirely novel microinversion in the 3’UTR of PSMB1, with RNA-Seq support,
was discovered. Other novel microinversions include those found in genes DFNA5 and RB1,
both known tumor suppressors in breast cancer [35, 36]. Again, we often see short palindromic
sequences in the flanking regions of the microinversions. However the high confidence call in
PSMB1 demonstrates that some microinversions lack any flanking palindromic sequences.

The vast majority of microduplications appear to be germline events. In fact, all of the mi-
croduplications under our strictest filtering at the genomic level are germline events (Table 10).
Unfortunately the majority of these do not have RNA-Seq or proteomic support. Interestingly,
the only non-tandem microduplication in this subset does have RNA-Seq support in multiple sam-
ples. It occurs in KIF20B, a known oncogene for liver, bladder and pancreatic cancer, [37, 38, 39].
Note that this call would likely be missed by available duplication callers, or would be miscatego-
rized as an indel. Although somatic calls are in the minority, we observed some high confidence
calls in exons and UTR (Table 10). One of these calls is in NAP1L1, a tumor suppressor gene in
neuroendocrine tumors and small intestine, ovarian and liver cancer [40]. Additionally, two UTR
microduplications in TPGS2 and RASA4 genes have RNA-seq support. Among them, RASA4
methylation has been associated with poor prognosis in juvenile myelomonocytic leukemia [41].
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From our list of high confidence microSV calls (Table
Deletions, translocations and allele loss at the genomic loci containing RPL14 have been

observed in variety of cancers [42], including breast cancer [43]. This may be the case within
patients AOCE, A18R (deletion) and A0JM (LOH). The unusually long case in patient A18U
may lead to protein instability, causing the same phenotype as a deletion. Polyalanine tract
lengths have been shown to be associated with cancer risk in other genes, such as androgen
receptor in prostate cancer [44].

Another interesting example, RBBP8 is a tumor suppressor specifically related to breast
cancer. We have observed through inspecting geneMania [45] that RBBP8 is associated with the
recombinational repair pathway (p < 1.27 × 10−9) (Supplementary Figure 12). RBBP8 is also
known to modulate the important tumor suppressor BRCA1 [46] and act as a tumor suppressor
itself through binding with the MRE11-RAD50-NBS1 (MRN) complex [47] or replication protein
A (RPA) [48].9

ATR

MRE11AMRE11A

RBBP8RBBP8

RAD50RAD50

NBNNBN

ATMATM

BRCA1BRCA1

PALB2PALB2

Figure 12: Functional analysis graph from GeneMania. Red lines indicate direct physical in-
teraction, purple lines indicate co-expression and blue lines co-localisation. The thickness of
the line represents the combined weights of the interaction across all analysed networks of that
type. The diameter of the circles is inversely proportional to the rank of the gene in a list sorted
by functional relatedness to the striped gene. This graph contains all genes interacting with
RBBP8 in the recombinational repair pathway (p < 1.27 × 10−9). RBBP8 is closely associated
with BRCA1, an important tumor suppressor gene in breast cancer.

9Binding of MRN and RPA occur through a domain at the N-terminus of the RBBP8 protein, which overlaps
with the predicted microinversion. We hypothesize that the microinversion in this gene leads to the production
of an aberrant peptide which is unable to bind to MRN or RPA, disrupting double stranded break repair and
contributing to the cancer.
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Appendix - Chromatograms

The following figures are excerpts of the chromatograms produced from Sanger sequencing vali-
dation of our top microSV calls in the HCC1143 cell line WGS data. The subsequences captured
in these images include the SV (for validated cases) or the wildtype sequence (for invalidated
cases) and some flanking sequence. Each call was validated using forward and reverse primers
for both the normal and tumor sample. If a specific case is omitted below it is because neither
the variant or the wildtype could be identified in the chromatogram (inconclusive case).

Figure 13: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in TNIK in the normal sample.

Figure 14: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in TNIK in the tumor sample.

Figure 15: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in CTTNBP2 in the normal sample.
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Figure 16: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in CTTNBP2 in the normal sample.

Figure 17: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in CTTNBP2 in the tumor sample.

Figure 18: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in CTTNBP2 in the tumor sample.

Figure 19: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in PFKP in the normal sample.
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Figure 20: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in PFKP in the normal sample.

Figure 21: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in PFKP in the tumor sample.

Figure 22: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in PFKP in the tumor sample.

Figure 23: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in NLRP4 in the normal sample.
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Figure 24: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in NLRP4 in the normal sample.

Figure 25: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in NLRP4 in the tumor sample.

Figure 26: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in NLRP4 in the tumor sample.

Figure 27: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in ZNF57 in the normal sample.
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Figure 28: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in ZNF57 in the normal sample.

Figure 29: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in ZNF57 in the tumor sample.

Figure 30: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in ZNF57 in the tumor sample.
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Figure 31: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in OSBP2 in the normal sample.

Figure 32: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in OSBP2 in the tumor sample.

Figure 33: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in GNG12-AS1 in the normal sample.
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Figure 34: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in GNG12-AS1 in the normal sample.

Figure 35: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in GNG12-AS1 in the tumor sample.

Figure 36: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in GNG12-AS1 in the tumor sample.

Figure 37: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in LINGO2 in the normal sample.
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Figure 38: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in LINGO2 in the normal sample.

Figure 39: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in LINGO2 in the tumor sample.

Figure 40: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in LINGO2 in the tumor sample.

Figure 41: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in UBP1 in the normal sample.
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Figure 42: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in UBP1 in the normal sample.

Figure 43: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in UBP1 in the tumor sample.

Figure 44: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in UBP1 in the tumor sample.
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Figure 45: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in BOK in the normal sample.

Figure 46: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in BOK in the normal sample.

Figure 47: Chromatogram for cDNA produced when using forward primers capturing the mi-
croinversion in BOK in the tumor sample.
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Figure 48: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croinversion in BOK in the tumor sample.

Figure 49: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in GTPBP6 in the normal sample.

Figure 50: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in GTPBP6 in the normal sample.

Figure 51: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in GTPBP6 in the tumor sample.
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Figure 52: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in FAM20C in the tumor sample.

Figure 53: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in FAM20C in the tumor sample.

Figure 54: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in KIAA1009 in the tumor sample.
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Figure 55: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in BAIAP2L2 in the normal sample.

Figure 56: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in BAIAP2L2 in the tumor sample.

Figure 57: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in RBMXL3 in the normal sample.
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Figure 58: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in RBMXL3 in the normal sample.

Figure 59: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in RBMXL3 in the tumor sample.

Figure 60: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in RBMXL3 in the tumor sample.

Figure 61: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in GPRIN2 in the normal sample.
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Figure 62: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in GPRIN2 in the tumor sample.

Figure 63: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in PALM2-AKAP2 in the normal sample.

Figure 64: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in PALM2-AKAP2 in the normal sample.

Figure 65: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in PRSS48 in the normal sample.
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Figure 66: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in PRSS48 in the normal sample.

Figure 67: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in PRSS48 in the tumor sample.

Figure 68: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in PRSS48 in the tumor sample.

Figure 69: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in ADAMTS19 in the tumor sample.
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Figure 70: Chromatogram for cDNA produced when using forward primers capturing the mi-
croduplication in CIDEA in the tumor sample.

Figure 71: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in CIDEA in the tumor sample.

Figure 72: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in ADAMTS7 in the normal sample.

Figure 73: Chromatogram for cDNA produced when using reverse primers capturing the mi-
croduplication in ADAMTS7 in the tumor sample.
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