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Abstract

Motivation: Computational gene prioritization can aid in disease gene identification. Here, we pro-

pose pBRIT (prioritization using Bayesian Ridge regression and Information Theoretic model), a

novel adaptive and scalable prioritization tool, integrating Pubmed abstracts, Gene Ontology,

Sequence similarities, Mammalian and Human Phenotype Ontology, Pathway, Interactions,

Disease Ontology, Gene Association database and Human Genome Epidemiology database, into

the prediction model. We explore and address effects of sparsity and inter-feature dependencies

within annotation sources, and the impact of bias towards specific annotations.

Results: pBRIT models feature dependencies and sparsity by an Information-Theoretic (data

driven) approach and applies intermediate integration based data fusion. Following the hypothesis

that genes underlying similar diseases will share functional and phenotype characteristics, it in-

corporates Bayesian Ridge regression to learn a linear mapping between functional and phenotype

annotations. Genes are prioritized on phenotypic concordance to the training genes. We evaluated

pBRIT against nine existing methods, and on over 2000 HPO-gene associations retrieved after con-

struction of pBRIT data sources. We achieve maximum AUC scores ranging from 0.92 to 0.96

against benchmark datasets and of 0.80 against the time-stamped HPO entries, indicating good

performance with high sensitivity and specificity. Our model shows stable performance with

regard to changes in the underlying annotation data, is fast and scalable for implementation in

routine pipelines.

Availability and implementation: http://biomina.be/apps/pbrit/; https://bitbucket.org/medgenua/

pbrit.
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1 Introduction

Whole-exome sequencing (WES), the current standard approach to

identify causal variants in genes underlying human genetic disorders,

returns a large number of variants. Databases of known variants

such as gnomAD (Lek et al., 2016) provide a powerful first filter.

However, identifying the true causal variant often remains a time

consuming and challenging task, involving manual evaluation of

functional and phenotypical gene information available in literature

and biological databases, which is unfeasible without computational

tools for larger datasets.

The core principle of computational gene prioritization is to

rank candidate genes based on annotation patterns using a discrim-

inatory statistical model. Additionally, these methods can generate

hypotheses for novel gene functions. The predictive ability heavily

depends on the choice of annotation sources and the technique used

to mine the patterns.

Tranchevent et al. (2011) presented an overview of existing gene

prioritizers classified with respect to integrated annotation sources.

Based on the presence or absence of a training set (Moreau and

Tranchevent, 2012), these tools are broadly classified as supervised

[e.g. Endeavour (Aerts et al., 2006; Tranchevent et al., 2016);

ToppGene (Chen et al., 2009)] or unsupervised models [e.g.

Biograph (Liekens et al., 2011)].

Next to the learning approach, prioritization results depend on

two other aspects: annotation sources can be integrated using early,

intermediate and late integration (Pavlidis et al., 2002), and a wide

range of statistical methods can be used as the underlying model to

rank the genes. Network-based prioritization tools (Lage et al.,

2007; Li and Patra, 2010; Kohler et al., 2008; Wu et al., 2008;

Zhang et al., 2011), incorporating both protein–protein interaction

and phenome networks, are examples of early integration based

approaches. Among these, Random Walk with Restart (RWR) gives

robust performance with higher predictive accuracy, but it is typic-

ally only applicable to single networks and often incorporates only

direct neighbourhood information. For multiple networks, Direct

Integration of Ranks (DIR) (Chen et al., 2011) and Markov

Random Field (MRF) (Chen et al., 2014) were proposed which

automatically assign weights to different networks for integration.

Recently, a new version the RWR algorithm was proposed that

also incorporates multiple heterogeneous networks (RWR-M)

(Valdeolivas et al., 2017). Chen et al. (2015) proposed a logistic re-

gression based model that utilizes direct and higher-order neigh-

bourhood information in the network for prioritization, together

with pathway and expression profiles.

Early integration based approaches can represent topological re-

lationship of entities, but often require complex feature construction

during data fusion. In contrast, late integration approaches compute

ranks on individual annotation sources and then integrate them to

obtain an overall ranking. Rank fusion can become computationally

challenging when the number of annotation sources and genes to be

prioritized is large. Recently, Zitnik et al. (2015) proposed a mid-

way approach, termed intermediate data integration. The main idea

is to fuse annotation sources while retaining the overall data

structure, thereby capturing internal structures and latent dependen-

cies. Despite the broad range of available methods, most current

implementations ignore these internal structural representations

(like hierarchical ontologies) and latent inter-feature dependencies

during fusion.

It should be noted that updates to annotation sources can even-

tually alter biological meanings associated with the functionality of

any gene. Furthermore, Schnoes et al. (2009) pointed out that the

advent of next generation sequencing created a large gap between

computationally predicted annotations and their experimental valid-

ation. For example, three studies (Gillis and Pavlidis, 2013; Groß

et al., 2012; Kumar et al., 2013) discussed how changes in the in-

ternal directed acyclic graph structure of Gene Ontology (GO) terms

over an interval of 10 years can impact subsequent functional ana-

lyses. The dynamic nature of biological annotation sources will thus

inevitably lead to annotation errors, with a significant potential im-

pact on downstream analysis (Wadi et al., 2016). Although gene-by-

gene proximity profiles are at the core of all available prioritization

tools, the uncertainty on the proximity scores related to these

changes is typically not taken into account, which might impact the

prioritization results and lead to less stable ranking.

Another important aspect that should be addressed is the issue

of annotation sparsity. Annotation features describing gene functio-

nalites are typically sparsely distributed when considering gen-

ome wide data, making feature mining computationally intensive.

Moreover, current regression based methods (Wu et al., 2008;

Zhang et al., 2011) assume there is no multi-collinear effect of the

independent variables (training genes) in the analysis. When multi-

collinearity is present however, this might lead to inflated values for

the regression coefficient estimates, which might in turn lead to

over-fitting.

In order to address the above issues, we propose a new computa-

tional gene prioritization tool named pBRIT, which applies an

Information-Theoretic approach for effective feature mining and

Bayesian Ridge Regression (BRR), leading to an intermediate data

integration based prioritization model. In this study, we explore the

efficiency of text mining methods such as TF-IDF (Term Frequency-

Inverse Document Frequency) and latent semantic models (LSM)

(Hofmann, 2004) in gene prioritization. We apply TF-IDF for fea-

ture extraction and LSM to address sparsity and feature dependen-

cies. Different aspects of pBRIT were evaluated on two separate

tasks. First, we compared pBRIT performance with seven existing

methods on their original benchmark datasets. Second, we approxi-

mated a prospective evaluation using time-stamped benchmark data

derived from HPO and compared performance with two additional

recent state-of-the-art methods (Endeavour-v3.71 and RWR-M).

Finally, we demonstrate the applicability of pBRIT in result

visualization and exploration. pBRIT is implemented on a high-

performance computing platform, freely available at http://biomina.

be/apps/pbrit.

2 Materials and methods

pBRIT offers a three staged gene prioritization, as represented in

Figure 1. Unsupervised feature mining, assigning statistical weights

to features in the individual annotation sources, is followed by inter-

mediate data fusion. A Bayesian ridge regression model is then built

to prioritize candidate genes under a supervised approach. This

framework aids in modelling parameter uncertainties arising due to

implicit annotation changes or errors.

2.1 Internal representation of annotation sources
We integrated 10 annotation sources, categorized as phenotypic or

functional (Fig. 1A). Phenotypic annotations include human pheno-

type ontology (HPO), HuGe disease navigator (HuGe), the gene as-

sociation database (GAD) and the disease ontology (DO). For

functional annotations, we incorporated Pubmed abstracts, pathway

databases, protein–protein interactions (PPI), protein sequence simi-

larities (BLAST), mammalian phenotype ontology (MPO) and gene
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ontology (GO). All annotation sources were downloaded between

January 6, 2014 and January 26, 2015 (See Supplementary Section

S1 and Table S1.1).

Annotation sources were pre-processed using a generalized

version of GOParGenPy (Kumar et al., 2013) to obtain sparse bin-

ary matrices with rows representing gene names (mapped to

Ensembl ids) and columns representing specific annotation features

(Supplementary Fig. S1.3). Entries of 0 and 1 represent feature ab-

sence and presence, respectively. For PubMed abstracts, the entries

were generalized to the number of feature occurrences per abstract.

One exception to the sparse representation was BLAST, for which

normalized bit scores from pairwise sequence alignment of all

human proteins (available from Uniprot) were used as similar-

ity scores. The matrix is treated as a full matrix (Supplementary

Table S1.1).

2.2 Information-theoretic model for feature mining
We computed TF-IDF-based statistical weights for features in the

sparse annotation matrices (Equation 1). TF-IDF is based on the

relevance and frequency of feature occurrences in the corpus.

Features that are less frequent indirectly imply an annotation spe-

cific to a gene.

TF f ; gð Þ ¼ 1þ Log tffeature;gene

� �
IDF f ;Gð Þ ¼ Log

jGj
1þ jfg�G : f �ggj

� �
W f ;Gð Þ ¼ TF� IDF

(1)

For all sources except PubMed, the term frequency (tf) is equal to

one due to the binary data format. IDF(f, G), or inverse document

frequency, denotes the inverse frequency of a particular feature (f)

across all genes (G). Hence, it describes the specificity of a feature.

W(f, g) gives the statistical weight of feature (f) for a given gene (g).

Using TF-IDF, specific features get higher weights, contributing

more to the final similarity score used in ranking.

2.3 Modelling feature interdependencies and sparsity
Singular Value Decomposition (SVD) is a matrix factorization tech-

nique that reduces the sparsity and can model co-occurrences of the

feature concepts (Hofmann, 2004). Through SVD, high dimensional

matrices are transformed to a lower dimension, where each original

row and column can be represented as a linear combination of latent

concepts in the new singular vector space. This linear combination

of latent concepts indirectly models any co-occurring or semantic-

ally related features. The final number of vectors (k) defines both

the complexity of the model and the accuracy of representing the

original feature space.

Using SVD, each annotation matrix was decomposed in k singu-

lar values and then projected in those directions. The optimal choice

of k corresponds to a maximal preservation of variance in the data.

Mathematically, this can be expressed as:

Am�n � Um�kDk�kVk�n; ~Am�k � Am�nVT
k�n (2)

Where, U is an m�k unitary matrix with k columns as left singular

vectors. V is a k�n unitary matrix with k rows as right singular vec-

tors. D is a k�k diagonal matrix holding k singular values.

Supplementary Table S1.1 presents the average number of

non-zero features per gene in each annotation source used in

pBRIT, which ranges from 236 (Pubmed) to 10 (GAD). From

Supplementary Figure S1.2, it can be seen that a uniform proportion

of variance is explained for all sources with k set to 200. Hence, we

generalized the choice of k equal to 200 for all TF-IDF weighted

matrices. Gene-by-gene proximity profiles were obtained using co-

sine similarity on both TF-IDF and SVD transformed TF-IDF matri-

ces, represented throughout the text as TF-IDF and TF-IDF!SVD,

respectively.

2.4 Data fusion
In order to perform Bayesian ridge regression, we compute the com-

posite matrices for the independent and dependent variables in the

regression model by averaging the gene-by-gene proximity profiles:

Xcomposite ¼
PF

f Xf

F
; Ycomposite ¼

PP
p Yp

P
(3)

where, F and P denote total number of functional and phenotypic

annotation sources, respectively. Xf and Yp represent gene-by-gene

proximity profiles for all f functional and p phenotypic annotations

sources, following Equations (1) and (2).

2.5 Prioritization using Bayesian ridge regression model
pBRIT implements the underlying hypothesis that the biological

function of a gene is correlated to phenotypic characteristics

presented by deregulation of that gene. Mathematically, this can be

Fig. 1. Schematic workflow of pBRIT. (A) Categorization of annotation

sources as functional or phenotypic, (B) Gene-by-gene proximity pro-

file computation using TF-IDF and TF-IDF!SVD, followed by intermedi-

ate data fusion, (C) Bayesian ridge regression based candidate gene

prioritization
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formulated by a regression between functional and phenotypic

annotations. However, the parameters of such a regression are

intrinsically affected by uncertainties in the model arising due to

incomplete annotations and changes in the annotation corpus.

Regression under a Bayesian framework can model these uncertain-

ties while learning the linear mapping between functional and

phenotypic annotation sources. Specifically, we want to model the

mean of conditional E YjXð Þ, i.e. the expected distribution of pheno-

type similarities given the functional annotation information. This is

represented by E YjXð Þ ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn. For any

given n training genes and m test genes which needed to be priori-

tized, we extract the respective composite matrices for both func-

tional and phenotypic annotations using Equation (3).

The response, or dependent variable vector of the regression

model is obtained by Y nþmð Þ�1 ¼
Pn

j¼1 yij. The independent, or pre-

dictor variables are the gene-by-gene proximity profiles with respect

to n training genes, forming the design matrix X nþmð Þ�n. The overall

regression model is thus given by:

Y nþmð Þ�1 ¼ bX nþmð Þ�n þ e; where; error term e � N 0;r2
e

� �
(4)

The unknowns, the regression coefficient b, its corresponding vari-

ance r2
b and the residual variance r2

e can be estimated uniquely from

the above regression settings. The regression model of pBRIT uses

proximity profiles of both training and test genes in the design ma-

trix. The relatedness of the selected training genes gives a high likeli-

hood of dependencies among the predictor variables. Sometimes,

this leads to over-fitting and multi-collinearity of the regression

model. Ultimately, multi-collinearity of the predictor variables can

lead to inaccurate estimation of regression coefficients, inflated

standard error estimates and degradation of model predictability. In

order to overcome these problems, we propose a Bayesian ridge re-

gression model. We regularize the estimates by adding a parameter ~k

which is given by the ratio of
r2

e

r2
b
. As the r2

b increases to larger values

the solution to find optimal bb approximates ordinary least squares

estimates. Requirements for the optimal choice of bb are given by:

bb ¼ argmin
b

Xnþm

i¼1

yi � xi
T b

� �2 þ ~k
Xn

j¼1

bj
2

( )
(5)

E bjyð Þ ¼ bb ¼ ½XTXþ ~kI��1XTy (6)

In Bayesian setting the likelihood of the model is given by:

Likelihood : p yjb;re
2

� �
¼
Ynþm

i¼1

N yij
Xn

j¼1

xijbj;re
2

" #
(7)

Prior : p bjrb
2

� �
¼
Yn

i¼1

N bij0;rb
2

� �
(8)

p r2
b

� �
¼ v�2 r2

bjdfb; Sb

� �
(9)

p r2
e

� �
¼ v�2 r2

e jdfe; Se
� �

(10)

We assume NIG (Normal Inverse-Gamma) density priors on un-

known regression parameters. The joint posterior distribution of the

vector of unknowns, represented by h� b; r2
b;r

2
e

� �
in the model, is

proportional to the product of the likelihood and the prior distribu-

tion, given by:

p hjyð Þ /
Ynþm

i¼1

N yij
Xn

j¼1

xijbj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Likelihood

�
Yn
i¼1

N bij0; r2
b

� �
v�2 r2

bjdfb; Sb

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Prior on b

� v�2 r2
e jdfe; Se

� �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Prior on e

(11)

Since the posterior distribution does not have a closed form, a Gibbs

sampler was used. Regression analysis was performed using an

adapted version of the BLR package (de los Campos et al., 2013)

in R. Once the parameters are estimated, the corresponding pheno-

type concordance score ypred can be predicted by:

E Xbjy;r2
e ; r

2
b

� �
¼ XE bjy; r2

e ;r
2
b

� �
(12)

ypred ¼ E Xbjy; r2
e ;r

2
b

� �
¼ X½XTXþ ~kI��1XTy (13)

Prior to regression, the dependent variable Y and independent vari-

able X were transformed by taking the square root of their values, in

order to reduce any non-linearity effects. We follow the BLR guide-

lines for initializing the priors (de los Campos et al., 2013). The

prior on residual variance is indicated by two parameters: Scale, Se

and degree of freedom, dfe. The prior variance of the residuals is

given by Ve which is assigned as the variance of the phenotypic

concordance score of the training genes. Together, they can be

expressed as: Se ¼ Ve Trainð Þ dfe þ 2ð Þ. Similarly, the prior on the

regression coefficient can be expressed as: Sb ¼
Var YTrainð Þ� dfbþ2ð ÞPn

j
Var XTrainjð Þ .

In this study, we chose dfe ¼ dfb ¼ 3. For the Gibbs sampling we

chose a total number of iterations of 100 000, a burn-in period of

30 000 and a thinning parameter of 10. The algorithmic details can

be found in Supplementary Section S2.

2.6 Cross-validation strategy
The overall performance of pBRIT was evaluated by performing

leave one-out cross-validation (LO-OCV) on several benchmark

sets. For a given disease, with n known associated genes, we trained

our model with n � 1 genes and placed the query gene (known gene

whose ranking is to be determined) in a list of 99 Test genes ran-

domly selected across the genome. We removed direct contribution

of known phenotypic associations of the query gene to the remain-

ing training genes during validation experiments by setting all prox-

imity scores to ‘Na’ (indicating phenotype information ‘Non

available’). Hence, the model purely predicts the phenotype con-

cordance score of the query gene, without bias to prior knowledge

(See Supplementary Section S2 for details).

We explored the effect of the regression model design on the pre-

diction efficiency in two cases. In the Test.N.Na case (Fig. 2A), the

known phenotypic associations of all 99 test genes were taken into

account in the regression model, discarding only the known associ-

ations of the nth query gene. In contrast, in the Test.ALL.Na

case (Fig. 2B), the phenotypic association of all the test genes, along

with the query gene, is discarded. Both Test.N.Na and Test.ALL.Na

were then combined with either TF-IDF or TF-IDF!SVD

based proximity profiles to evaluate the effect of the feature ex-

traction methodology, leading to four analysis scenarios in total.

The TF-IDF!SVD_Test.N.Na scenario, reflecting all pBRIT func-

tionality, is referenced as the full pBRIT model hereafter. (See

Supplementary Section S2 for algorithmic details).

LO-OCV analysis yields ranks of all the training genes per

studied disease. Query gene ranks were normalized to rank-ratios by
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dividing them with the total number of test genes (typically n¼100)

and evaluated by two criteria. First, the mean rank ratio (MRR) of

all training genes for a given disease was calculated. The MRR is

computed by taking average of rank ratios per disease class and is a

metric of efficiency, estimating how many candidates a user must re-

view before the true positive candidate is encountered. Second,

the Area Under the Curve (AUC), which measures the prediction ac-

curacy of the model, was obtained from plotting the Receiver

Operation Characteristic (ROC) curves. ROC curve analysis meas-

ures the trade-off between True positive rate (TPR, sensitivity) and

False positive rate (1-specificity). The sensitivity is measured as the

percentage of query genes that were ranked above a given threshold.

The specificity is defined as the percentage of randomly selected test

genes ranked below the threshold (Aerts et al., 2006). Performance

differences were evaluated by a two-sided paired Wilcoxon signed-

rank test. (For details see Supplementary Section S8). Additionally,

we performed a control experiment on the DisGeNET data, replac-

ing the query gene by a random gene not associated with any given

UMLS class during LO-OCV (Supplementary Material S6: sheet 7

and Section S4.4).

2.7 Validation datasets
As a first benchmark dataset, we obtained 1154 genes associated to

12 disease classes (Goh et al., 2007) used to validate previous priori-

tization tools (Chen et al., 2015) (Supplementary Material S1: sheet

6–7). The dataset is referenced throughout the text as the Goh et al.

dataset. Included disease classes are Cardiovascular, Connective

tissue, Dermatological, Development, Endocrine, Hematological,

Immunological, Metabolic, Muscular, Ophthamalogical, Renal

and Skeletal. On average, 100 training genes were available per

disease class.

A second benchmark dataset was obtained from the authors of

HyDRA (Kim et al., 2015). It consists of eight diseases: Autism,

Breast cancer, Colorectal cancer, Endometriosis, Ischaemic stroke,

Leukemia, Lymphoma and Osteoarthritis (Supplementary Material

S2: sheet 6) and was previously used to evaluate performance

of HyDRA against Endeavour and ToppGene. ToppGene and

Endeavour are supervised prioritization methods fusing 18 and 20

annotation sources, respectively. In this study, we considered only

scores obtained by the respective full annotation models.

Third, we extracted 9414 curated genes, associated with 779

UMLS coded diseases from DisGeNET (Pinero et al., 2015)

(Supplementary Material S6: sheet 5). Within DisGeNET, we con-

sidered only diseases with 4–51 associated genes, resulting in a min-

imum of 3 and a maximum of 50 training genes during LO-OCV.

Finally, we simulated a prospective benchmark dataset, derived

from HPO. For this, we extracted 2025 HPO terms with 2484 novel

unique gene-phenotype associations added between January 2015

and February 2017 (Supplementary Material S7: sheet 1–2). For

each selected HPO term, we extracted associated genes from the

January 2015 release as training genes and performed genome wide

prioritization of the novel gene. Similar to the four LO-OCV scen-

arios, we performed prioritization with and without inclusion of

phenotype data from the test genes (labeled Test.Pheno.Include and

Test.Pheno.Discard, respectively). Additionally, we extracted a sub-

set of 693 HPO terms having 1111 unique gene associations to

evaluate performance of pBRIT in Test.Pheno.Include mode to

Endeavour-v3.71 (with usage of 24 annotation sources) and RWR-

M (built with four annotation sources).

2.8 Implementation of pBRIT
Generation of sparse annotation matrices was done in python using

a customized version of GOParGenPy (Kumar et al., 2013). TF-IDF

and TF-IDF!SVD computation was done in R using the ‘snow’

(Tierney et al., 2009) package to parallellize processing and ‘irlba’

(Baglama and Reichel, 2012) for TF-IDF!SVD computation. The

web interface was developed using PHP as front-end and MySQL as

back-end, connected to a torque/pbs job manager for prioritization

job execution on a high-performance computing cluster.

3 Results

pBRIT was benchmarked against a set of published datasets. The in-

dividual datasets were chosen to range from very broad disease cate-

gories (Goh et al., HyDRA), often with well known causative genes,

to very specific diseases with a minimal number of known involved

genes (DisGeNET, HPO). As such, the benchmark data represent an

increasingly challenging validation trajectory. Similarly, competing

methods were selected to either allow objective comparison on the

respective benchmark data (Goh et al., HyDRA), or to represent al-

ternative state of the art methodologies in real life scenario’s

(Endeavour-v3.71; RWR-M). pBRIT is available as a web-interface

and using a command line interface (batch mode). Prioritization of

100 test genes using 30 training genes takes on average 47.8 s using

the web-interface. However, using the command line interface, pri-

oritizing 10 similar sets of 100 test genes took approximately 83 s in

total. Afterwards, results can be visualized using the web-interface.

3.1 BRR and SVD allows accurate and stable

prioritization
LO-OCV on the Goh et al. data showed that most of the query genes

were ranked among the top 15% highest scoring test genes, with a

minimum AUC score of 0.86, under all four analysis scenarios

(Supplementary Table S4.1 and Fig. S3A). Despite the broad disease

classes and large amount of training genes per disease class, these re-

sults already highlight the relevance of different aspects of the

pBRIT methodology. First, considering phenotype association scores

of random test genes during regression improves AUC scores. This

can be seen by comparing Test.N.Na and Test.ALL.Na scenarios,

showing effects up to 7%, accompanied by an improvement in

MRR from 0.148 to 0.075 (P value¼3.3E-61, Supplementary

Material S1: sheet 5). Second, singular value decomposition on the

gene-by-feature profiles yields a better resolution of the similarity

Fig. 2. Bayesian ridge regression. The design matrix (X) contains similarity

scores of both training and test genes to training genes. The phenotypic con-

cordance score vector is indicated by Y. For LO-OCV, the summed phenotypic

score of the nth query gene (A. Test.N.Na) or all test genes (B. Test.ALL.NA),

corresponding to prior phenotypic knowledge, is removed (colored box) dur-

ing regression parameter estimation (Color version of this figure is available

at Bioinformatics online.)
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profiles, reflected in the slight improvement of AUC and MRR

values over all disease classes when changing from TF-IDF to TF-

IDF!SVD-based feature extraction. Although the impact of SVD

on the final prioritization results is rather limited, the difference is

significant (P value¼4.86E-10, Supplementary Material S1: sheet 5).

Furthermore, the higher gene-by-feature resolution will also help in

the interpretation of the results (see Section 3.6). The dataset was al-

ready applied to benchmark four other methods, all applying early

or intermediate data integration (Chen et al., 2015). These methods

were a) logistic regression based fast F3PC algorithm b) Markov ran-

dom field (MRF) c) Random walk with Restart (RWR) based net-

work integration and d) Direct integration ranking (DIR) algorithm.

The previously reported maximum AUC score on this dataset was

0.83, achieved by F3PC. For MRF, RWR and DIR, the AUC scores

were 0.731, 0.711 and 0.716, respectively. In our analysis, pBRIT

performs better under all scenarios, with a maximum AUC score of

0.94 using the full model (TF-IDF!SVD_Test.N.Na).

Additionally to higher overall AUC scores, they show a lower

variance over the individual disease classes compared to the compet-

ing methods (Supplementary Fig. S3A and B). The global AUC score

standard deviation of 0.015 under the full model indicates that

pBRIT is not biased towards specific medical domains. In contrast,

the F3PC algorithm, being the best performing overall method,

showed a maximum AUC score of 0.92 under the immunological

disease class and a minimum AUC score of 0.68 under the develop-

mental disease class, whereas pBRIT reaches AUC scores of 0.95

and 0.94 for these classes, respectively.

3.2 Intermediate fusion provides uniform prioritization
Subsequently, we wanted to evaluate pBRIT’s intermediate data in-

tegration against three methods representing late integration. For

this, we used another benchmark dataset, previously used to evalu-

ate Endeavour, ToppGene and HyDRA performance. ToppGene

and Endeavour integrate ranks computed on individual annotation

sources, while HyDRa is an ensemble of rank aggregation methods

applied directly on the ranks computed from Endeavour and

ToppGene.

The reported AUC score for Endeavour and ToppGene using full

annotation models were 0.908 and 0.951, respectively. The best

AUC values for HyDRA, using Weighted Kendall, were 0.91 and

0.947, respectively, based on Endeavour and ToppGene ranks.

pBRIT has at least similar performance to these late integration

methods, with an overall minimal AUC score of 0.93 and a max-

imum of 0.96 using the full model (see Supplementary Fig. S3B,

Table S4.2 and File S2). No significant improvement was observed

using SVD for either N.Na or ALL.Na mode (P value¼0.91

and 0.12, respectively). However, there is a significant difference

(P value<0.0002) between N.Na and ALL.Na mode for both fea-

ture mining methodologies (See Supplementary Material S2: sheet

5). A more in depth comparison, based on the MRR is available in

Supplementary Table S4.2, showing improved MRR values com-

pared to Endeavour for 7/8 included diseases. For 4/8 diseases, the

full pBRIT model outperforms both Endeavour, ToppGene and

HyDRA based rank aggregation methods. These results indicate

that our regression approach after intermediate integration provides

a uniform prioritization strategy independent of ensemble methods,

with at least similar performance.

3.3 Effect of annotation changes on prioritization
Due to regular updates to the ever expanding biological knowledge

base, annotation sources used in gene prioritization are highly

dynamic. This is reflected in the monthly archives of ontology based

annotation sources such as GO and HPO. Consequently, computing

similarity profiles based on these ontologies will also be subjected to

changes. As Bayesian Ridge Regression should help in modeling

uncertainties related to changing annotations, we explored the po-

tential impact of changing annotations on the prioritization results

(Supplementary Section S5). Based on computational feasibility and

data availability, we selected GO as part of the functional annota-

tions and HPO as part of phenotypic annotations to construct yearly

versions of the annotation framework, ranging from 2009 to 2014,

keeping the remaining eight annotation sources stable.

Ranking results of 250 genes from eight disease classes of the

HyDRA based dataset are summarized in Supplementary Material

S3, S4 and S5, showing a variance of<0.0002 on the overall AUC

scores over the included timeframe. Additionally, no significant cor-

relation was observed between annotation changes and the overall

change in gene ranking (Supplementary Figs. S5.2.1–S5.2.12).

3.4 Effect of training set size and annotation bias
Although an ongoing debate in the machine learning domain is

whether robust prediction requires more training data or better algo-

rithms (Zhu et al., 2012), the amount of training data is important

for any supervised learning method. In the above benchmark sets, the

number of training genes per disease class was large, especially for

the Goh et al. data, and often involved well studied disease genes.

Here, we evaluated pBRIT performance using limited training sets,

targeting individual disease-gene associations extracted from the

DisGeNET database (Pinero et al., 2015) According to Figure 3A,

Supplementary Table S4.3 and File S6: sheet 6, a small but significant

(P<0.0005) improvement in performance is seen between TF-IDF

and TF-IDF!SVD feature extraction, using either regression strat-

egy. On the other hand, the results again illustrate the importance of

including phenotype association scores of both training and test

genes during prioritization, with an overall improvement of over

10% in AUC (p ’ 0). Analysis of MRR values (Fig. 4) shows that

this effect flattens out past 25 training genes. This is also reflected in

a positive correlation between AUC scores and number of training

genes for ‘All.NA’ setups (Pearson’s product-moment correlation,

P<0.01, Supplementary Figs. S6.2 and S6.4), which was absent for

both ‘N.Na’ setups (Supplementary Figs. S6.2 and S6.4).

Next, we explored the possibility of annotation bias on our re-

sults. Pathway and MPO annotations often contain near perfect

matches for the phenotype/disease categories that are getting pre-

dicted. As this might lead to biased results, we removed pathway and

MPO databases from the model and repeated the analysis.

Supplementary Figure S4.2B and Table S4.3B shows a small perform-

ance decrease (�0.01 in AUC score) compared to the full annotation

set for both N.Na modes. For both ALL.Na modes, the decrease in

AUC score is more pronounced. These results demonstrate that the

potential effect of annotation bias is minimal in pBRIT.

3.5 Real-world performance evaluation
LO-OCV has long been a standard approach to evaluate gene priori-

tization tools. Since well characterized genes tend to dominate pri-

oritization results, LO-OCV estimates might be over-optimistic.

Therefore, a real test for any prioritization tool should be its cap-

acity to prioritize newly discovered genes with minimal disease asso-

ciation information. To achieve this, we evaluated pBRIT

performance on HPO to gene associations assigned after creation

of pBRIT’s annotation database (January 2015, Supplementary

Table S1). pBRIT was used to prioritize genes in the context of
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individual HPO phenotypic terms, instead of multi-phenotype dis-

eases. A maximum AUC score of 0.80 and minimal MRR of 0.205

was obtained with the full pBRIT model (Fig. 3B; Supplementary

Table S4.4 and File S7). SVD had a small but significant positive

effect on prioritization (P value¼2.00E-56). Inclusion of phenotype

data during regression again resulted in significantly better results

for either feature mining methodology, similar to the retrospective

validations. Lastly, pBRIT (with an annotation release updated in

December 2016) was directly compared with two recent tools,

Endeavour-v3.71 and Random Walk with Restart on multiple net-

works (RWR-M), which both have internal annotation sources built

in or before December 2016. We achieved a maximum AUC score

of 0.87 in comparison to 0.85 for Endeavour (P<0.0004) and 0.68

for RWR-M methods (P<7.666348e-196) (See Supplementary

Section S4.2.1 and Fig. S4.3B for further details).

3.6 Results exploration and visualization
Researchers designing experiments based on prioritization results

need insight into which annotation sources and training genes con-

tribute more towards the ranking of specific genes. Although early

and intermediate data fusion can obfuscate interpretation, we pro-

vide an interface to intuitively explore and explain these individual

contributions.

As an example, prioritization results for KCNA2 in the context

of epileptic encephalopathy (Syrbe et al., 2015) are shown in

Figure 5 (For details, see Supplementary Section S7). The heatmap

explains the gene-by-gene similarities. Darker shades indicate a

larger contribution to the prioritization. KCNA2 is top ranked

mainly because of a higher similarity to KCNB1, HCN1, KCNQ2

and SCN2A. Despite direct evidence in the literature of disease asso-

ciation for NECAP1, functional similarities to KCNA2 are negli-

gible. Comparison of Figure 5 and Supplementary Figure S7.1

shows that SVD transformation of the gene-by-feature matrices re-

sults in visibly more pronounced similarity scores. Second, pBRIT

provides heatmaps of similarity scores per individual annotation

source (Fig. 5B). These gene-specific plots highlight the training

genes and annotation sources contributing most to the ranking of

that particular gene. Again, it can be seen from Figure 5 and

Supplementary Figure S7.1 that SVD provides more pronounced

similarity profiles.

Finally, the pBRIT web-interface provides actual overlapping

features between training and test genes, with the corresponding

TF-IDF scores.

4 Discussion

We present a novel gene prioritization tool, based on Bayesian

Ridge regression and utilizing an information-theoretic approach to-

wards feature extraction followed by intermediate data integration.

We compared pBRIT performance to nine current state-of-the-art

methods under a variety of conditions, reflecting both different as-

pects of our methodology and varying degrees of prior evidence.

Although the Goh et al. (2007) benchmark set does not represent

a typical gene prioritization use case due to extensive and curated

gene lists associated to high level disease classes, important conclu-

sions could be drawn from it. First, it provides initial evidence that

the implemented TF-IDF approach is feasible, as pBRIT globally

outperforms four existing methods using alternative approaches,

which were originally benchmarked on this dataset. It thus demon-

strates the validity of applying TF-IDF in discriminatory mining of

genomic features other than textual information, for which it was

originally presented. In our case, these features are structured con-

cepts holding specific details about gene functionality or phenotype

associations. Furthermore, leveraging of phenotypic information

and performing SVD transformation of the feature-by-gene

Fig. 3. ROC plot of pBRIT benchmark performance. (A) 779 UMLS-coded dis-

ease classes obtained from DisGeNET and (B) 2025 time-stamped HPO terms.

The four vertical lines indicate the top1%, top10%, top20% and top30% of

query genes which were prioritized

Fig. 4. Impact of training set size. Main: Mean rank ratio (MRR) versus number

of training genes. Incorporation of test gene phenotypic information (N.NA)

in the regression model results in a low and stable MRR, irrespective of fea-

ture extraction methodology. Without phenotypic information (All.Na), MRR

decreases with increasing number of training genes. Insert: Distribution of

training sizes per disease class
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matrices, being two of the key characteristics of pBRIT, improves

AUC scores by approximately 9%. Finally, stable AUC scores across

individual disease classes indicates that prioritization is not biased

towards particular disease classes.

The singular value decomposition of TF-IDF weighted gene-by-

feature matrices, prior to data integration is a novel characteristic of

pBRIT. We applied SVD transformation because TF-IDF based

weights show two limitations. First, weights are generally computed

for every individual feature assuming feature independence.

However, features do co-occur in biological data and as such con-

tain additional functional information about the gene. Second, since

most features are rather specific, the binary gene-by-feature matrix

holds many zeros. This might impact feature learning and generally

leads to less cohesive gene clusters, in turn affecting the overall gene-

by-gene similarity profiles used to prioritize candidate genes. SVD

allows a reduction in the feature space dimensionality, thereby

reducing sparseness and implicitly modelling co-occurrences and la-

tent relationships. Despite a limited 1–4% gain in performance over

TF-IDF alone, the benefits are twofold. First, latent relations can be

helpful to identify candidate genes in rare diseases having related

disorders with overlapping phenotypes. Here, the choice of SVD-

based feature mining can improve prioritization based on training

genes implicated in those related disorders. Second, as shown in

Figure 5A and B, SVD increases the resolution of the gene-by-gene

similarity profiles, facilitating result interpretation using the pro-

vided visualization tools.

In reality only a limited set of training genes can be defined for

most genetic disorders. These genes are often less studied and reflect

a subjective measurement of how well they describe the underlying

disease etiology. We simulated this by selecting DisGeNET disease

classes with maximally 51 associated genes. The obtained results il-

lustrate the power of the second key characteristic of pBRIT.

Indeed, we observe a significant improvement of approximately

11–14% (Supplementary Table S4.3) when phenotypic information

from the 99 random test genes is taken into account (Test.N.Na)

during regression. As this effect is more pronounced for smaller

training sets, it makes pBRIT a valuable asset in the study of rare

and less studied disorders.

Given the potential impact of annotation changes over time on

functional interpretation (Wadi et al., 2016), it should be noted that

pBRIT results are not subject to such changes. This is likely attribut-

able to BRR, which implicitly captures the uncertainties in the

model arising due to changes, and stabilizes the ranking. Although

all annotation sources get updated, our simulation was limited to

HPO and GO due to the availability of archived and quantifiable

data over a fixed time interval. Therefore, we can not fully exclude

that the impact is nullified by the contribution of the eight annota-

tion sources that were kept stable during the experiment.

Overall, pBRIT performs equally well, and often better than

competing methods on cross-validation studies. Although we

removed prior knowledge on phenotypic association between test

and training genes during regression, this knowledge still contrib-

uted indirectly to similarity scores through the IDF component of

the TF-IDF calculations. To exclude any indirect contribution of

prior knowledge, the real test is therefore to prioritize genes that

have been published after construction of the internal annotation

database. For these genes, the tools by definition lack any prior

knowledge of the gene-disease association. Hence, we performed a

final validation of pBRIT on 2025 HPO terms having 2484 novel

gene-phenotype associations. Interestingly, the obtained maximum

AUC score of 0.80 using the full pBRIT model, is lower in compari-

son to the performed LO-OCV-based analyses, confirming the ten-

dency of LO-OCV to overestimate performance. A subset of 693

HPO terms was also analyzed using Endeavour-v3.71 and RWR-M,

with neither method outperforming the full pBRIT model. The

inferior performance of RWR-M, using only four annotation

sources, mainly demonstrates that integration and fusion of more

and relevant annotation sources has a distinctive advantage. Since

Endeavour-v3.71 and pBRIT both use approximately similar anno-

tation sources, our results indicate that intermediate integration

combined with BRR offers a valuable alternative to late integration

and rank fusion while offering superior computation speed.

Additionally, we want to highlight the importance of community

driven data competitions in this context [like CAFA (Jiang et al.,

2016)] for developing true prospective benchmark datasets, such

that future function prediction and prioritization tools can be prop-

erly evaluated on high quality and unbiased datasets.

Despite the promising performance of pBRIT, we believe that

further improvements are possible. First, alternative to empirical se-

lection of k in SVD, one might apply a probabilistic generative

model, either using classical Latent Dirichlet Allocation (Blei et al.,

2003) or aspect Bernoulli models (Bingham et al., 2009). Second, we

focused on giving equal weights to all annotation sources during the

construction of composite similarity matrices. However, data driven

approaches for optimal weight selection might further improve per-

formance. Finally, it might be interesting to investigate the influence

of incorporating informative priors such as Zellner’s g-prior

(Hanson et al., 2014) in the Bayesian ridge regression.

Fig. 5. Exploring prioritization results using heatmap plots. (A). The functional annotation matrix X, illustrating the contribution of individual training genes

(Y-axis) during regression, using the full TF-IDF->SVD_Test.Pheno.Include model. Darker shades indicate higher contributions. In this example, the gene to be

prioritized was KCNA2. (B) Contribution of individual annotation sources for each training gene to the ranking of KCNA2
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5 Conclusion

In conclusion, our results present pBRIT as robust and performant. Its

performance was competitive, or better, compared to current state-

of-the-art methods when applied to their benchmark datasets. We

demonstrated performance of pBRIT both at the level of the

information-theoretic model, by evaluating TF-IDF and SVD as fea-

ture extraction approaches, and by contrasting intermediate data fu-

sion to other data fusion methodologies, and at the level of the

regression model, by evaluating the effect of incorporating phenotypic

information from test genes into the model. Additionally, we explored

the predictive power of pBRIT to detect novel disease causing genes

without prior information in the internal database. We demonstrated

that regression under the Bayesian framework has an advantage in

handling uncertainties and errors in the annotation sources, while in-

corporation of a ridge regression model helps in alleviating the prob-

lem of over-fitting and multi-collinearity in the model. Ultimately,

these aspects lead to a more robust prediction. We can therefore con-

clude that each aspect of the pBRIT methodology provides distinct

and additive benefits, making the TF-IDF!SVD.Pheno.Include

approach, referenced as the full model, the method of choice in real-

world application. Finally, we extended the prioritization task to

provide insight in the resulting gene ranks through visualization.

Using heatmap plots showing both pre- and post-integration similarity

scores, together with actual feature matches between training and test

genes, interpretation of gene ranks becomes intuitive.
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