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Abstract

Motivation: The de Bruijn graph is a simple and efficient data structure that is used in many areas

of sequence analysis including genome assembly, read error correction and variant calling. The

data structure has a single parameter k, is straightforward to implement and is tractable for large

genomes with high sequencing depth. It also enables representation of multiple samples simultan-

eously to facilitate comparison. However, unlike the string graph, a de Bruijn graph does not retain

long range information that is inherent in the read data. For this reason, applications that rely on de

Bruijn graphs can produce sub-optimal results given their input data.

Results: We present a novel assembly graph data structure: the Linked de Bruijn Graph (LdBG).

Constructed by adding annotations on top of a de Bruijn graph, it stores long range connectivity in-

formation through the graph. We show that with error-free data it is possible to losslessly store

and recover sequence from a Linked de Bruijn graph. With assembly simulations we demonstrate

that the LdBG data structure outperforms both our de Bruijn graph and the String Graph

Assembler (SGA). Finally we apply the LdBG to Klebsiella pneumoniae short read data to make

large (12 kbp) variant calls, which we validate using PacBio sequencing data, and to characterize

the genomic context of drug-resistance genes.

Availability and implementation: Linked de Bruijn Graphs and associated algorithms are imple-

mented as part of McCortex, which is available under the MIT license at https://github.com/mcvean

lab/mccortex.

Contact: kiran@well.ox.ac.uk or turner.isaac@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most efforts to discover genetic variation in populations begin with

alignment of high-throughput sequencing (HTS) data to a high-

quality reference genome for the organism under study. This ap-

proach works well for regions with low divergence from the refer-

ence haplotype. However, many biologically interesting loci reside

in regions of high divergence. For example, antigenic genes in

Plasmodium falciparum, Trypanosoma brucei and other pathogens

often exhibit non-allelic homologous recombination underlying

mechanisms of immune escape (Artzy-Randrup et al., 2012; Freitas-

Junior et al., 2000; Jackson et al., 2012). Similarly, structural muta-

tions, such as rearrangements and amplifications, can promote

tumourigenesis through dysregulation of oncogenes or down-

regulation of tumour suppressors (Aguilera and Gómez-González,
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2008; Difilippantonio et al., 2002). More generally, variants may be

difficult to identify and characterize when the altered haplotype dif-

fers substantially from the reference, and other regions of interest

reside in sequence absent from the reference sequence altogether.

For example, in 13 isolates of the diploid coccolithophore Emiliania

huxleyi, 8–40 Mbp of the approximately 142 Mbp genome were

found to be isolate-specific; up to 25% of genes were found to be ab-

sent from the reference sequence (Read et al., 2013). In these scen-

arios, reads may fail to map to the reference, preventing the analyst

from inspecting biologically interesting variation. Alternatively,

reads may map incorrectly, misleading the analyst to consider vari-

ation where none exists (Ribeiro et al., 2015).

One mitigation of this inadequate reference problem is to aug-

ment the reference with known variation and alternative alleles to

improve read mapping (Dilthey et al., 2015; Huang et al., 2013;

Schneeberger et al., 2009; Weisenfeld et al., 2014). Such approaches

commonly convert flat reference genomes into a graph structure, ef-

fectively mapping reads to all references simultaneously and choos-

ing the path that best fits the data. In a study mapping to a

fragmented human assembly, Limasset et al. (2016) found that map-

ping to a reference graph instead of flat contigs led to a 22% in-

crease in the number of reads that map uniquely.

De novo assembly offers a means to overcome some of the limi-

tations of reference-based analyses. Rather than aligning reads to a

reference, reads are aligned to one another. These alignments are

encoded in a graph data structure, a collection of ‘vertices’ encapsu-

lating sequence data and ‘edges’ representing overlaps of different

sequences (Myers, 1995). Graphs from different samples (and any

reference) can then be compared to discover variation directly

(Bateman et al., 2016). Should the variation be in a locus unrepre-

sented in the reference genome, the graph-based comparison can still

capture the event (Iqbal et al., 2012).

The most common sequencers in use today (second-generation)

produce tens of millions of short reads (typically 75–150 bp in

length) per sequencing run (Goodwin et al., 2016). It is common to

assemble such data using a so-called ‘de Bruijn’ graph approach (de

Bruijn, 1946; Idury and Waterman, 1995; Pevzner, 1989). Vertices

are constrained to be fixed-width substrings of length k (or

‘k-mers’). Edges represent observed sequence adjacencies in the

reads. With sufficient coverage, overlaps are implicitly encoded be-

cause two reads which overlap will share k-mers. Thus the graph is

built up one read at a time at the cost of storing the graph in mem-

ory. Graphs of multiple individuals can be compared in memory

(Iqbal et al., 2012). However, there is a penalty for this approach:

long-range information in the read is sacrificed. This is particularly

problematic as genomes tend to have many repetitive regions and

without context it is often not possible to determine the origin of a

random k-mer (Miller et al., 2010; Pevzner, 2004). However, as k

increases, so does the specificity of its location. String graphs address

the issue of storing long-range information by avoiding the read

fragmentation step and instead find explicit overlaps between reads.

Unfortunately string graphs are not well suited to multi-sample com-

parison and have a high per-sample memory cost (Bonizzoni et al.,

2016).

We start by describing the de Bruijn graph and its benefits com-

pared to the string graph. We then describe an augmentation

(LdBG) that allows long-range information to be kept. Theoretical

results and simulations are used to characterize its properties. We

demonstrate its value by application to variant discovery and char-

acterization of genomic context for drug resistance genes in

Klebsiella pneumoniae. Finally, we consider the possibility of using

such structures for regular analysis of human-scale genomes.

2 Background

2.1 Definitions and notation
DNA sequences are strings over the alphabet {A,C,G,T}. We denote

a DNA sequence as S ¼ S1; . . . ; SjSj where jSj is the length of the se-

quence. S½i; j� is sequence Si; . . . ; Sj. S0 is the reverse of S (SjSj; . . . ; S1).
�S is the reverse complement of S. A k-mer is a sequence of length k

over the alphabet {A,C,G,T}.

2.2 Assembly graphs
An assembly graph is any graph where the vertices represent se-

quence and edges represent overlaps or adjacencies between those

sequences. An assembly graph may not have parallel edges (not a

multigraph). Traversing a vertex v backwards (�v) gives the reverse

complement of the sequence it represents. deg�ðvÞ is the indegree

and degþðvÞ is the outdegree of vertex v. A path through the graph

is a list of adjacent vertices with edges between them. The reverse of

path P ¼ v1; . . . ; vn is �P ¼ �vn ; . . . ; �v1 . A unitig U ¼ v1; . . . ; vn, is a

maximal path such that deg�ðviÞ ¼ degþðviÞ ¼ 1 for 1 < i < n and

degþðv1Þ ¼ deg�ðvnÞ ¼ 1 if n>1. The maximal property means the

path cannot be extended without violating these conditions.

2.3 de Bruijn graphs
A de Bruijn graph G(k) is an assembly graph, constructed from a set

of sequence reads R and defined by fV;Eg where V is a set of verti-

ces representing k-mers and E a set of edges between those k-mers.

de Bruijn graphs are constructed by breaking input reads into over-

lapping k-mers that are added to the graph. With one k-mer starting

at every base, a read of length jrij will give jrij � kþ 1 k-mers. A

count is kept of how many times a given k-mer was seen in the input

reads, called k-mer coverage. Edges are added between two k-mers

if they share an overlap of k – 1 bases. Some implementations add-

itionally require that k-mers are seen overlapping by k – 1 bases in

the read data, in order to have an edge between them.

Due to the double stranded nature of DNA and the fact that we

do not know which strand a read originated from, storing all k-mers

from reads results in k-mers occurring separately in the graph in

both their forward and reverse complement orientations. To over-

come this it is common to store only the lexically lower of each

k-mer X and its reverse-complement �X (Zerbino, 2010). Requiring

that k is odd prevents a k-mer from being its own reverse comple-

ment (a DNA palindrome). When visiting a vertex in the de Bruijn

graph we can visit it in its forward or reverse complement orienta-

tion. The orientation in which we arrive at it determines if we leave

by its out- or in- edges (forward, reverse respectively).

A de Bruijn graph only stores connectivity information one base

either side of a given k-mer. This means that for three adjacent k-

mers in the graph (va; vb; vc), there is no information about how the

first and third are connected if the middle k-mer has deg�ðvbÞ > 1

and degþðvbÞ > 1. This graph motif is known as a ‘tangle’ and is

caused by the graph collapsing down at a repeat and splitting out

again afterwards. de Bruijn graphs collapse down at repeats in the

genome of lengths � k. It is not possible to traverse a dBG past a

tangle, even if the input reads are long enough to resolve it (i.e. pair-

up k-mers going-into and coming-out of it). This makes analyses

that use a de Bruijn graph sensitive to the parameter k.

While increasing k can overcome the problem of short repeats, it

also has the effect of reducing the number of k-mers given by each

read and increases the number of k-mers lost to each sequencing

error. Both these effects reduce k-mer coverage, which is determined

by the k-mer size, the read length and the error rate (Iqbal et al.,

2012). As k-mer coverage drops, read overlaps are lost and gaps in
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coverage increase. Together with tangles, coverage gaps interrupt as-

sembly and shorten contigs.

Choosing a value for k is ultimately a trade-off. It is common to

run analyses multiple times with different values of k and pick the

best results according to a quality metric (e.g. assembly N50 or

number of variants called) (Iqbal et al., 2013). Alternatively the gen-

ome and read data can be sampled to estimate which value would be

optimal (Zerbino, 2010).

The dBG can be augmented to support multiple datasets, provid-

ing a single data structure to describe and compare the genomes of

many individuals (Iqbal et al., 2012). Graphs are built separately for

each dataset c 2 C and merged post-construction. The merge pro-

duces a union graph Gu ¼ fVu;Eug, where Vu ¼ [c2C Vc and

Eu ¼ fEc : c 2 Cg. Each k-mer stores which samples it was seen in.

We refer to c as colour, a generic term that can mean a distinct indi-

vidual, pooled population or a specific dataset on a single individual

(e.g. tumour/normal), depending on analysis context. We shall refer

to this structure as a multi-colour de Bruijn graph.

de Bruijn graphs are used in many areas of sequence analysis,

including in mapping-based calling, as in the local alignment step of

the variant caller Platypus (Rimmer et al., 2014), in de novo assem-

bly as in Velvet (Zerbino and Birney, 2008) and ABySS (Simpson

et al., 2009), and in de novo assembly for variant calling (Iqbal

et al., 2012).

Recently there has been work on implementing low memory

dBG construction (Chikhi et al., 2015), representations (Bowe et al.,

2012; Chikhi and Rizk, 2013; Conway and Bromage, 2011; Muggli

et al., 2017) and dBG-based compression (Benoit et al., 2015;

Holley et al., 2017). These have both provided great improvements

over the naive hash table based implementation, extending the con-

texts in which dBGs can be used.

2.4 String graphs
A String graph is an assembly graph where the vertices represent the

input reads and the edges are maximal non-transitive overlaps be-

tween them (Myers, 2005). The set of reads is reduced to remove

reads contained within other reads. A naı̈ve String graph implemen-

tation would take OðN2Þ time to compare all pairs of reads to find

overlaps, before removing contained reads and transitive edges.

(Simpson and Durbin, 2010) showed that it is possible to construct

a string graph in linear time, by first generating an FM-index

(Ferragina and Manzini, 2000) of the input reads R and an FM-

index of their reverse R0. Alternatively a single index can be con-

structed containing R and �R (Li, 2012).

The FM-index is a data structure for compression and fast string

searching. When the alphabet employed by the strings is small and

constant-size (e.g. DNA nucleotides), the FM-index of a set of

strings S facilitates searching for a query Q in time OðjQjÞ and has

construction time and memory complexity OðjSjÞ. The final index

has roughly the same size jSj, but can be efficiently compressed with

run-length encoding.

Since it is constructed from the reads without breaking them up,

a String graph retains all connectivity information contained in the

single-ended input reads (Myers, 2005). However, String graphs do

not naturally lend themselves to storing information on read pairs,

although one such data structure has been proposed (Chikhi and

Lavenier, 2011).

2.5 Other approaches for preserving connectivity
Reference-guided assembly can help overcome deficiencies in short-

read dBG-based assembly by providing a template sequence to

merge contigs that are likely adjacent but could not be merged due

to repeats, coverage dropout, or error. For example, the Columbus

module in Velvet allows for the specification of one or more refer-

ence genomes to aid in reconstruction, though documentation sug-

gests that closely related references and repetitive regions may not

work well with this software (see http://gensoft.pasteur.fr/docs/vel

vet/1.1.02/Columbus_manual.pdf). In contrast, RACA enables the

use of a reference genome and multiple outgroups to guide the as-

sembly of contigs and scaffolds from other assemblers (Kim et al.,

2013). However, RACA may introduce a reference bias as it com-

putes synteny blocks by pairwise alignment solely against the single

reference genome and omitting contigs that cannot be placed on the

reference. Ragout addresses this concern by extending the syntenic

block computation to multiple references, allowing for different

block scales (Kolmogorov et al., 2014).

Another strategy for preserving connectivity information in

graphs is to reduce the dependence of dBGs on the single parameter

k. One approach is to construct assemblies at multiple values of k,

cluster resulting contigs across all assemblies by sequence similarity,

choose a representative contig for each cluster (e.g. longest) and

merge representative contigs by alignment to form a final assembly

(A detailed procedure is specified at http://ged.msu.edu/angus/

metag-assembly-2011/velvet-multik.html.). Alternatively, IDBA per-

forms iterative assemblies starting at low values of k and removing

reads utilized in the assembly before increasing k and repeating the

process (Peng et al., 2010). MEGAHIT employs a similar approach,

removing likely sequencing errors in the graph rather than discard-

ing reads after each iteration (Li et al., 2015). These methods cap-

ture increasing amounts of connectivity information as k increases,

but do not incorporate paired-end information. SPAdes builds on

the iterative multi-k approach and its authors have explored using

paired-k-mers (or ‘k-bimer’) which encodes two k-mers and a dis-

tance estimate directly into the early stages of genome assembly

(Bankevich et al., 2012).

Beyond these multi-k approaches, various annotation schemes

on de Bruijn graphs have emerged. The DARRC tool for read com-

pression from (Holley et al., 2017) uses a guided de Bruijn graph

(gdBG), a multi-color de Bruijn graph constructed on sets of read se-

quences. While decomposition of reads into k-mers may produce

false edges (k – 1 overlaps present in the graph due to sequence simi-

larity but not reflecting true genomic sequence), read information is

stored as graph paths (effectively alignments) which disambiguate

junction choices and provides a compressed representation of input

data. Faucet, a two-pass streaming approach for de novo assembly

graph construction, additionally records information from reads

spanning adjacent junctions, used in the offline graph-simplification

stage for disentangling repetitive graph regions (Rozov et al., 2017).

(Bolger et al., 2017) have recently presented the LOGAN graph,

which augments each vertex in a dBG with a routing table that pairs

distant k-mers based on observation within the same read. This

routing idea, adapted from pathfinding protocols in telecommunica-

tion networks, shares conceptual similarities to what we present

below.

3 Materials and methods

3.1 The linked de Bruijn graph
We propose a new assembly graph data structure called the Linked

de Bruijn Graph (LdBG). Defined as LGðkÞ ¼ ðV;E;LÞ where V, E

are defined as in a de Bruijn graph. L(v) is a set of paths through the

graph that start at vertex v 2 V. We call these paths links. Each of

these links l 2 LðvÞ is stored as a list of junction choices that when
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followed, starting from vertex v, recreate the path. Graph traversal

is the same as with a de Bruijn graph, with the extension that when

we visit a vertex v, we pick up the links associated with it: L(v). The

links held during traversal record how many edges ago they were

picked up, a value we call link ‘age’. Only when we reach a bifurca-

tion in the graph do we consult the links currently held. We follow

the next junction choice of the oldest link as this provides the most

context as to where we are in the genome. Younger links are dis-

carded if they are inconsistent with the oldest link. Should we have

more than one oldest link and they disagree, we halt traversal. An il-

lustration of links resolving a cycle is shown in Figure 1.

As with a de Bruijn graph we can look up any k-mer or edge be-

tween k-mers in time O(1) and we can start graph traversal from

any k-mer. As in a multi-coloured dBG, a multi-coloured LdBG

stores which samples have which k-mers and links.

A LdBG is a lossless representation of a genome when generated

from error-free reads, as long as the genome starts and ends with

unique k-mers, there are no k-mer coverage gaps and each repeat is

spanned by at least one read (proof in Supplementary Material).

This is true regardless of the value of k.

In constructing a LdBG we are effectively compressing reads

against the de Bruijn graph. However, since read start/end positions

are not important for assembly we do not store them, so although it

is possible to recover the underlying genome (losslessly) through as-

sembly, it is not possible to recover the original set of input reads.

An LdBG on single-end reads can also be viewed as equivalent to

a string graph with minimum overlap of smin ¼ k bases and max-

imum error rate �max ¼ 0.

Reads used to annotate the graph do not need to have been used

to construct the de Bruijn graph. Sets of links may be merged by

loading them together at runtime. We give an example of the utility

of such a construction in the applications section below.

3.2 de Bruijn graph construction
Each input read r is broken into jrj � kþ 1 overlapping k-mers

(v1; . . . ; vn) which are added to the graph. If a k-mer already exists

in the graph, we increment its coverage. Edges are added between vi

and viþ1 for all 1 � i < n.

To remove k-mers due to sequencing error, unitigs with median

k-mer coverage below T are removed, where T is a user-specified

threshold. If not specified, a threshold T is chosen such that the ex-

pectation of a k-mer with coverage T being an error is < 10�3 (see

Supplementary Section S1 of Supplementary Material).

Graph tips, that is unitigs of length n (i.e. v1; . . . ; vn) with

deg�ðv1Þ þ degþðvnÞ < 2, are the result of sequencing errors near

the end of reads or gaps in coverage. Tips are removed if they are

shorter than a user specified value, the default being k, the max-

imum number of erroneous k-mers generated by a single-base

sequencing error near the end of a read.

3.3 Read-to-graph alignment
Reads are aligned to the de Bruijn graph one-at-a-time and in doing

so are error-corrected. For a read r, we look up each of its k-mers, re-

sulting in a list of k-mers that describe a path through the graph.

There may be gaps in this path due to k-mers removed from the graph

during k-mer error cleaning (or if the read was not used in dBG con-

struction). Gaps are closed by walking the graph between the k-mers

either side of the gap (vi and vj). If we cannot traverse from vi to vj,

we attempt going from vj to vi. Should such a traversal succeed (giving

k-mers v1; . . . ; vx) and x � jj� ij, the k-mers v1; . . . ; vx are used to fill

in the gap in the path between vi and vj. This error step is sequence ag-

nostic in that it does not compare the new k-mers (v1; . . . ; vx) to the

read k-mers it is replacing (viþ1; . . . ; vj�1). This speeds up the error

correction step and ensures it does not make assumptions about the

error process of the input sequence data. The output of the alignment

step is a set of sequences that perfectly match the de Bruijn graph

k-mers; i.e. they describe a path through the graph.

Gaps between paired-end reads are treated like gaps in reads caused

by sequencing errors. LdBG naturally captures information from paired

end reads once the insert gap is filled. Links can be generated in two

passes: first with single-end reads against a dBG to create a LdBG; then

with paired-end reads against the LdBG. This allows the single-ended

read links to be used to aid traversal between read pairs.

3.4 Link annotation
A link is a path, starting from a given k-mer and stored as a series of

junction choices. The function Jðvi; . . . ; vjÞ takes a path and returns

the junction choices it describes.

Given a path P ¼ v1; . . . ; vn through the graph, we identify the

maximum j such that degþðvjÞ > 1; 1 < j < n. Then for each i such

that deg�ðviÞ > 1; 1 < i � j, we add a link to vertex vi�1:

Lðvi�1Þ  Lðvi�1Þ [ Jðvi�1; . . . ; vjþ1Þ. Link annotation is repeated

for the reverse path �P. Link counts record how many times a given

link is seen in a sample starting at a particular k-mer.

A collection of links (i.e. the series of junction choices arising

from different reads spanning the same genomic locus) is easily

(a)

(b)

(c)

Fig. 1. Utility of link information in traversing a graph cycle. (a) A 32-bp

genome and a 23-bp read, each containing three (colour-coded) repeats of

the 5-mer, GATGC. (b) The resulting de Bruijn graph (k¼5) with a repeat

cycle, constructed from the genome sequence. The k-mers grouped by

dashed boxes indicate the result of graph traversals to emit unitigs, with final

sequences written below and positioned along the input genome for clarity.

(c) Reads are ‘threaded’ (aligned) through the graph (top); the repeated

k-mers are colour-coded. The alignment information is distilled to a set of

junction choices to make when navigating the graph and stored as annota-

tions on k-mers preceding junctions (middle). Multiple links are separated by

a comma. Uppercase (lowercase) links indicate the choices to be made when

traversing forwards (backwards). A k-mer’s links are picked up when we visit

it. When we reach a junction, the next edge suggested by the oldest link(s) is

taken, links that disagree are dropped, all remaining links trim off a junction

choice and exhausted links are also dropped. The resultant contig recapitulat-

ing the entire genome is shown (bottom). Highlighted bases indicate the junc-

tion choices originating from the left-most link
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represented as a tree, L(v) (each node a junction, with possible

outgoing edges A, C, G and T, with coverage incremented for each

read supporting a junction choice). Cleaning links proceeds similarly

to cleaning k-mers: junction choices with coverage below threshold

T are discarded. This link cleaning threshold is determined by apply-

ing the same model as used for k-mer cleaning to the link coverage

distribution of the first junction choice of all links (see

Supplementary Section S1 of Supplementary Material).

3.5 Implementation
We have implemented the LdBG data structure and associated algo-

rithms as part of McCortex, a modular set of multi-threaded programs

for manipulating assembly graphs written in C. McCortex succeeds our

cortex_var software for genome assembly and variant discovery, pro-

ducing identical construction of multi-colour graphs and adding im-

provements for graph manipulation and link construction (The

program cortex_con for consensus assembly, while co-developed along-

side cortex_var, is not related to this work and is now retired.). FASTA,

FASTQ, SAM, BAM & CRAM input file formats are supported. The

software is released under the MIT license. McCortex has been used as

the backend for sequence analysis by Bradley et al. (2015).

3.6 Multi-coloured linked de Bruijn graphs
Multi-colour LdBGs can be constructed by building single sample

LdBGs and loading them together into McCortex. Links are repre-

sented internally as linked lists for which the only practical limit is ma-

chine memory. They can therefore be generated for any read length,

including short Illumina reads (�100–200 bp), PacBio/MinION con-

sensus sequences (�10000–1 00000 bp) and even whole chromo-

somes from finished reference sequences (potentially > 1e8 bp). For

graph traversal tasks, such as assembly, we only store a single bit per

sample per k-mer and per sample per link to record which k-mers/

links are present in each sample. These are stored in a packed bitset.

Graph traversal of a colour through a multi-coloured LdBG proceeds

as per for a single-sample LdBG, only using links and k-mers of the

given colour. At coverage gaps, traversal can fall back to using any

k-mers in the graph (but not other colour’s links).

4 Results: simulations

4.1 Equivalence of LdBG and input string
To test the lossless recovery of a genome from the LdBG we gener-

ated a random 10 kbp haploid genome, ensuring it started and

ended with unique 7-mers. We identified the length of longest repeat

(LR) in our genome. We generated perfect error-free coverage of the

genome with a read length of LRþ2 starting at each base. We then

built a LdBG (k¼7) from the reads, assembled contigs and removed

contained contigs (those that were substrings of other contigs). After

checking that we were left with a single contig, we compared it for

an exact match to the original genome. This simulation was run 100

times without fail. With k¼7, there are only 47 ¼ 16 384 possible

k-mers, so a random 10 kbp genome will have many repeats that

could not be traversed by the unannotated de Bruijn graph.

4.2 Correcting errors in reads
To assess the accuracy of our error correction step when aligning

reads to the graph, we simulated a haploid 1 Mbp genome (from

human GRCh37 chr22: 28 000 000–28 999 999). Single-ended

250 bp reads with 50� coverage were simulated with a 0.49% em-

pirically distributed sequencing error (reads paired with real MiSeq

data, FASTQ scores used as per base error rate). We built a dBG

(k¼31) and removed tips and unitigs with coverage<7 (automatic-

ally chosen). Once reads were aligned to the graph we wrote them

to disk instead of generating links. The input reads had 247 075

(0.49%) errors, the output had 30 148 (0.06%) errors. Of the bases

changed by the error correction step, 99.19% changes were correct.

4.3 Sensitivity to word length
Lowering the value of k in a dBG raises k-mer coverage and reduces

coverage gaps but it also reduces the length of the longest repeats

that can be traversed. If we improve the ability to resolve repeats

with links, we hypothesized that we should reduce the assembly per-

formance’s sensitivity to the parameter k. Therefore we simulated

an assembly task with different k values.

We simulated three haploid sequencing datasets from 1 Mbp of

human (chr22: 28 000 000–28 999 999) using 100 bp single ended

reads, each giving 100� coverage. First, we generated ‘perfect cover-

age’—an error-free read starting at every base. Second, we generated

‘stochastic coverage’—read starts distributed uniformly across the 1

Mbp genome. Third, we generated ‘reads with error’—stochastically

sampled reads with a uniform 0.5% rate of single base errors.

We assembled these three datasets using a dBG and LdBG at

k ¼ 21;31; . . . ; 91. To compare assemblies we applied the QUAST

tool for quality assessment of genome assemblies (Gurevich et al.,

2013) and examined the NG50 metric, defined as the contig length

C such that contigs longer than C sum to at least half of the genome

size. The NG50 comparisons are shown in Figure 2. In the ‘perfect’

datasets reconstructed without links, NG50 rises as k-mer size in-

creases. This is to be expected as a longer k-mer size essentially en-

codes more connectivity information. Links, however, encode all

available connectivity information at any value of k. Thus the linked

NG50 value (solid green line) is equal to the best unlinked NG50

(dashed green line) over all values of k. The ‘stochastic’ datasets (or-

ange) follow a similar pattern, with the exception that the top value

of k¼91 does not necessarily yield better NG50. As read starts are

k
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Fig. 2. Assembly length metric NG50 on raw de Bruijn graphs (i.e. without

links, dashed lines) and linked de Bruijn graphs (i.e. with links, solid lines), as

a function of k-mer size. Assembling 1 Mbp of sequence (human GRCh37

chr22: 28 000 000–28 999 999) with three simulated 100� read datasets: error

free 100 bp reads, one read starting at every base (‘perfect’, green); error free

stochastic coverage (uniformly distributed read starts) (‘stochastic’, orange);

an error rate of 0.5% and stochastic coverage (‘error’, purple)
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not available at every single base, some read overlaps are not present

and the resulting contig is thus truncated. Finally, the ‘error’ dataset

(blue) shows improved NG50 results when link information is used.

When faced with sequencing error, our algorithms are not as readily

capable of delivering k-independent reconstructions, although using

links does improve performance at all values of k.

To explain this behaviour, we note that at low k, sequencing

errors introduce false edges between true k-mers. Since error correc-

tion on dBGs use k-mer counts rather than edge counts, these false

edges do not get cleaned off. We estimated the number of false edges

induced at various k to be 604; 139;30;7;2; 1; 0;0; 0 for

k ¼ 21;31; . . . ; 91. Each false edge introduces a new bifurcation

that may halt traversal. dBG implementations that use counts on

edges instead of k-mers [as described in Conway and Bromage

(2011)] may overcome this issue.

4.4 Comparison to other assemblers
McCortex is primarily intended for multi-sample comparison, rather

than pure de novo assembly of organisms lacking reference sequence,

and thus tends to be very conservative in its assembly procedure.

However, its modular and flexible design does enable this usage, and

thus we evaluated assembly performance between our LdBG imple-

mentation and other assemblers with different repeat resolution strat-

egies. Velvet’s ‘Breadcrumb’ module exploits read information to

extend and connect contigs through repeats (Zerbino and Birney,

2008). The String Graph Assembler (SGA) (Simpson and Durbin,

2010) is able to use the full length of the read during assembly and

should thus be able to assemble repeats shorter than a read length.

SPAdes’s ExSPAnder algorithm analyzes reads pairs that map to either

side of an ambiguous junction, computing a confidence score based on

the mapped versus expected insert sizes (Prjibelski et al., 2014).

We compared all assemblers using the E.coli MG1655 dataset

provided on the Illumina website (4.6 Mbp genome, 150 bp paired-

end reads, 365 coverage). As evident in Figure 2, McCortex is sensi-

tive to sequencing error. We applied the bfc error correction tool (Li,

2015) to the reads before assembling. Other assemblers have built-in

error correction procedures, and bfc was therefore not applied. We

did not carry out scaffolding for any tool. Detailed pipeline listings

for the de Bruijn graph-based assemblers (McCortex, Velvet and

SPAdes) and the string graph-based assembler (SGA) are provided in

Supplementary Material Sections S3.2–S3.5.

All assemblers were run at values of k between 21 and 141 (ex-

cept for SPAdes, which does not support k-mer sizes beyond 121)

and compared using QUAST’s NG50 metric. The results are shown

in Figure 3. McCortex and SPAdes have fairly consistent perform-

ance across values of k; Velvet and SGA hit their optimums between

k¼91 and sharp drop-offs before this value. With single-end reads

alone, McCortex’s performance is comparable to SGA, which is

only capable of leveraging connectivity information inherent in

single-end reads. We further improve performance through an itera-

tive assembly procedure, e.g. by trimming 50 bp off both ends of

contigs (as assembly errors will tend to appear at contig boundaries)

and reassembling the results with the same procedure used for

single-end reads. This iterative procedure enables McCortex to pro-

duce assemblies on par with SPAdes’s performance.

5 Results: applications

To assess LdBG on real data, we examined short read data from

K.pneumoniae, a gram-negative bacteria that usually lives harm-

lessly in the mouth and gut of humans. However in the event of a

weakened immune system, it can establish pathogenic colonies in

the lung leading to inflammation and bleeding. It is also found in

some cases of urinary tract infections. Antibiotic resistant strains of

K.pneumoniae have been found in patients. We used McCortex for

two tasks where long-range information is likely to be beneficial—

finding large differences from a reference and analysis of genomic

context for drug resistance genes, which we validated using a PacBio

reference assembled for the sample (Sheppard et al., 2016).

5.1 Large-variant discovery
As links should provide useful guidance to navigating junctions in a

graph, we examined their utility in calling large variants (insertions

or deletions greater than 100 bp in length). We implemented a ‘bub-

ble caller’ (named for the characteristic motif produced by a biallelic

mutation in a graph wherein paths diverge from one k-mer and re-

join at another) and tested it by calling variants in CAV1016, a

K.pneumoniae isolate for which a high-quality PacBio sequence was

available for validation. We constructed dBGs of the canonical refer-

ence sequence (GCF_000016305.1_ASM1630v1) and Illumina data

for CAV1016. From these, we built LdBGs using the single-end

Illumina reads for link construction. We applied our bubble caller to

the dBG and LdBGs, allowing for a minimum event size of 100 bp

and maximum of 200 kbp, and removing duplicate events. We vali-

dated called alleles by aligning the reference and alternate alleles to

the canonical reference sequence and CAV1016 PacBio sequence, re-

spectively. The resulting callsets without and with link information

are presented in Supplementary Table S1.

Using the dnadiff tool from the MUMmer package, we deter-

mined the canonical reference sequence and CAV1016 PacBio se-

quence had 35 141 SNPs and 779 indels (note however that as the

dominant error mode of the PacBio instrument is indels, it is possible

that many of the indels are false-positives). In the Illumina data, our

τmin (SGA) or k (dBG/LdBG)

21 41 61 81 101 121 141
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Fig. 3. Assembly NG50 results on an Illumina paired-end E : coli dataset

(150 bp paired-end reads, 365� coverage) for McCortex, SPAdes, SGA, Velvet

at various values of k (or s for SGA). All assemblies are performed using sin-

gle-end information only; paired-end data (threading or scaffolding) is not

applied for any approach. For SPAdes, no results are available past k¼ 121,

the software’s maximum allowable setting. McCortex results are computed

using single-end read threading, and an iterative scheme wherein the results

from the single-ended assembly are further refined (‘iterative’)
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bubble caller identified 27 706 SNPs and 550 indels, overlapping

with the PacBio calls by 27 044 and 84 respectively. Examining the

large events, 55 large indels were present in the dBG callset and 59

indels were in the LdBG callset. All 55 variants from the dBG callset

were recovered in the LdBG callset. The four remaining variants ex-

clusive to the LdBG callset are insertions of varying size (134; 246;

7952; and 11 946 bp).

That the LdBG-exclusive events should all be insertions (particu-

larly large ones) is perhaps not surprising; in a graphical framework,

calling insertions against a high-quality reference sequence with

comparatively lower quality Illumina data is expected to be more

difficult than calling deletions. With insertions, sequencing error in

the study sample will produce spurious paths in the graph, not all of

which can be removed successfully, and thus graph traversal from

the 50 to the 30 end of the alternate allele has many opportunities to

fail. With deletions, the graph navigation burden is on the reference

allele which should have substantially fewer errors (and thus fewer

spurious paths) to confound traversal. Link-informed traversal helps

alleviate this insertion/deletion detection bias, enabling the recovery

of large events like the 8 and 12 kb events listed above. This im-

proves our access to large variants underrepresented in current vari-

ant call sets (Li, 2014b; Weisenfeld et al., 2014).

5.2 Reference-link guided assembly
Finally, we show that with links, we can use a panel of reference

contigs derived from multiple sources to improve drug resistance

locus characterization in K.pneumoniae isolates. As the underlying

graphs are considered immutable after construction, links derived

from this panel cannot add k-mers to a sample. We hypothesized

that the links panel could still provide valuable connectivity infor-

mation where they were consistent with the graph without mislead-

ing the assembler in regions where they were divergent. We selected

21 K.pneumoniae isolates with known drug resistance status and

that carry combinations of two alleles and two plasmid backgrounds

at the K.pneumoniae carbapenemase (KPC) resistance locus, see

Table 1. As references, we constructed links from a panel of four

plasmid backgrounds carrying three different KPC alleles: PacBio se-

quences from two of the 21 isolates (carrying allele KPC-2), a KPC-

harbouring plasmid from E.coli (carrying allele KPC-3) and a fourth

K.pneumoniae plasmid known to harbour a resistance allele and

background absent from the 21 isolates (carrying allele KPC-5). All

accessions are described in Supplementary Table S2. Three assem-

blies were generated per isolate: one without links, one with links

and one with the Columbus module in Velvet, using the links panel

as input for reference-guided reconstruction.

Contigs harbouring the KPC sequence within the 21 isolates

were identified by aligning to the KPC-2 allele sequence with

LASTZ (Harris, 2007) and extracting the longest such contig from

each assembly. These were aligned back to both the reference data

sources and the validation data (Mathers et al., 2015). For align-

ments that ran off the end of a sequence owing to the circular na-

ture of the plasmids, we attempted to shift the contig sequence

such that a linear alignment of maximum length was achieved;

where this was not possible we have reported the length of the

aligned region. The contig selected from each assembly was eval-

uated for correct KPC allele recovery, correct identification of

plasmid background (i.e. sequence context of KPC allele), and mis-

matches/gaps to the relevant reference sequence. These results are

shown in Table 1.

Without link information, we find that in 57% of cases the plas-

mid background on which the KPC allele resides cannot be identi-

fied. In such cases, LASTZ reports alignments of the short contigs

with 100% sequence identity to plasmids 1 and 2. Moreover, for the

CAV1360 isolate, the aligner determines the background incorrectly

as the E.coli plasmid due to the presence of KPC-3.

Table 1. Comparison of KPC-containing contigs to validation data, inferred without/with links and with Velvet’s Columbus module

LdBG without link information LdBG with link information Velvet with Columbus

Isolate Known

plasmid

and KPC

allele

Length

(bp)

Matches

uniquely

and correctly

Mismatches,

gaps

Length

(bp)

Matches

uniquely

and correctly

Mismatches,

gaps

Length

(bp)

Matches

uniquely

and correctly

Mismatches,

gaps

CAV1016 1, KPC-2 3893 Non-unique 0, 0 43 630 Yes 0, 0 34 240 Yes 7, 1

CAV1017 1, KPC-2 3895 Non-unique 0, 0 43 628 Yes 0, 0 10 001 Non-unique 0, 0

CAV1042 1, KPC-2 2557 Non-unique 0, 0 43 669 Yes 0, 0 9978 Non-unique 0, 0

CAV1077 1, KPC-2 3708 Non-unique 0, 1 15 796 Yes 0, 1 9879 Non-unique 0, 0

CAV1142 1, KPC-2 3892 Non-unique 0, 0 43 612 Yes 2, 0 9900 Non-unique 0, 0

CAV1145 1, KPC-2 5158 Yes 0, 0 43 643 Yes 1, 0 39 604 Yes 4, 2

CAV1182 1, KPC-2 2558 Non-unique 0, 0 9722 Yes 1, 0 9892 Non-unique 0, 0

CAV1203 1, KPC-2 3911 Non-unique 0, 0 43 670 Yes 0, 0 9993 Non-unique 0, 0

CAV1205 2, KPC-2 5978 Yes 0, 0 14 019 Yes 2, 1 52 582 Yes 24, 1

CAV1207 2, KPC-2 13 249 Yes 0, 0 13 991 Yes 3, 1 11 519 Yes 3, 0

CAV1237 1, KPC-2 20 444 Yes 1, 0 43 613 Yes 2, 1 34 177 Yes 7, 1

CAV1290 1, KPC-2 5099 Yes 0, 0 29 340 Yes 4, 1 9953 Yes 0, 0

CAV1292 1, KPC-2 5094 Yes 0, 0 29 337 Yes 1, 1 29 395 Yes 9, 3

CAV1338 2, KPC-2 5963 Yes 0, 0 14 003 Yes 2, 1 14 515 Yes 4, 0

CAV1344 1, KPC-2 4839 Yes 0, 0 9694 Yes 1, 0 9991 Non-unique 0, 0

CAV1351 1, KPC-3 3898 Incorrect 0, 0 43 616 Yes 1, 1 9953 Non-unique 0, 0

CAV1360 1, KPC-2 734 Non-unique 0, 0 43 621 Yes 1, 0 9922 Non-unique 0, 0

CAV1391 1, KPC-2 5106 Yes 0, 0 9726 Yes 1, 0 9918 Non-unique 0, 0

CAV1576 2, KPC-2 9161 Yes 0, 0 14 003 Yes 2, 1 10 105 Incorrect 0, 0

CAV1578 2, KPC-2 5243 Yes 0, 0 8956 Yes 0, 0 10 133 Incorrect 0, 0

CAV1597 2, KPC-2 12 627 Yes 0, 0 14 009 Yes 2, 1 14 037 Yes 19, 4
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Reconstruction with the link panel provides an order of magni-

tude increase in contig length over the link-uninformed reconstruc-

tions and the inferred plasmid membership matches the Mathers

et al. (2015) determination in all 21 cases. In contrast, the Velvet re-

constructions are longer than the link-uninformed contigs, but only

resolve the plasmid background correctly in two additional cases. It

fails to determine a unique membership in two cases, and establishes

an incorrect background in two other cases. The much higher mis-

match and gap rate of the Velvet contigs suggest that these assem-

blies are more errorful. This is perhaps expected, as the Columbus

module is designed for guided assembly with a single reference, ra-

ther than a panel of references. With considerable homology be-

tween the supplied sequences, the initial step of mapping reads to

the reference panel is likely to produce erroneous alignments, con-

founding Velvet’s ability to leverage the panel properly. We at-

tempted to overcome this limitation by using Ragout to refine the

Velvet and link-uninformed assemblies with multiple references.

This effort failed as Ragout would not accept panel members having

limited synteny with the assembled contigs.

Reconstructions from two isolates stand out. CAV1351 was

known to carry the KPC-3 allele, while all other isolates carried the

KPC-2 allele. The link-uninformed assembly produces a contig that

maps to the E.coli KPC-3 sequence perfectly, but infers the wrong

plasmid membership. The link-informed reconstruction, however,

produces both the correct plasmid membership and correct allele. In

another case, Mathers et al. (2015) reported CAV1077 to possess

plasmid 1, but with an unspecified sequence alteration. Our recon-

struction is able to establish both the correct plasmid membership

and identify a 188 bp deletion in the intergenic region upstream

from the transposase and downstream from the KPC genes (detected

with and without links, but not with Velvet). Combined, these ana-

lyses demonstrate how using external data sources as a means to

guide assembly through ‘reference links’ can lead to highly accurate

reconstruction of even complex regions of the genome.

5.3 Scalability
Finally, to assess the scalability of LdBG to larger genomes, we con-

structed LdBGs (k¼47) from paired-end data for genomes ranging

from �5 Mbp (E.coli) to 3200 Mbp (H.sapiens). The full results are

presented in Supplementary Table S3, using SGA’s performance on

the same datasets as a point of comparison (with the exception of

the human dataset, due to high computational burden). In all cases,

McCortex memory usage substantially exceeds that of SGA, while

concomitant runtime is lower. The design choices between the two

tools are clearly evident in the runtime results, with SGA explicitly

optimized to reduce memory usage at the expense of CPU time, and

McCortex opting to keep graphs and link information in memory to

reduce CPU time. On the largest dataset tested, paired-end data

from human sample NA12878, construction had a peak memory

usage of 400 GiB (required to store the entire graph, including

sequencing errors). After error cleaning, loading the dataset requires

70 GiB of RAM (50 GiB for the dBG, 20 GiB for links). Link con-

struction is easily parallelized (the alignment of reads to the graph

has no dependency on other reads). Using 32 threads for single- and

paired-end link construction, a human genome covered to 25� is

completed in under 72 h.

6 Discussion

We have presented a de novo assembly method that addresses the

most important limitation of de Bruijn graphs: the ability to leverage

long-range connectivity information inherent in read data. While

cutting reads into small k-mers has long been a useful way of simul-

taneously computing read-to-read overlaps and overcoming high

rates of sequencing error, increasing sequencing quality and read

lengths have rendered de Bruijn assembly methods less attractive.

String graphs have been successful in incorporating long-range data

into assemblies, but sacrifice desirable computational properties of

de Bruijn graphs. Our solution, Linked de Bruijn Graphs, combine

the connectivity properties of string graphs with the rapid lookup of

specific (multi-coloured) k-mers. Due to the wide range of uses of

dBGs in sequence analysis, we believe this offers a potential im-

provement to many existing algorithms. Path encoding of reads has

been suggested for read compression before (Conway and Bromage,

2011; Kingsford and Patro, 2015). However we believe this is the

first implementation to use it for multi-colour assembly that can

scale up to large mammalian genomes on modern computer

hardware.

We have shown that read error correction and graph annotation

can improve assembly performance of de Bruijn graphs and that this

can be seen with the recovery of large (12 kbp) events in short read

sequences. Moreover, through application to real data we have

shown that links can be generated from a wide range of sequencing

technologies including data not used to construct the underlying

dBG, and that this can be exploited to identify sequences of biolo-

gical interest. LdBGs can also naturally represent paired-end con-

nectivity (where we treat filling in sequence between paired-end

reads as the equivalent problem to closing gaps in alignment) and

chimeric reads (e.g. chimeric reads spanning a translocation break-

point would yield k-mers not necessarily present in a reference se-

quence, and alignment of these reads back to the graph would

provide connectivity across the breakpoint) information. We have

proven that in the error-free setting, Linked de Bruijn Graphs loss-

lessly store the genome sequence, even when constructed from short

reads and agnostic of k.

Our method is useful for reconstructing complex loci across mul-

tiple samples using a common panel of pre-determined haplotypes.

Link information derived from a haplotype panel cannot add k-mers

or edges to the graph that were not observed in the original dataset.

Nevertheless, assembly is enhanced in regions where the links are

consistent with the graph, and naturally defaults to link-uninformed

navigation in regions of discrepancy. Threading a panel of haplo-

types from multiple samples through each graph thus identifies only

the relevant sections of each donor haplotype.

One shortcoming of long links is the accumulated probability of

encountering an error during traversal. If a link takes the wrong

branch of an error-induced bubble, cleaning that junction choice

trims off all the remaining information about the junction choices

made beyond the bubble. This shortcoming results in link coverage

dropping off quicker than expected as links get longer, resulting in

truncated links. This could be addressed by error-correcting groups

of links that start at the same k-mer.

We have implemented a very simple read mapping, which trusts

all k-mers from a read if there is a perfect match in the graph, and

which only attempts to fill gaps using linear time graph traversal.

Optimal mapping is ultimately NP-hard, but more advanced heuris-

tic methods are available which may perform better than our ap-

proach (Limasset et al., 2016). Improvement may be most

noticeable for high error rate sequencing data and in low complexity

regions of the graph.

More sophisticated graphical alignment approaches may also en-

able the use of uncorrected (i.e. low accuracy) reads from third gen-

eration sequencing for alignment, graph construction, or both. High
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error rate reads pose a problem in our current framework as the

alignment is predicated on exact matches between a number of read

and graph k-mers, under the assumption that the k-mers in the

graph are correct. Even if the graph is built with a small k-mer size

(e.g. 31 bp), uncorrected long reads may not contain enough perfect

k-mers for alignment. Reducing the k-mer size of the graph may not

solve this problem, as the number of false edges arising from hom-

ology would be expected to increase substantially, impeding our

ability to traverse the graph to fill in error-induced gaps. Finally,

construction of both the graph and links from uncorrected long

reads is likely not possible using our method. Our error cleaning

steps are not suited to this data type, and a naı̈ve application of our

software might simply ratify the errors inherent in the read data. We

leave the pursuit of a LdBG implementation appropriate to uncor-

rected long read datasets to future work.

There is scope for reducing memory consumption, given very few k-

mers actually have links attached (see Supplementary Fig. S6) and could

be further reduced with better encoding in memory of the junction

choice tree held by a k-mer (i.e. L(v)). For example, using a binary

encoding of the tree of junction choices, or generative path encoding

proposed to compress sequence data (Kingsford and Patro, 2015).
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Aguilera,A. and Gómez-González,B. (2008) Genome instability: a mechanistic

view of its causes and consequences. Nat. Rev. Genet., 9, 204–217.

Artzy-Randrup,Y. et al. (2012) Population structuring of multi-copy, anti-

gen-encoding genes in Plasmodium falciparum. eLife, 1, e00093.

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol.

Cell Biol., 19, 455–477.

Bateman,A. et al. (2016) Limitations of current approaches for reference-free,

graph-based variant detection. In: Proceedings of the 7th ACM

International Conference on Bioinformatics, Computational Biology, and

Health Informatics, New York, NY, USA. ACM, pp. 499–500.

Benoit,G. et al. (2015) Reference-free compression of high throughput sequenc-

ing data with a probabilistic de Bruijn graph. BMC Bioinformatics, 16, 288.

Bolger,A.M. et al. (2017). LOGAN: a framework for LOssless Graph-based

ANalysis of high throughput sequence data. bioRxiv, p. 175976.

Bonizzoni,P. et al. (2016) An external-memory algorithm for string graph con-

struction. Algorithmica, 78, 394–424.

Bowe,A. et al. (2012) Succinct de Bruijn Graphs. In: Raphael,B. and Tang,J.

(eds.) Algorithms in Bioinformatics. Springer, Berlin, pp. 225–235.

Bradley,P. et al. (2015) Rapid antibiotic-resistance predictions from genome

sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

Nat. Commun., 6, 10063–10063.

Bradnam,K.R. et al. (2013) Assemblathon 2: evaluating de novo methods of

genome assembly in three vertebrate species. GigaScience, 2, 10–10.

Chikhi,R. and Lavenier,D. (2011). Localized genome assembly from reads to

scaffolds: practical traversal of the paired string graph. In: Przytycka,T. and

Sagot,M.-F. (eds.) Algorithms in Bioinformatics. Springer, Berlin, pp.

39–48.

Chikhi,R. and Rizk,G. (2013) Space-efficient and exact de Bruijn graph repre-

sentation based on a Bloom filter. Algorithms Mol. Biol., 8, 22.

Chikhi,R. et al. (2015) On the representation of de Bruijn graphs. J. Comput.

Biol., 22, 336–352.

Conway,T.C. and Bromage,A.J. (2011) Succinct data structures for assem-

bling large genomes. Bioinformatics, 27, 479–486.

de Bruijn,N.G. (1946) A Combinatorial Problem. Koninklijke Nederlandsche

Akademie Van Wetenschappen, 49, 758–764.

Difilippantonio,M.J. et al. (2002) Evidence for replicative repair of DNA

double-strand breaks leading to oncogenic translocation and gene amplifica-

tion. J. Exp. Med., 196, 469–480.

Dilthey,A. et al. (2015) Improved genome inference in the MHC using a popu-

lation reference graph. Nat. Genet., 47, 682–688.

Ferragina,P. and Manzini,G. (2000). Opportunistic data structures with appli-

cations. In: Proceedings. 41st Annual Symposium on Foundations of

Computer Science, 2000, Los Alamitos, CA, USA. IEEE, pp. 390–398.

Freitas-Junior,L.H. et al. (2000) Frequent ectopic recombination of virulence

factor genes in telomeric chromosome clusters of P. falciparum. Nature,

407, 1018–1022.

Goodwin,S. et al. (2016) Coming of age: ten years of next-generation sequenc-

ing technologies. Nat. Rev. Genet., 17, 333–351.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics (Oxford, England), 29, 1072–1075.

Harris,R.S. (2007) Improved Pairwise Alignment of Genomic DNA. PhD the-

sis, Pennsylvania State Univ.

Holley,G. et al. (2017) Dynamic alignment-free and reference-free read com-

pression. In: Research in Computational Molecular Biology. Springer,

Cham, pp. 50–65.

Huang,L. et al. (2013) Short read alignment with populations of genomes.

Bioinformatics, 29, i361–i370.

Idury,R.M. and Waterman,M.S. (1995) A new algorithm for DNA sequence

assembly. J. Comput. Biol., 2, 291–306.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de Bruijn graphs. Nat. Genet., 44, 226–232.

Iqbal,Z. et al. (2013) High-throughput microbial population genomics using

the Cortex variation assembler. Bioinformatics, 29, 275–276.

Jackson,A.P. et al. (2012) Antigenic diversity is generated by distinct evolu-

tionary mechanisms in African trypanosome species. Proc. Natl. Acad. Sci.

USA, 109, 3416–3421.

Kim,J. et al. (2013) Reference-assisted chromosome assembly. Proc. Natl.

Acad. Sci. USA, 110, 1785–1790.

Kingsford,C. and Patro,R. (2015) Reference-based compression of short-read

sequences using path encoding. Bioinformatics, 31, 1920–1928.

Li,D. et al. (2015) MEGAHIT: an ultra-fast single-node solution for large and

complex metagenomics assembly via succinct de Bruijn graph.

Bioinformatics (Oxford, England), 31, 1674–1676.

Li,H. (2012) Exploring single-sample SNP and INDEL calling with

whole-genome de novo assembly. Bioinformatics, 28, 1838–1844.

Li,H. (2014a) Fast construction of FM-index for long sequence reads.

Bioinformatics, 30, 3274–3275.

Li,H. (2014b) Toward better understanding of artifacts in variant calling from

high-coverage samples. Bioinformatics, 30, 2843–2851.

Li,H. (2015) BFC: correcting Illumina sequencing errors. Bioinformatics, 31,

2885–2887.

Limasset,A. et al. (2016) Read mapping on de Bruijn graphs. BMC

Bioinformatics, 17, 237–237.

Kolmogorov,M. et al. (2014) Ragout—a reference-assisted assembly tool for

bacterial genomes. Bioinformatics, 30, i302–i309.

Mathers,A.J. et al. (2015) Klebsiella pneumoniae carbapenemase (KPC) pro-

ducing K. pneumoniae at a Single Institution: insights into Endemicity from

Whole Genome Sequencing. Antimicrob. Agents Chemother., 59,

1656–1663.

2564 I.Turner et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/15/2556/4938484 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty157#supplementary-data


Miller,J.R. et al. (2010) Assembly algorithms for next-generation sequencing

data. Genomics, 95, 315–327.

Muggli,M.D. et al. (2017) Succinct colored de Bruijn graphs. Bioinformatics,

33, 3181–3187.

Myers,E.W. (1995) Toward simplifying and accurately formulating fragment

assembly. J. Comput. Biol., 2, 275–290.

Myers,E.W. (2005) The fragment assembly string graph. Bioinformatics, 21,

ii79–ii85.

Peng,Y. et al. (2010) IDBA – a practical iterative de Bruijn graph de novo as-

sembler. RECOMB, 6044, 426.

Pevzner,P.A. (1989) l-Tuple DNA sequencing: computer analysis. J. Biomol.

Struct. Dyn., 7, 63–73.

Pevzner,P.A. (2004) De novo repeat classification and fragment assembly.

Genome Res., 14, 1786–1796.

Prjibelski,A.D. et al. (2014) ExSPAnder: a universal repeat resolver for DNA

fragment assembly. Bioinformatics, 30, i293–i301.

Read,B.A. et al. (2013) Pan genome of the phytoplankton Emiliania underpins

its global distribution. Nature, 499, 209–213.

Ribeiro,A. et al. (2015) An investigation of causes of false positive single nu-

cleotide polymorphisms using simulated reads from a small eukaryote gen-

ome. BMC Bioinformatics, 16, 382.

Rimmer,A. et al. (2014) Integrating mapping-, assembly- and haplotype-based

approaches for calling variants in clinical sequencing applications. Nat.

Genet., 46, 912–918.

Rozov,R. et al. (2017) Faucet: streaming de novo assembly graph construc-

tion. bioRxiv, 34, 147–154.

Schneeberger,K. et al. (2009) Simultaneous alignment of short reads against

multiple genomes. Genome Biol., 10, R98.

Sheppard,A.E. et al. (2016) Nested Russian doll-like genetic mobility drives

rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob.

Agents Chemother., 60, 3767–3778.

Simpson,J.T. and Durbin,R. (2010) Efficient construction of an assembly

string graph using the FM-index. Bioinformatics, 26, i367–i373.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence

data. Genome Res., 19, 1117–1123.

Weisenfeld,N.I. et al. (2014) Comprehensive variation discovery in single

human genomes. Nat. Genet., 46, 1350–1355.

Zerbino,D.R. (2010) Using the Velvet de novo assembler for short-read

sequencing technologies. Curr. Protoc. Bioinf., 31, 11.5.1–11.5.12.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Linked de Bruijn graphs 2565

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/15/2556/4938484 by guest on 23 April 2024


