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Abstract

Summary: Small RNAs play key roles in gene regulation, defense against viral pathogens and

maintenance of genome stability, though many aspects of their biogenesis and function remain to

be elucidated. SCRAM (Small Complementary RNA Mapper) is a novel, simple-to-use short read

aligner and visualization suite that enhances exploration of small RNA datasets.

Availability and implementation: The SCRAM pipeline is implemented in Go and Python, and is

freely available under MIT license. Source code, multiplatform binaries and a Docker image can be

accessed via https://sfletc.github.io/scram/.

Contact: s.fletcher@uq.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are

classes of small RNA derived from longer fully or partially double-

stranded RNA (dsRNA) precursors. siRNAs act in the RNA interfer-

ence (RNAi) pathway to direct degradation and/or translational

repression of complementary RNA, as well as target DNA regions

for RNA-directed DNA methylation (Borges and Martienssen,

2015). By contrast, miRNAs guide the degradation and/or transla-

tional repression of complementary endogenous mRNA transcripts

(Zhang et al., 2006).

Next-generation sequencing is widely used to quantify the abun-

dance of discrete small RNAs. Several tools have been developed

that align small RNA reads to reference sequences, including all-

purpose aligners such as Bowtie (Langmead et al., 2009), STAR

(Dobin et al., 2013) and BWA (Li and Durbin, 2009), and small

RNA-specific tools wrapping general aligners, such as the Small

RNA Workbench (Stocks et al., 2012) and ShortStack (Johnson

et al., 2016). Limitations of existing tools include requirements for

indexing reference sequences, pre-processing reads for adapter

removal and normalization and, in cases such as siRNA analysis, ex-

traction of specific read lengths post-alignment. Additionally, work-

flows to process alignment outputs and visually compare counts and

profiles among treatments are either complex or absent, and thus

require a degree of expertise to perform. In contrast, the Small

Complementary RNA Mapper (SCRAM) pipeline was developed as

a simple-to-use integrated alignment and visualization suite with no

requirement for additional scripting and data manipulation prior to

single-command plot generation. SCRAM has been used as a key

component in several publications, demonstrating the role of

DICER-LIKE 2 in systemic RNAi in Arabidopsis (Taochy et al.,

2017), the differential response of plant (peanut) and insect (thrip)

RNAi pathways to infection by a common tospovirus (Fletcher

et al., 2016), and the sustained protection of plants from viral load

by topical application of dsRNA in complex with clay nanosheets

(Mitter et al., 2017). Comparative analyses of small RNA abun-

dance and distribution are vital for deciphering small RNA function,

and the SCRAM pipeline provides a rapid, simple-to-perform means

for such comparisons.

2 Implementation

SCRAM uses fast naive algorithms for exact matching reads to refer-

ence sequences. Rather than align replicate read files sequentially,

mean count and standard error are internally retained for each
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unique read in a hash map. Alignment to longer reference sequences

is via scanning the sense and antisense strands in a window of a set

size, e.g. 21 nucleotide (nt), and querying the hash map for the

presence of the matching read at each increment (Supplementary

Fig. S1A). In contrast, a miRNA aligning option identifies full-length

sense-orientation reads that intersect the input mature miRNA refer-

ence set (Supplementary Fig. S1B). Visualization of alignments is

through an associated Python package (scram_plot.py).

3 Results

Two classes of alignment are performed by SCRAM: (i) a ‘compare’

alignment, where the aggregate aligned read count and standard

error for each individual miRNA or longer reference sequence is

generated for two treatments or genotypes (e.g. Fig. 1A), and (ii) a

‘profile’ alignment, where position-by-position alignment data (i.e.

mean count, standard error, strand etc.) for each individual refer-

ence sequence is generated for a single treatment or genotype (e.g.

Fig. 1B). Read file inputs to the aligner can be in FASTQ, FASTA or

collapsed FASTA format, with the options for on-the-fly 3’ adapter

trimming, normalization of read count by library size, and read ex-

clusion based on length or raw count. The output fields for ‘com-

pare’ and ‘profile’ alignments are shown in Supplementary Table S1.

Uniquely for repetitive multi-mapping reads, the aligned count

can be evenly split by the number of loci to which the read can align,

or retained as the full count for that read at all duplicated loci.

Individual files in CSV format are generated for each small RNA

size aligned (e.g. 21, 22 and 24 nt alignments are separately written

to file), except in the case of miRNAs, where all full-length align-

ments are reported in a single file. Importantly, error associated

with biological variation is propagated throughout the pipeline, the

standard errors of reads aligned to a single reference added in quad-

rature (‘compare’ alignment; Fig. 1A), or as the standard error of

each aligned read (‘profile’ alignment; Fig. 1B).

SCRAM’s aligner component maximizes multi-core CPU usage

and speed without prior indexing of reference sequences, with most

analyses able to be rapidly performed on consumer-grade PCs.

Benchmarking of the SCRAM aligner for various example analyses

is shown in Supplementary Table S2, with comparative features

indicated in Supplementary Table S3.

Complementing the SCRAM aligner, the visualization package

(scram_ploy.py) can be invoked in Jupyter Notebook. Each plot

type displays the statistical variation present in the aligner output

files; interactive ‘compare’ scatter plots show x and y standard error

bars for each reference sequence (Fig. 1A, Supplementary Fig. S2),

while ‘profile’ plots display standard error bounds of the smoothed

mean coverage (Fig. 1B). An example workflow demonstrating the

SCRAM pipeline’s capability is shown in Supplementary Fig. S3.

4 Conclusions

The SCRAM pipeline allows for fast exact matching of small RNA

reads to reference sequences, whilst indicating error associated with

biological variability. Visualization of generated outputs via Jupyter

Notebook integration is simple and user-friendly, permitting entire

workflows to be completed in minutes using rudimentary command

line skills. The scenarios to which the pipeline is suited are diverse,

and include generating virus- and dsRNA-derived small RNA pro-

files, demonstrating abundance shifts of discrete small RNA size

classes between treatments or genotypes, and showing changes in lo-

cation and magnitude of small RNA hotspots along reference

sequences in response to particular treatments or mutations. Such

applications demonstrate the SCRAM pipeline is a valuable addition

to the small RNA researcher’s investigative toolkit.
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Fig. 1. The SCRAM aligner and visualization packages combine to generate

‘compare’ and ‘profile’ plots for Tomato Spotted Wilt Virus (TSWV)-infected

and non-infected peanut plants. (A) ‘Compare’ plot showing peanut tran-
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Experimental conditions and input read data for the figure are described in

Fletcher et al. (2016)
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