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Abstract

Motivation: A large number of resources have been devoted to exploring the associations between

microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods

are expensive and time-consuming. Therefore, the computational methods to predict potential

miRNA–disease associations have been paid increasing attention.

Results: In this paper, we proposed a novel computational model of Bipartite Network Projection for

MiRNA–Disease Association prediction (BNPMDA) based on the known miRNA–disease associa-

tions, integrated miRNA similarity and integrated disease similarity. We firstly described the prefer-

ence degree of a miRNA for its related disease and the preference degree of a disease for its related

miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglom-

erative hierarchical clustering according to the three types of networks. Then, we implemented the

bipartite network recommendation algorithm to predict the potential miRNA–disease associations by

assigning transfer weights to resource allocation links between miRNAs and diseases based on the

bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previ-

ous models according to the area under the receiver operating characteristics (ROC) curve (AUC)

results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and

5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 6 0.0013,

respectively. We further implemented two types of case studies on several important human com-

plex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively pre-

dict the potential miRNA–disease associations at a high accuracy level.

Availability and implementation: BNPMDA is available via http://www.escience.cn/system/file?

fileId=99559.

Contact: xingchen@amss.ac.cn or zhaoqi.shenyang@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The first microRNA (miRNA) named lin-4 was found twenty years

ago by Victor Ambros (Lee et al., 1993). Soon after, a large amount

of miRNAs have been discovered from a wide variety of species

(Jopling et al., 2005). Studies have uncovered that miRNAs are

non-coding RNAs including approximately 22 nucleotides (Ribeiro
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et al., 2014). In general, they could bind specific target messenger

RNAs through base-pairing interactions and repress their translation

and stability. Besides, the expression pattern of a miRNA could

provide important clues toward its function (Pasquinelli, 2016).

The miRNAs could influence some important biological processes,

such as cell development, proliferation and apoptosis (Bartel, 2009).

Meanwhile, their regulatory functions are related to some special gene

expressions in the post transcription stage (Wightman et al., 1993). In

recent researches, many experiments have shown that large amounts

of miRNAs are associated with the development processes of various

human diseases (Meola et al., 2009). For example, the study of

Kalinowski et al. showed that miR-7 could regulate epidermal growth

factor receptor (EGFR) expression and protein kinase B (Akt) activity

in head and neck cancer (HNC) cell lines (Kalinowski et al., 2012). In

2010, the study of Amit et al. found that a number of miRNAs such

as miR-193a, miR-224/miR-452 cluster, miR-182/miR-183/miR-96

cluster and miR-148a having potential tumor/metastasis suppressive

activity were over-expressed in the WNT signaling associated medul-

loblastomas (Gokhale et al., 2010). Furthermore, Von et al. had

shown that miR-15a which was inversely correlated to protein kinase

C (PKC) was a potential marker to differentiate between benign and

malignant renal tumors in biopsy and urine samples (Von et al.,

2012). It is obvious to conclude that miRNAs have tight associations

with human diseases. However, the miRNA–disease associations iden-

tified by experimental methods nowadays are only the tip of the ice-

berg. Furthermore, experimental methods for finding associations

between miRNAs and diseases are expensive and time-consuming.

Therefore, increasing numbers of studies have paid attention to the

computational algorithms for predicting the potential miRNA–disease

associations. According to the results of the prediction, the biological

experiments could be implemented effectively by selecting the most

promising disease-associated miRNAs (Bandyopadhyay et al., 2010).

Based on the assumptions that miRNAs which have similar func-

tions are more likely associated with similar disease and vice versa,

Jiang et al. (2010) proposed a computational model by using hypergeo-

metric distribution to identify the potential miRNA–disease s associa-

tions. However, it adopted the similarity information just by judging

whether the pairs were similar, rather than using similarity scores.

Another shortage was that they only used the local similarity of two

miRNAs that had significant number of shared target genes. Li et al.

(2011) proposed a computational method for predicting the miRNA–

disease associations by calculating the function consistence score (FCS)

between the target genes of miRNA and the disease-related genes.

However, when calculating the FCS, this method ignored the topo-

logical structure of network composed of the targets and disease genes.

Shi et al. (2013) developed a modified random walk algorithm by using

the miRNA–target interactions, disease-gene associations and protein–

protein interactions (PPIs). Mørk et al. (2014) presented a computa-

tional method called miRPD, which explicitly took advantage of the

protein link between miRNA and disease that connected miRNA–pro-

tein interactions and protein–disease associations. The scoring function

was constructed by multiplying the score of protein–disease association

with the score of protein-miRNA interaction. Besides linking miRNAs

to diseases, it had directly suggested the underlying proteins involved.

Xu et al. (2014) constructed a miRNA prioritization method by inte-

grating known disease–gene associations and miRNA–target interac-

tions to prioritize novel disease-related miRNAs. Instead of using the

known miRNA–disease associations, they needed to evaluate the simi-

larity between the targets of miRNAs and disease genes. For all the

aforementioned methods, because the miRNA–target interactions have

high false positive and false negative samples, so they could not gener-

ate sufficiently accurate prediction results.

To deal with the limitations above, Xuan et al. (2013)

constructed an HDMP model to predict disease-related miRNAs.

When calculating miRNA similarity, they assigned higher weights to

the similarity scores between two miRNAs associated with the given

disease in the same family or cluster through multiplying similarity

scores by the weight which was a function about the proportion of dis-

ease related miRNAs in the same family or cluster. However, HDMP

could not predict the association between new diseases and miRNAs.

Simultaneously, it was not suitable for diseases with a few known

miRNAs. HDMP also could not perform better than most of previous

models which were calculated based on the global network similarity

measures. Chen et al. (2012) found that global network similarity is

more effective to capture the associations between diseases and

miRNAs than traditional local network similarity. Therefore, the

method of RWRMDA had been developed to infer potential miRNA–

disease associations by implementing random walk (a global network

similarity measure-based algorithm). Chen et al. (2016c) presented an-

other model of WBSMDA based on calculating the Gaussian inter-

action profile kernel similarity together with miRNA functional

similarity and disease semantic similarity. WBSMDA could predict the

potential related miRNAs of new diseases and new miRNAs without

known association information. Chen et al. (2016a) also presented the

computational model of HGIMDA to predict new disease-related

miRNAs by integrating known miRNA–disease associations and dif-

ferent types of disease similarity and miRNA similarity into a hetero-

geneous graph. HGIMDA could find the optimal solutions with an

iterative process based on global network similarity information.

HGIMDA had an improved performance in comparison with the pre-

vious local network-similarity-based models for predicting miRNA–

disease associations.

Nowadays, the machine learning algorithms such as Support

Vector Machine (SVM) classifiers and some semi-supervised learning

models have been applied in the bioinformatics and computational

biology (Wong et al., 2015). As an instance, Xu et al. (2011) intro-

duced an approach based on the miRNA target-dysregulated network

(MTDN) to prioritize novel disease-related miRNAs. They con-

structed the SVM classifier to distinguish positive miRNA–disease

associations from negative ones by extracting the feature of network

topologic information. However, as is known, it is hard to obtain the

negative miRNA–disease associations. Thus, the ambiguity caused by

negative samples influences the accuracy of the supervised classifier.

Chen and Yan (2015) constructed a RLSMDA model based on semi-

supervised learning for predicting potential disease-related miRNAs.

RLSMDA could calculate prediction score of miRNA–disease associ-

ation for new disease. Meanwhile, RLSMDA could avoid using nega-

tive associations between miRNAs and diseases. However, the

parameter choice of RLSMDA and the ways of combining the classi-

fiers in different spaces together need to be studied furthermore. In

addition, Chen et al. (2015) developed the RBMMMDA method

based on the restricted Boltzmann machine (RBM) with a two-layer

(visible and hidden) undirected graphical miRNA–disease associa-

tions. Different from the previous methods, RBMMMDA could ob-

tain the types of new miRNA–disease associations.

In this paper, we proposed the Bipartite Network Projection for

MiRNA–Disease Association prediction (BNPMDA) model based

on the rating-integrated bipartite network recommendation and the

known miRNA–disease associations. Firstly, based on the miRNA

functional similarity and the disease semantic similarity, the bias

ratings between diseases and miRNAs were constructed by using ag-

glomerative hierarchical clustering. Furthermore, the baseline algo-

rithm for personal recommendation based on bipartite network

projection was improved with the constructed bias ratings for a
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more accurate prediction of potential miRNA–disease associations.

For estimating the prediction accuracy of BNPMDA, we imple-

mented the global and local leave-one-out cross validation

(LOOCV) and obtained the AUCs of 0.9028 and 0.8380, respective-

ly. Furthermore, the 5-fold cross validation showed an average AUC

of 0.8980 6 0.0013. In order to further validation, we also carried

out the case studies on the recent version of HMDD database and

the previous version of HMDD database, respectively. As a result,

there were high proportions of the predicted miRNAs confirmed by

recent experimental reports. Therefore, we could conclude that

BNPMDA has been confirmed to be powerful and effective in pre-

dicting potential miRNA–disease associations.

2 Materials and methods

2.1 Human miRNA–disease associations
The known human miRNA–disease associations data were

downloaded from HMDD v2.0 database (Li et al., 2014)

which contains 5430 distinct experimentally confirmed human

miRNA–disease s associations about 383 diseases and 495

miRNAs. For convenience, we constructed an adjacency matrix

A 2 Rnd�nm to formalize the human miRNA–disease associations,

where nm and nd were denoted as the number of known miRNAs

and known diseases. If a disease di had been experimentally

verified to be associated with a miRNA mj, then Aij equals to 1,

otherwise 0.

2.2 MiRNA functional similarity
Based on the assumption that functional similar miRNAs are

more likely to be associated with similar diseases and vice

versa, Wang et al. (2010) proposed method to calculate the

miRNA functional similarity (Lu et al., 2008). We could

download the miRNA functional similarity data conveniently

from http://www.cuilab.cn/files/images/cuilab/misim.zip owing

to their excellent work. We denoted the matrix FS to represent

the miRNA functional similarity. The element FS(mi, mj) repre-

sents the value of similarity between the miRNA mi and the

miRNA mj.

2.3 Disease semantic similarity model 1
A Directed Acyclic Graph (DAG) was constructed to describe the

diseases according to the literature of Wang et al. (2010) based on

the Medical Subject Headings (MeSH) descriptors which could be

downloaded from the National Library of Medicine (http://www.

nlm.nih.gov/). We provided the Supplementary Figure S1 as an

example to explain the DAG based on MeSH (see Supplementary

Fig. S1). According to the DAG, we denoted the contribution values

of disease d in DAG(D) to the semantic value of disease D as

follows:

D1D dð Þ ¼ 1 if d ¼ D

D1D dð Þ ¼ max D �D1D d0ð Þjd0 2 children of df g if d 6¼ D

(
(1)

where D was the semantic contribution decay factor. The semantic

value of disease D was defined as follows:

DV1 Dð Þ ¼
X

d2T Dð Þ
D1D dð Þ (2)

where T Dð Þ represented all ancestor nodes of D and D itself.

According to the observation that two diseases with larger shared

part of their DAGs tend have larger similarity score, the semantic

similarity score between disease di and dj could be defined as

follows:

SS1 di; dj

� �
¼

P
t2T dið Þ\T djð Þ D1di

tð Þ þD1dj
tð Þ

� �
DV1 dið Þ þDV1 dj

� � (3)

2.4 Disease semantic similarity model 2
As what we had considered, it was not reasonable to assign the same

contribution value to the diseases in the same layer of DAG(D).

Specially, a more specific disease that appears in less DAGs should

contribute a higher value to the semantic similarity of disease D.

Therefore, according to the model which was proposed by Xuan

et al. (2013), we defined the contribution of disease d in DAG(D) to

the semantic value of disease D as follows:

D2D dð Þ ¼ �log ½the number of DAGs including d=the number
of diseases�

(4)

where d represented any disease of all the diseases under investiga-

tion. We defined the semantic similarity between disease di and dj as

the ratio of contributions from the shared ancestor nodes to the con-

tributions from all the ancestor nodes. Consequently, the disease se-

mantic similarity could be calculated as follows:

SS2 di; dj

� �
¼

P
t2T dið Þ\T djð Þ D2di

tð Þ þD2dj
tð Þ

� �
DV2 dið Þ þDV2 dj

� � (5)

where

DV2 Dð Þ ¼
X

d2T Dð Þ
D2D dð Þ (6)

2.5 Gaussian interaction profile kernel similarity
Based on the Gaussian kernel function which is one of the Radial

Basis functions whose values depend only on the distance from the

origin, Gaussian interaction profile kernel similarities were con-

structed as another algorithm of measuring disease similarity and

miRNA similarity (Chen et al., 2016b,c). Since the ith row and jth

column of adjacent matrix A contains the information whether the

disease or the miRNA associated with miRNA mj or disease di, we

denoted vector IP(di) and IP(mj) to represent the ith row vector and

the jth column vector for the further convenient utilization.

Therefore, the similarity between diseases and miRNAs could be

computed as follows:

GD di; dj

� �
¼ exp �bdkIP dið Þ � IP dj

� �
k2

� �
(7)

GR mi;mj

� �
¼ exp �brkIP mið Þ � IP mj

� �
k2

� �
(8)

where adjustment coefficient bd and br for the kernel bandwidth

were denoted as follows:

bd ¼ b0d=
1

nd

Xn

i¼1

kIP dið Þk2

 !
(9)

bm ¼ b0m=
1

nm

Xm
i¼1

kIP mið Þk2

 !
(10)

where b0d and b0m were the original bandwidths. In the end, matrix

GD and GS were denoted to represent the Gaussian interaction pro-

file kernel similarity of diseases and miRNAs, respectively.
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2.6 Integrated similarity for miRNAs and diseases
Based on the multiple similarity algorithms constructed above, the

more accurate integrated disease similarity and integrated miRNA

similarity were constructed by combining the Gaussian interaction

profile kernel similarity with the disease semantic similarity and the

miRNA functional similarity, respectively. For example, if disease di

and dj have semantic similarity, then the final integrated similarity

equals to the average of SS1 and SS2, otherwise it equals to the

Gaussian interaction profile kernel similarity. The formula has been

shown as follows:

SM mi;mj

� �
¼

FS mi;mj

� �
mi and mj has functional similarity

GR mi;mj

� �
otherwise

(
(11)

SD di; dj

� �
¼

SS1 di; dj

� �
þ SS2 di;dj

� �
2

di and dj has semantic
similarity

GD di; dj

� �
otherwise

8>><>>:
(12)

2.7 BNPMDA

All the subsections presented above from 2.1 to 2.6 are materials

prepared for the following main algorithm to take advantage of.

The six kinds of materials are basically coincident with two latest

proposed models, namely WBSMDA (Chen et al., 2016c) and

HGIMDA (Chen et al., 2016a). However, the earlier models had no

such complete training data, such as the RLSMDA (Chen and Yan,

2015) which was not developed based on the integrated similarities

for diseases and miRNAs due to the unconscious of Gaussian inter-

action profile kernel similarity. The earlier proposed model was

RWRMDA, which was developed based on only human miRNA–

disease associations and miRNA functional similarity. Moreover,

RBMMMDA was proposed only based on human miRNA–disease

associations due to the limitations of the algorithm. Therefore, all

the materials used in our model are developed accumulatively over

time. Nowadays, we use as many materials as possible to guarantee

that we have made full use of the information of known data. Each

type of the material appeared in history will be used unless a better

version came out. The comparison figure has been shown as

Supplementary Figure S2 which is the comparison diagram of

BNPMDA and five previous models. In the first section of the dia-

gram, the whole models are arranged with the time tendency. In the

second section, we list the specific materials for each model. If one

model has the given type of materials, the rectangular strip of the

corresponding material will extend to the area under the model. In

the third section, we list the core prediction algorithms of each

model to show the main differences between all the models.

Through analyzing the known miRNA–disease associations, a

given disease showed obviously different ratings of tendency to be

associated with different miRNAs. For example, a given disease di

may have association with many similar miRNAs, but some other di

-related miRNAs do not have any similar miRNAs that are also

associated with disease di. Therefore, based on the assumption that

disease associated with a greater number of similar miRNAs implies

a higher bias rating to these miRNAs, we could build the bias ratings

of disease to miRNA based on the known miRNA–disease associ-

ation. To achieve this purpose, the agglomerative hierarchical clus-

tering was used to construct the bias ratings by taking advantage of

the integrated miRNA similarity.

Specifically, we clustered all the miRNAs associated with disease

di based on the agglomerative hierarchical clustering by adopting a

bottom-up strategy which deemed each miRNA as a single cluster at

the beginning of the process, then merged the other clusters based

on the linkage criterion of Ward’s minimum variance method (Joe

and Ward, 1963). We could denote the distance RD(mi, mj) between

two miRNAs and the distance DD(di, dj) between two diseases

which would be used in the linkage criterion with their similarities

as follows:

RD mi;mj

� �
¼ 1� SM mi;mj

� �
(13)

DD di; dj

� �
¼ 1� SD di; dj

� �
(14)

After clustering, we cut the hierarchical clustering tree to obtain

appropriate clusters with an optimal threshold [experimentally set

value as 1.1 according to previous work of Shi et al. (2015)] which

was a distances criterion between clusters. In experiments, we can

take advantage of the hierarchical clustering computation package

of programming language such as python. Naturally, we denoted

the bias ratings from the given disease di to the related miRNA mj as

follows:

r di;mj

� �
¼ ncr=T dið Þ (15)

where ncr was the number of the miRNAs in the cluster cr which

contained the miRNA mj. T(di) was the total number of the

miRNAs associated with disease di.

The baseline bipartite network projection recommendation algo-

rithm (Zhou et al., 2007) is a two-round resource transfer process as

shown in the second step of Figure 1 which always do not consider

bias rating by just marking the disease-related miRNA with value 1,

otherwise 0. Therefore, we introduced the bias ratings constructed

above to the baseline algorithm. However, different diseases have

different bias rating range, which will lead to inconsistent transfer

weights in the resource allocation process. To overcome this short-

age, we first normalized the original bias rating r(di, mj) with the

average of the ratings related with the given disease di as follows:

br di;mj

� �
¼

r di;mj

� �
�r dið Þ

(16)

where

�r dið Þ ¼
Pnm

j¼1 r di;mj

� �
T dið Þ

(17)

According to the normalized bias ratings, we introduced the

following process which recommends all the potential miRNAs to

the given disease with the resource scores. Then we could recom-

mend miRNAs for other diseases in the same way as the process

above. In reverse, we could recommend diseases for miRNAs

according to similar rules.

Specifically, we firstly allocated the initial resource to the

miRNA mj associated with the given disease di as follows:

Rini mj

� �
¼ br di;mj

� �
(18)

This initial resource allocation tried to emphasize the distinction of

disease bias to different miRNAs. Thus, the initial resource alloca-

tion became more distinguishable and accordant with disease bias

ratings. In the following, every miRNA would be allocated with a

resource allocation score after the two-round resource distribution

which represented the recommendation power of the miRNA to the
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given disease di (see Fig. 1). In the first round, we assigned a transfer

weight to each of the resource allocation links from miRNAs to

diseases. Specifically, the initial resource transferred from miRNA

mj to disease di was calculated as follows:

R di;mj

� �
¼

br di;mj

� �Pnd
k¼1 br dk;mj

� �� Rini mj

� �
(19)

Then the disease di obtained the allocated resource by adding the

contributions from all miRNAs associated to it as follows:

R uið Þ ¼
Xnm

j¼1

R di;mj

� �
(20)

In the second round, we allocated the resource of diseases

obtained in the first round back to the miRNAs according to trans-

fer weights from diseases to miRNAs. The transfer weight from dis-

ease di to miRNA mj equaled to the ratio of the disease rating

r di;mj

� �
to the sum of ratings from the disease di to all the miRNAs.

Different from the first round, no normalization needed to be done

in this round because all these transfer weights come from the bias

ratings of the same disease. Hence, we could formulate the final re-

source allocation to the miRNA mj by

Rfin vj

� �
¼
Xnd

i¼1

Rfin di;mj

� �
(21)

where Rfin(di, mj) denoted the final resource allocated from disease

di to miRNA mj, which was calculated as follows:

Rfin di;mj

� �
¼

r di;mj

� �Pnm
j¼1 r di;mj

� �� R dið Þ (22)

According to this formula, the rating-based resource distribution

allocated the disease resource discriminatively. This process consid-

ered the particularity of every transfer link so that it could improve

the accuracy of miRNA–disease association prediction.

Similar to the disease-oriented bipartite recommendation which

recommended miRNAs to diseases with the resource allocation

scores, we in reverse implemented the miRNA-oriented bipartite

recommendation which recommended diseases to miRNAs and

obtained the final resource from miRNA mj to disease di which was

denoted as Rfin(mj, di). Furthermore, we combined the disease-

oriented final resource Rfin(di, mj) and the miRNA-oriented final

resource Rfin(mj, di) to generate the final prediction score of associ-

ation between disease di and miRNA mj as follows:

FPS di;mj

� �
¼

Rfin di;mj

� �
þRfin mj; di

� �
2

(23)

3 Results

3.1 Performance evaluation
Three types of cross validation were implemented to evaluate the

prediction accuracy of BNPMDA, which included Global LOOCV,

Local LOOCV and 5-fold cross validation (see Fig. 2). In Global

LOOCV, each known miRNA–disease association was left out in

turn to be considered as test sample and the other remaining known

associations were considered as training samples. Then we carried

out the BNPMDA to predict the scores of all the disease-miRNA

associations and compared the score of the test association with the

scores of the other candidate associations to observe whether its

ranking was greater than the given threshold. Different from the

Global LOOCV, the Local LOOCV only considered the ranking of

the score generated by the test association among the candidate

associations which were merely related to the investigated disease.

According to the results of the Global and Local LOOCV, ROC

curve was drew to present the visible accuracy description by plot-

ting true positive rate (TPR, sensitivity) versus false positive rate

(FPR, 1-specificity) at different thresholds. Specifically, sensitivity

refers to the percentage of the true positive samples whose ranking is

higher than the given threshold in the whole positive samples.

Meanwhile, specificity denotes the percentage of negative samples

with rankings lower than the given threshold in the whole negative

samples. AUC was further calculated to demonstrate the prediction

ability of BNPMDA. If the AUC equals to 1, it indicates that the

model has perfect prediction performance. If the AUC equals to 0.5,

it indicates that the model only has random prediction performance.

As a result, BNPMDA obtained the AUC of 0.9028 in the Global

LOOCV, and the AUC of 0.8380 in the Local LOOCV as shown in

Figure 2. To compare the performance of our method with the

previous methods, we implemented the methods of HGIMDA,

RLSMDA, HDMP, WBSMDA and RWRMDA on the same dataset.

As a result, the AUCs of HGIMDA, RLSMDA, HDMP and

WBSMDA in Global LOOCV were 0.8781, 0.8426, 0.8366 and

0.8030, respectively. In Local LOOCV, their AUCs were 0.8077,

0.6953, 0.7702 and 0.8031, respectively. Differently, RWRMDA

only had AUC of local LOOCV (0.7891) which was one of its

defects because it could not simultaneously uncover the missing

associations for all diseases.

In the more rigorous manner, 5-fold cross validation was also

implemented to further estimate the prediction accuracy of the

BNPMDA model by randomly dividing the whole known associa-

tions equally into five parts and treating each one of the five parts as

test samples in turn by removing the associations of the current test

samples simultaneously. Afterwards, every test sample would be

scored and compared with scores of the candidate miRNA–disease

pairs to obtain the rankings among them. We repeated this proced-

ure 100 times to obtain a more accurate average AUC value.

By comparing with the previous models of RLSMDA, HDMP and

Fig. 1. The flow diagram of BNPMDA model. The first step constructs the

known miRNA–disease association network, the disease similarity network

and the miRNA similarity network. The second step introduces the baseline

bipartite recommendation algorithm by taking the process of recommending

miRNAs to disease d1 as an example. In the third step, the bias ratings are

constructed based on the three networks in the first step. Finally, the

improved bipartite recommendation algorithm is implemented based on the

constructed bias ratings
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WBSMDA, whose average AUCs were 0.8569 6 0.0020, 0.8342 6

0.0010 and 0.8185 6 0.0009 respectively, we could further confirm

the effectiveness and the high accuracy of BNPMDA with the aver-

age AUC of 0.8980 6 0.0013 for potential miRNA–disease associa-

tions prediction.

3.2 Case studies
We studied three major popular diseases of human beings based on

another two miRNA–disease databases, namely dbDEMC database

and miR2Disease database. We observed the number of miRNAs

that were verified at least one of the three diseases respectively in the

top 10, top 20 and even top 50 in the two databases.

Colon neoplasm is the second most common cause of death from

cancer. Meanwhile, it is also one of the best-understood neoplasms

from a genetic perspective and a class of diseases characterized by

out-of-control cell growth. Colon neoplasm forms when this uncon-

trolled cell growth happens in the cells of the large intestine

(Manfredi, 2014). Most colon neoplasms due to old age and lifestyle

factors with only a small number of cases due to underlying genetic

disorders (Schwartz, 1975). Increasing numbers of evidences have

shown that several miRNAs are highly correlated with colon neo-

plasm and play important roles in the development of colon neo-

plasm. For example, the study of Espinosa et al. has implicated that

several miRNAs in tumorigenesis such as miR-143 and miR-145

have been shown to be constantly down-regulated in colon neo-

plasm (Stahlhut Espinosa and Slack, 2006), and recent studies of

Zhang et al. have shown that miR-21, miR-17 and miR-19a induced

by phosphatase of regenerating liver-3 promote the proliferation

and metastasis of colon neoplasm (Zhang et al., 2012). Through

implementing BNPMDA, we obtained the total rankings of the can-

didate miRNAs. As the result shown, among the top 10, 20 and 50

potential colon neoplasm-related miRNAs, there were 9, 19 and 45

miRNA–disease associations proved by recent experiments reports,

respectively (see Table 1). For a further observation, the hsa-mir-21

which ranked first in our prediction results had been proved that it

induced stemness by down-regulating transforming growth factor

beta receptor 2 (TGFbetaR2) in colon neoplasm cells (Yu et al.,

2012).

Esophageal neoplasm is a popular cancer with the rapidly diet

transformation of people nowadays. But it is a deadliest cancer

which is rarely studied worldwide. Fortunately, recent advances in

the diagnosis, staging and treatment of this neoplastic condition

have led to small but significant improvements in survival (Enzinger

and Mayer, 2003). According to the clinical manifestation, the stat-

istical results have shown that the esophageal neoplasm is age-

specific which means that the incidence and mortality rates

increased with age (Zeng et al., 2016). Recent researches have

shown that the expression of miRNAs has tight associations with

the development of esophageal neoplasm. For example, the study of

Liu et al. showed that the expressions of miR-155, miR-183 and

miR-20a in esophageal tissue were found to be significantly associ-

ated with increased risk for esophageal neoplasm. Circulating miR-

155 was found to have significant diagnostic value for esophageal

neoplasm as evidenced by an AUC of 66% (Liu et al., 2012). In

view of the aforementioned facts, we implemented the BNPMDA to

identify potential related miRNAs for esophageal neoplasms based

on known associations in the HMDD database. As a result, 9 out of

the top 10 and 45 out of the top 50 predicted miRNAs related to

esophageal neoplasms were experimentally confirmed by reports

from dbDEMC (see Supplementary Table S1). Among the prediction

results of top 50, the first was hsa-mir-17 which had been shown

that it closely correlated with the occurrence and progression of

esophageal squamous carcinoma and might be used as an indicator

for esophageal squamous carcinoma prognosis according to the

study of Guo et al. (2008).

Lymphoma is a sort of lymph cancer which is developed from

blood cell tumors of lymphocytes. Some of the cells in the lymphatic

system grow abnormally and out of control when lymphoma occurs.

People will have symptom of enlarged lymph nodes, fever, drenching

sweats and so on when they suffer from the lymphoma. Eventually,

Fig. 2. AUC of global LOOCV (left) compared with HGIMDA, RLSMDA, HDMP and WBSMDA; AUC of local LOOCV (right) compared with HGIMDA, RLSMDA,

HDMP, WBSMDA and RWRMDA
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the cancerous cells may form a tumor which continues to grow as

the cancerous cells reproduce (Alizadeh et al., 2000). Recent

experimental studies showed that the expression level of miR-138,

miR-29c, miR26a and miR-16 was found to be reduced in t(14;

18)–negative follicular lymphoma (FL). Particularly, the down-

regulation of miR-16 in t(14; 18)–negative FL was statistically sig-

nificant (Leich et al., 2011). Therefore, it is necessary and important

to take lymphoma as a case for the additional prediction. After the

implementation of BNPMDA, 9 out of top 10 potential lymphoma-

associated miRNAs in the prediction list have been verified by the

recent studies (see Supplementary Table S2). Furthermore, for the

top 50 verified lymphoma-associated miRNAs predicted by

BNPMDA, 44 of them have experimental literature evidences. For

example, the study of Akao et al. had confirmed the down-

regulation of miR-143 and miR-145 in B-cell malignancies (Akao

et al., 2007).

For demonstrating all the results of prediction, we showed the

prediction scores of all the candidate miRNA–disease pairs obtained

from BNPMDA model. This table contains the potential miRNAs

associated with all the human diseases in HMDD database (see

Supplementary Table S3).

We also tested our model on the old version of the HMDD to see

whether the BNPMDA still performed well on it. Through the ex-

periment, the effectiveness of BNPMDA on predicting potential

miRNA–disease associations had been confirmed based on three dif-

ferent databases including dbDEMC, miR2Disease and the latest

version of HMDD. For instance, there were 10, 20 and 48 miRNAs

out of top 10, 20 and 50 miRNAs related with breast neoplasms

confirmed by three databases mentioned above (see Table 2). By tak-

ing the hsa-mir-16 as an example which ranked the first in the top

50, research of Hu et al. had shown that Serum hsa-mir-16 was con-

sistently differentially expressed between breast cancer cases and

controls (Hu et al., 2012).

4 Discussion and conclusion

In this paper, we proposed the Bipartite Network Projection for

MiRNA–Disease Association prediction (BNPMDA) based on

known miRNA–disease associations, miRNA functional similar-

ity, disease semantic similarity and Gaussian interaction profile

kernel similarity. We took advantage of the agglomerative hier-

archical clustering to construct the bias rating from disease to

miRNA and the bias rating from miRNA to disease based on the

integrated miRNA similarity and the integrated disease similarity

at the beginning of the model. Furthermore, we improved the

baseline algorithm of bipartite network recommendation based on

the constructed bias ratings by reflecting the distinctness of prefer-

ence in the resource allocation process from a given disease to

various miRNAs or from a given miRNA to various diseases.

Furthermore, three types of cross validation and several case stud-

ies on important human diseases have been implemented. As a re-

sult, BNPMDA performed well both in the cross validations and

the case studies.

The excellent performance of BNPMDA mainly attributes to the

following several important factors. Firstly, the baseline algorithm

of bipartite recommendation outperforms some previous classical

methods to recommend the items to users in the field of business.

This superiority guaranteed the basic effectiveness of our proposed

method. Secondly, the improved bipartite recommendation algo-

rithm could reflect the bias ratings of the diseases and the miRNAs

to the resource initialization process and the resource transfer pro-

cess. This kind of rating-integrated algorithm could take full advan-

tage of the similarity information of both the miRNAs and the

diseases to further improve the accuracy of the prediction. Last but

not least, increasing numbers of disease-miRNA association data

have been discovered these years due to the rapid development of

the biological experiment technology.

Table 1. Prediction of the top 50 miRNAs associated with colon neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdemc; miR2Disease hsa-mir-150 Unconfirmed

hsa-mir-155 dbdemc; miR2Disease hsa-mir-199a Unconfirmed

hsa-mir-20a dbdemc; miR2Disease hsa-mir-146b Unconfirmed

hsa-mir-19b dbdemc; miR2Disease hsa-mir-181a dbdemc; miR2Disease

hsa-mir-18a dbdemc; miR2Disease hsa-mir-29c Dbdemc

hsa-mir-143 dbdemc; miR2Disease hsa-mir-183 dbdemc; miR2Disease

hsa-mir-34a dbdemc; miR2Disease hsa-mir-182 dbdemc; miR2Disease

hsa-mir-92a unconfirmed hsa-mir-93 dbdemc; miR2Disease

hsa-mir-19a dbdemc; miR2Disease hsa-mir-200b Dbdemc

hsa-mir-146a dbdemc hsa-mir-223 dbdemc; miR2Disease

hsa-mir-125b dbdemc hsa-mir-141 dbdemc; miR2Disease

hsa-mir-29b dbdemc; miR2Disease hsa-mir-181b dbdemc; miR2Disease

hsa-mir-29a dbdemc; miR2Disease hsa-let-7f dbdemc; miR2Disease

hsa-let-7a dbdemc; miR2Disease hsa-mir-196a dbdemc; miR2Disease

hsa-mir-16 dbdemc hsa-mir-205 Dbdemc

hsa-mir-106b dbdemc; miR2Disease hsa-mir-34c miR2Disease

hsa-mir-222 dbdemc hsa-let-7b dbdemc; miR2Disease

hsa-mir-31 dbdemc; miR2Disease hsa-let-7c Dbdemc

hsa-mir-221 dbdemc; miR2Disease hsa-let-7d Dbdemc

hsa-mir-9 dbdemc; miR2Disease hsa-mir-200a Unconfirmed

hsa-mir-133a dbdemc; miR2Disease hsa-mir-199b Dbdemc

hsa-mir-15a dbdemc hsa-mir-107 dbdemc; miR2Disease

hsa-mir-214 dbdemc hsa-mir-125a dbdemc; miR2Disease

hsa-mir-200c dbdemc; miR2Disease hsa-mir-7 dbdemc; miR2Disease

hsa-mir-1 dbdemc; miR2Disease hsa-mir-210 Dbdemc

Note: The first column records top 1–25 related miRNAs. The second column records the top 26–50 related miRNAs.
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However, there are still some limitations in this model. First of

all, though known miRNA–disease association data have been more

than before, it is still a small quantity for the prediction to obtain

enough accurate results. Secondly, because the bipartite recommen-

dation algorithm is implemented by allocating the resource based on

the known associations between different miRNAs and diseases, the

BNPMDA is not suitable for the prediction of diseases without any

known associated miRNAs. This shortage limits the application

range of the BNPMDA.
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