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Abstract

Summary: The excessive amount of zeros in single-cell RNA-seq (scRNA-seq) data includes ‘real’

zeros due to the on-off nature of gene transcription in single cells and ‘dropout’ zeros due to tech-

nical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two

types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative

Binomial model to estimate the proportion of real and dropout zeros and to define and detect three

types of DE genes in scRNA-seq data with higher accuracy.

Availability and implementation: The R package DEsingle is freely available at Bioconductor

(https://bioconductor.org/packages/DEsingle).

Contact: zhangxg@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-seq (scRNA-seq) data have different characteris-

tics from bulk RNA-seq data (Brennecke et al., 2013). One

important difference is that there are much more zero values in

scRNA-seq data (Bacher and Kendziorski, 2016; Miao and Zhang,

2016). There are both biological and technical reasons. On the

technical aspect, usually the amount of mRNAs in one cell is very

tiny (�0.01–2.5 pg; Boon et al., 2011), and most genes have only

small mRNA copy numbers in a cell (Macaulay and Voet, 2014;

Marinov et al., 2014). Due to the low efficiency of the mRNA

capture protocol (Islam et al., 2014; Marinov et al., 2014), the

mRNAs of some genes are totally missed during the reverse tran-

scription and cDNA amplification steps and consequently missed

in the sequencing (Wang and Navin, 2015). This phenomenon is

called ‘dropout’ events (Kharchenko et al., 2014). We call this type

of zero values in the data as dropout zeros as they do not reflect

the true expression status. On the other hand, because of the sto-

chastic nature of transcription in single cells and the heterogeneity

between cells, there is also a high chance that the expression levels

of some genes are really zero in some cells at the time when they

are sequenced (Delmans and Hemberg, 2016). We call this type of

zero values as ‘real’ zeros because they reflect the true status of the

genes’ transcription. The excessive zero values observed in scRNA-

seq data are the mixture of these two possible types of zeros.

Discriminating these two types of zeros is important for down-

stream analyses. Existing methods for analysing differential gene

expression in single cells did not take the different types of zeros

into consideration.

We developed an R package DEsingle to define and detect three

types of differential expression (DE) genes between two groups of

scRNA-seq data. It employed Zero-Inflated Negative Binomial

(ZINB) model to estimate the proportion of real and dropout zeros.

Simulation experiments showed that DEsingle can detect DE genes

with better overall performance than existing methods. We applied

DEsingle on a scRNA-seq dataset of human pre-implantation em-

bryonic cells (Petropoulos et al., 2016) and found that the three

types of DE genes imply different biological functions. DEsingle is

not only a new tool for detecting DE genes with high accuracy, but

also provides a new view of DE genes by discriminating three types

of differential expression.
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2 Materials and methods

2.1 The ZINB model for discriminating the proportion of

real and dropout zeros
DEsingle adopted the ZINB model to describe the read counts and

the excessive zeros in scRNA-seq data (Supplementary Fig. S1). The

ZINB distribution is a mixture of constant zeros and a Negative

Binomial (NB) distribution with a mixing parameter h (Garay et al.,

2011). The probability mass function (PMF) of ZINB distribution

for read counts Ng of gene g in a group of cells is

P Ng ¼ njh; r;p
� �

¼ h � I n ¼ 0ð Þ þ 1� hð Þ � fNB r;pð Þ

¼ h � I n ¼ 0ð Þ þ 1� hð Þ �
nþ r� 1

n

� �
pn 1� pð Þr; n ¼ 0; 1; 2; . . .

where h is the proportion of constant zeros of gene g in the group of

cells, I n ¼ 0ð Þ is an indicator function which equals to 1 for n ¼ 0

and 0 for n 6¼ 0, fNB is the PMF of the NB distribution, r is the size

parameter and p is the probability parameter of the NB distribution.

The NB part can also have zero values. The observed zero values are

the mixture of constant zeros and zeros from the NB distribution.

We proved that this model can separate observed zeros as two parts

to reflect the proportion of real and dropout zeros (Supplementary

Material). Based on this, we can distinguish three types of DE

according to whether the difference is in the zero part or the NB

part of the distribution, or in both.

2.2 The workflow of DEsingle
DEsingle uses the ZINB model to detect differentially expressed

genes. It includes three major steps: data normalization, detection

of DE genes and sub-division of DE genes into three types

(Supplementary Fig. S1E). The input of DEsingle is the raw read-

count matrix from scRNA-seq data. DEsingle integrates a modified

median normalization method similar to the one used in DESeq

(Anders and Huber, 2010). After normalization, maximum likeli-

hood estimation (MLE) and constrained MLE of the parameters

of two ZINB populations are calculated. Finally, DEsingle uses

likelihood-ratio tests to compare two ZINB populations to detect

DE genes and to sub-divide them into the three types: DEs, DEa and

DEg. DEs refers to ‘different expression status’. It is the type of

genes that show significant difference in the proportion of real zeros

in the two groups, but do not have significant difference in the other

cells. DEa is for ‘DE abundance’, which refers to genes that are sig-

nificantly differentially expressed between the groups without sig-

nificant difference in the proportion of real zeros. DEg or ‘general

differential expression’ refers to genes that have significant differ-

ence in both the proportions of real zeros and the expression abun-

dances between the two groups. The detailed definition of the three

types and description of the package are given in the Supplementary

Material.

3 Results and discussion

3.1 Performance evaluation on simulated data
We compared DEsingle with six existing methods on eight simulated

datasets that considers both stochasticity and mRNA capture effi-

ciency (Supplementary Material). Supplementary Figure S2 shows

the ROC curves and the AUCs of the different methods. DEsingle

performed the best on seven of the datasets and was very close to the

best on the other dataset.

3.2 Three types of DE genes found in real data

experiments
We applied DEsingle on a human pre-implantation embryonic cell

scRNA-seq dataset (Petropoulos et al., 2016). Results show that

DEsingle can detect genes and pathways that have significant

changes in their expression between days of embryonic cell develop-

ment, and the three types of detected DE genes are enriched in differ-

ent biological processes (Supplementary Figs S3 and S4).

Distinguishing DE genes as three sub-types provides the extra possi-

bility of analysing the expression patterns and functions in different

cell groups. Details of the results and functional analyses are given

in the Supplementary Material.

4 Conclusion

We developed an R package DEsingle for DE analysis of scRNA-seq

data. By estimating the proportion of real and dropout zeros with

ZINB model, DEsingle not only detects DE genes with high accuracy

but also distinguishes three types of DE patterns which can reveal

different functional mechanisms. We believe that DEsingle is a

powerful tool that brings a new angle for the analysis of scRNA-seq

data.
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