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Abstract

Motivation: Brain imaging genetics, which studies the linkage between genetic variations and

structural or functional measures of the human brain, has become increasingly important in recent

years. Discovering the bi-multivariate relationship between genetic markers such as single-

nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is one major task in

imaging genetics. Sparse Canonical Correlation Analysis (SCCA) has been a popular technique in

this area for its powerful capability in identifying bi-multivariate relationships coupled with feature

selection. The existing SCCA methods impose either the ‘1-norm or its variants to induce sparsity.

The ‘0-norm penalty is a perfect sparsity-inducing tool which, however, is an NP-hard problem.

Results: In this paper, we propose the truncated ‘1-norm penalized SCCA to improve the perform-

ance and effectiveness of the ‘1-norm based SCCA methods. Besides, we propose an efficient

optimization algorithms to solve this novel SCCA problem. The proposed method is an adaptive

shrinkage method via tuning s. It can avoid the time intensive parameter tuning if given a reason-

able small s. Furthermore, we extend it to the truncated group-lasso (TGL), and propose TGL-SCCA

model to improve the group-lasso-based SCCA methods. The experimental results, compared with

four benchmark methods, show that our SCCA methods identify better or similar correlation coeffi-

cients, and better canonical loading profiles than the competing methods. This demonstrates

the effectiveness and efficiency of our methods in discovering interesting imaging genetic

associations.
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1 Introduction

Brain imaging genetics has gained more and more attentions in

recent years. Using the quantitative endophenotype, other than the

error-prone cutoffs to define case-control status, as the target meas-

ure can improve the performance in identifying disease related

genetic markers (Kim et al., 2013; Potkin et al., 2009; Saykin et al.,

2015; Shen et al., 2010, 2014). A major task of imaging genetics is

to identify bi-multivariate associations between single nucleotide

polymorphisms (SNPs) and imaging quantitative traits (QTs). As an

ideal computational model, sparse canonical correlation analysis

(SCCA), which is powerful in discovering bi-multivariate relation-

ships and selecting relevant features, has become a popular techni-

que in brain imaging genetics (Chen and Liu, 2012; Chen et al.,

2012, 2013; Du et al., 2014, 2016a, b; Parkhomenko et al., 2009;

Witten et al., 2009).

The canonical correlation analysis (CCA) technique has been

proposed to learn the associations between two views of data

(Hotelling, 1936). However, CCA suffers from severe overfitting

issue because its performance decreases significantly once the num-

ber of features is larger than that of the observations. (Witten et al.,

2009) introduced the ‘1-norm into the CCA model to pursuit sparse

canonical loadings. This is a desired property because it only selects

a small proportion of the features which are meaningful for further

investigation. After that, many sparse CCA methods using the ‘1-

norm or its variants such as the fused lasso are proposed, and they

have been successfully applied to different biology applications

(Shen et al., 2014). However, there are two major concerns regard-

ing these SCCA methods. First, the ‘1-norm pursuits sparsity at the

price of shrinking large features by a constant. This may incurs esti-

mation bias and thus decrease the prediction power. Second, the ‘0-

norm is the most ideal sparsity-inducing constraint, which only

includes those nonzero features. Unfortunately, the ‘0-norm func-

tion is neither non-convex nor discontinuous. Nevertheless, it is

known to be an NP-hard (nondeterministic polynomial time) prob-

lem (Fung and Mangasarian, 2011). In addition, the ‘1-norm con-

straint is not a stable feature selector (Fan and Li, 2001). Group

lasso is widely used to model the group structure by considering

each group of variables as a whole (Yuan and Lin, 2006). Actually,

group lasso is a ‘1-norm constraint at the group level, and within

each group a ‘2-norm is used. Therefore, group lasso is limited by

the same problems to that of ‘1-norm. For example, group lasso

shrinks large groups by a constant which may lead to biased results.

In order to address these issues, the likelihood-based selector,

named the truncated ‘1-norm penalty (TLP) (Shen et al., 2012; Yang

et al., 2012), is proposed. The TLP is defined as Js jxjð Þ ¼ minðjxjs ;1Þ
where s is a small positive tuning parameter. TLP plays the role of

the surrogate of ‘0-norm. It could approximate the ‘0-norm function

and permits the desirable sparsity by providing a reasonable s. At

the same time, TLP can be equivalently transferred to a piecewise

linear function, and thus is easier to handle than the ‘0-norm func-

tion. Besides, the TLP can be easily extended to the truncated group

lasso to provide an improved group feature selector.

With the above observations, we explore the effect of using TLP

and TGL in the SCCA model. We first propose the TLP based SCCA

(TLP-SCCA) which embraces the TLP norm instead of the ‘0-norm

or the ‘1-norm. The TLP-SCCA has the following advantages (Shen

et al., 2012). First, the TLP function performs as a tradeoff between

the ‘0 and ‘1 function. This means that it not only has better feature

selection ability, but also can be solved effectively like the ‘1-norm.

Second, it is an adaptive shrinkage method if s is tuned appropri-

ately. Third, using an appropriate s, it can discriminate the small

coefficients from large coefficients, and leave those large ones less

penalized. We propose an effective optimization algorithm to solve

the TLP-SCCA problem. In addition, we extend TLP-SCCA to the

truncated group lasso penalized SCCA, aiming to boost the existing

methods using group lasso. The experimental results, compared

with three state-of-the-art ‘1-SCCA methods (Chen and Liu, 2012;

Du et al., 2014; Witten et al., 2009) and one group lasso penalized

SCCA method (Du et al., 2014), show that both TLP-SCCA and

TGL-SCCA exhibit better canonical loading profiles than these

benchmark methods, and also obtain higher or similar correlation

coefficients.

2 Materials and methods

We use the boldface lowercase letter to denote a vector, and use the

boldface uppercase letter to denote a matrix. jj � jj indicates the ‘2-

norm of a vector. Let X2Rn�p denote the SNP data, and Y 2 R
n�q

denote the QT data, where n is the number of participants, and p

and q are the number of SNPs and QTs, respectively. Then the

penalized CCA model using ‘1-norm is defined

minu;v �u>X>Yv

s:t: jjujj2 � 1; jjvjj2 � 1;X uð Þ � c1;X vð Þ � c2;
(1)

where X uð Þ and X vð Þ are the ‘1-norm functions which can control

model sparsity (Parkhomenko et al., 2009; Witten and Tibshirani,

2009).

2.1 The truncated ‘1-norm
The ‘1 regularization for lasso is widely used as a convex relaxation

of the ‘0-norm function (Yang et al., 2012). Though lasso regular-

izer yields sparse solutions, it may incur estimation bias because it

overpenalizes large coefficients. The truncated ‘1-norm is defined as

follows (Zhang, 2013):

XTLP uð Þ ¼
Xp

i¼1

Js juijð Þ; where Js juijð Þ ¼ min
juij
s
; 1

� �
: (2)

The parameter s is a predefined threshold or tuning parameter.

Given an appropriate s, TLP balances between the ‘1-norm and

the ‘0-norm according to the magnitude of ui‘s. It is equivalent to the

‘1-norm if the coefficient is small enough (juij � s), while it

becomes the ‘0-norm as the coefficient goes beyond the threshold s

(juij > s).

2.2 Smoothing the penalty
Since TLP is non-convex, we first decompose it into two continuous

functions, and then show how to approximate TLP by a quadratic

function. Let f1 uið Þ ¼ juij þ s and f2 uið Þ ¼ jjuij � sj, TLP can be rep-

resented as:

Js juijð Þ ¼ 1

2s
f1 uið Þ � f2 uið Þ½ �: (3)

Obviously, f1 uið Þ is convex. Although f2 uið Þ is non-convex, it is

piecewise continuously differentiable. Therefore, the TLP function is

piecewise continuously differentiable (Zhang, 2013).

The first-order Taylor expansion of the function
ffiffiffi
x
p

at x0 is

ffiffiffi
x
p
� ffiffiffiffiffi

x0
p þ 1

2
ffiffiffiffiffi
x0
p x� x0ð Þ ¼ xþ x0

2
ffiffiffiffiffi
x0
p : (4)
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Substituting x ¼ u2
i and x0 ¼ ðu tð Þ

i Þ
2 into the right of (4), we define

g1 uið Þ ¼
u2

i þ u
tð Þ

i

� �2

2ju tð Þ
i j

þ s (5)

where u
tð Þ

i is the t-th iteration in the optimizing task.

THEOREM 1. g1 uið Þ is a point-by-point approximation to f1 uið Þ,
and they have the same stationary point.

The proof is available in the Supplementary Material due to

space limitation. Using the same idea, we can define

g2 uið Þ ¼ sign ju tð Þ
i j � s

� � u2
i þ u

tð Þ
i

� �2

2ju tð Þ
i j

� s

0
B@

1
CA (6)

as the surrogate of f2 uið Þ. Similarly, g2 uið Þ is a pointwise approxima-

tion to f2 uið Þ, and they have the same stationary point, too.

Based on Equation (3), we define the surrogate penalty of

XTLP uð Þ by combining Equations (5) and (6) across all ui‘s

XApp
TLP uð Þ ¼ 1

2s

Xp

i¼1

g1 uið Þ � g2 uið Þ½ �

¼ 1

2s

Xp

i¼1

u2
i

2ju tð Þ
i j
�

sign ju tð Þ
i j � s

� �
2ju tð Þ

i j
u2

i

2
4

3
5þ C;

(7)

where

C ¼ 1

2s

Xp

i¼1

ju tð Þ
i j
2
þ s� sign ju tð Þ

i j � s
� � ju tð Þ

i j
2
� s

 !" #
(8)

is an irrelevant constant that is not a function of u. It is easy to verify

that XApp
TLP uð Þ is also a point-by-point approximation to XTLP uð Þ, and

it is continuously differentiable and convex in terms of u. The surro-

gate penalty XApp
TLP vð Þ can be constructed in the same way.

2.3 The TLP-SCCA model and optimization
Now using the TLP, we formally define the TLP-SCCA model as

minu;v�u>X>Yvþ k1XTLP uð Þ þ k2XTLP vð Þ

s:t: jjXujj2 � 1; jjYvjj2 � 1;
(9)

where XTLP uð Þ; XTLP vð Þ are the TLP penalties, and k1 and k2 are

positive parameters. Though X>X is generally assumed to be an

identity matrix (Chen and Liu, 2012; Witten and Tibshirani, 2009),

the performance can be improved when using jjXujj2 � 1 other

than jjujj2 � 1 (Du et al., 2014). Thus we do not assume X>X to be

an identity.

According to the definition, TLP-SCCA transforms between ‘0-

SCCA and ‘1-SCCA depending on the relationship between s and

the magnitude of the coefficients. Thus its merits are 3-fold.

Firstly, it has both better sparsity-inducing ability and lower esti-

mation bias than the ‘1-SCCA since it approximates the optimal

‘0-SCCA. Secondly, TLP-SCCA is guaranteed to perform well as

long as s is small enough. This is desirable because it avoids the

time-consuming procedure to fine-tune s, especially in high-

dimensional biology study. Thirdly, it is easier to solve than the

intractable ‘0-SCCA.

The unconstrained formulation of the TLP-SCCA problem

writes

L u; vð Þ ¼ �u>X>Yvþ k1XTLP uð Þ þ k2XTLP vð Þ

þ c1

2
jjXujj2 � 1
� �

þ c2

2
jjYvjj2 � 1
� �

;
(10)

where c1, and c2 are the tuning parameters. Equation (10) is non-

convex due to the non-convexness of TLP terms. In this paper, we

define the following biconvex function

LApp u; vð Þ ¼ �u>X>Yvþ k1X
App
TLP uð Þ þ k2X

App
TLP vð Þ

þ c1

2
jjXujj2 � 1
� �

þ c2

2
jjYvjj2 � 1
� �

:
(11)

as the surrogate function of Equation (10).

THEOREM 2. Minimizing Equation (11) is equivalent to minimizing

Equation (10).

The proof is contained in the Supplementary Material. Now that

Equation (11) is quadratic and bi-convex in u and v, at the station-

ary points it satisfies that:

0 2 �X>Yvþ k1

s
D

tð Þ
1 �

k1

s
~D

tð Þ
1 þ c1X>X

� �
u; jjXujj2 � 1 ¼ 0;

0 2 �Y>Xuþ k2

s
D

tð Þ
2 �

k2

s
~D

tð Þ
2 þ c2Y>Y

� �
v; jjYvjj2 � 1 ¼ 0;

where D
tð Þ

1 is a diagonal matrix with the i-th diagonal element being

1

2ju tð Þ
i
j

i 2 1; p½ �ð Þ, and ~D
tð Þ

1 is a diagonal matrix with the i-th diagonal

element as
signðjuðtÞ

i
j�sÞ

2juðtÞ
i
j

. Likewise, D
tð Þ

2 is a diagonal matrix with entry

1

2jv tð Þ
j
j

at the diagonal, and ~D
tð Þ

2 is a diagonal matrix with diagonal

entry as
signðjvðtÞ

j
j�sÞ

2jvðtÞ
j
j

(see Table 2 footnote).

Then we obtain the alternatively updating rules for u and v:

u tþ1ð Þ ¼ k1

s
D

tð Þ
1 �

k1

s
~D

tð Þ
1 þ c1X>X

� ��1

X>Yv tð Þ;

u tþ1ð Þ ¼ u tþ1ð Þ=jjXu tþ1ð Þjj2;

v tþ1ð Þ ¼ k2

s
D

tð Þ
2 �

k2

s
~D

tð Þ
2 þ c2Y>Y

� ��1

Y>Xu tþ1ð Þ;

v tþ1ð Þ ¼ v tþ1ð Þ=jjYv tþ1ð Þjj2;

where D
tð Þ

1 and ~D
tð Þ

1 are repeatedly constructed from the latest u tð Þ,

and D
tð Þ

2 and ~D
tð Þ

2 from v tð Þ. The procedure of the TLP-SCCA algo-

rithm is shown in Algorithm 1. In every iteration, u and v are alter-

nately updated till the algorithm converges or arrives at the specific

termination condition.

2.3.1 Computational analysis

In Algorithm 1, Step 3 and Step 6 are linear in the dimension of u

and v, and they are easy to calculate. Steps 4 and 7 are the most

time-consuming parts of the algorithm. To obtain utþ1 and vtþ1, we

solve a system of linear equations using the Gauss–Jordan elimina-

tion method. This avoids computing the matrix inverse which is

computationally much more intensive. Step 5 and 8 are rescale steps

and quite simple. Hence the whole algorithm is efficient and runs

quickly.

2.4 Extension to truncated group lasso based SCCA
The group lasso pursuits group sparsity by imposing ‘2-norm on

within-group variables and ‘1-norm on between-group variables

280 L.Du et al.
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(Yuan and Lin, 2006). Inspired by this, we extend TLP to the trun-

cated group lasso (TGL):

XTGL uð Þ ¼
XK

k¼1

Js jjGkjjð Þ; with Js jjGkjjð Þ ¼ min
jjGkjj

s
;1

� �
: (12)

Gk is a subset of u, which denotes k-th group, and u is the concatena-

tion of all Gk’s (k 2 1;K½ �).
Similar to Js juijð Þ; Js jjGkjjð Þ can be decomposed as

Js jjGkjjð Þ ¼ 1

2s
f1 jjGkjjð Þ � f2 jjGkjjð Þ½ �; (13)

where f1 jjGkjjð Þ ¼ jjGkjj þ s, and f2 jjGkjjð Þ ¼ jjjGkjj � sj. Using the

subgradient, we define g1 Gkð Þ with respect to each group Gk as

g1 jjGkjjð Þ ¼
X
i2Gk

u2
i þ u

tð Þ
i

� �2

2jjG tð Þ
k jj

þ s; (14)

and

g2 jjGkjjð Þ ¼ sign jjG tð Þ
k jj � s

� � u2
i þ u

tð Þ
i

� �2

2jjG tð Þ
k jj

� s

0
B@

1
CA: (15)

From Theorem 1, we immediately have the following lemma.

LEMMA 1. g1 jjGkjjð Þ is pointwise approximated to f1 jjGkjjð Þ, and g2

jjGkjjð Þ is pointwise approximated to f2 jjGkjjð Þ.
The proof is presented in the Supplementary Material. Then

according to Equation (7), we define the surrogate penalty of XApp
TGL

uð Þ as:

XApp
TGL uð Þ ¼ 1

2s

XK

k¼1

X
i2Gk

u2
i

2jjGðtÞk jj
�

sign jjGðtÞk jj � s
� �
2jjGðtÞk jj

u2
i

2
4

3
5þ C; (16)

where

C ¼ 1

2s

XK

k¼1

X
i2Gk

u
tð Þ

i

� �2

2jjG tð Þ
k jj
þ s� sign jjG tð Þ

k jj � s
� � u

tð Þ
i

� �2

2jjG tð Þ
k jj
� s

0
B@

1
CA

2
64

3
75
(17)

is a constant that does not make contribution towards optimization.

We now propose the TGL-SCCA model

min
u;v
�u>X>Yvþ k1XTGL uð Þ þ k2XTGL vð Þ

s:t: jjXujj2 � 1; jjYvjj2 � 1:
(18)

The constrained problem (18) can be reformulated equivalently as

the following unconstrained problem

L u; vð Þ ¼ �u>X>Yvþþk1XTGL uð Þ þ k2XTGL vð Þ

þ c1

2
jjXujj2 � 1
� �

þ c2

2
jjYvjj2 � 1
� �

;
(19)

which can be solved by optimizing its pointwise approximation

LApp u; vð Þ,

LApp u; vð Þ ¼ �u>X>Yvþ k1X
App
TLP uð Þ þ k2X

App
TLP vð Þ

þ c1

2
jjXujj2 � 1
� �

þ c2

2
jjYvjj2 � 1
� �

:
(20)

This objective is quadratic, continues and biconvex with respect to u

and v. Thus the updating expressions for u and v are obtained:

u tþ1ð Þ ¼ k1

s
D

tð Þ
1 �

k1

s
~D

tð Þ
1 þ c1X>X

� ��1

X>Yv tð Þ;

u tþ1ð Þ ¼ u tþ1ð Þ=jjXu tþ1ð Þjj2;

v tþ1ð Þ ¼ k2

s
D

tð Þ
2 �

k2

s
~D

tð Þ
2 þ c2Y>Y

� ��1

Y>Xu tþ1ð Þ;

v tþ1ð Þ ¼ v tþ1ð Þ=jjYv tþ1ð Þjj2;

where D
tð Þ

1 is a diagonal matrix with i-th diagonal element being 1

2jjG tð Þ
k
jj

if ui 2 Gk i 2 1; p½ �ð Þ, and ~D
tð Þ

1 is a diagonal matrix with i-th diagonal

element as
sign jjG tð Þ

k
jj�sð Þ

2jjG tð Þ
k
jj

. D
tð Þ

2 and ~D
tð Þ

2 are diagonal matrices similar to

D
tð Þ

1 and ~D
tð Þ

1 but deduced from v. Therefore, the solution is obtained

by the similar iterating procedure as shown in Algorithm 1.

3 Experiments

3.1 Experimental setup
3.1.1 Benchmarks

We intend to investigate whether TLP-SCCA can indeed improve

the performance of the ‘1-SCCA methods, and that whether TGL-

SCCA outperforms GL-SCCA (group lasso based SCCA) or not.

Therefore, we use both ‘1-SCCA and GL-SCCA as benchmarks. We

are aware of that there are three kinds of ‘1-SCCA which are imple-

mented by different optimization techniques. To make a thorough

comparison, we employ all three methods in this paper. They are the

singular value decomposition based method (Witten et al., 2009),

the the excessive gap method which pursuits the optimum by keep-

ing decreasing the dual gap (Chen and Liu, 2012), and the alterna-

tive search based method (Du et al., 2014). To facilitate the

description, we call the three ‘1-SCCA methods L1-SCCA (Witten

et al., 2009), L1-NSCCA (Chen and Liu, 2012) and L1-S2CCA (Du

et al., 2014). As for group SCCA methods, except S2CCA (group

lasso based SCCA) (Du et al., 2014), those GL-SCCA methods

assume that X>X ¼ Y>Y ¼ I which is an overly strong assumption.

The reason is that in real applications neighboring SNPs are corre-

lated with one another, which implies that both in-set covariance

matrices are not identical. Thus we compare TGL-SCCA with

S2CCA in this study. For both methods, the group information is

provided in advance.

Algorithm 1 The TLP-SCCA Algorithm

Require:

X 2 R
n�p; Y 2 R

n�q, pre-tuned K ¼ fk1; c1; k2; c2g, and s.

Ensure:

Canonical loadings u and v.

1: Initialize t¼0, u ¼ u0 2 R
p�1; v ¼ v0 2 R

q�1;

2: while not converged do

3: Calculate D
ðtÞ
1 and ~D

ðtÞ
1 from the latest uðtÞ;

4: uðtþ1Þ ¼ ðk1

s D
ðtÞ
1 � k1

s
~D
ðtÞ
1 þ c1X>XÞ�1X>YvðtÞ;

5: uðtþ1Þ ¼ uðtþ1Þ=jjXuðtþ1Þjj2;

6: Calculate D
ðtÞ
2 and ~D

ðtÞ
2 from the latest vðtÞ;

7: vðtþ1Þ ¼ ðk2

s D
ðtÞ
2 � k2

s
~D
ðtÞ
2 þ c2Y>YÞ�1Y>Xuðtþ1Þ;

8: vðtþ1Þ ¼ vðtþ1Þ=jjYvðtþ1Þjj2;

9: t t þ 1.

10: end while
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3.1.2 Parameter tuning

There are four parameters, i.e. k1, k2, c1 and c2, in both TLP-SCCA

and TGL-SCCA algorithms except for the threshold parameter s.
We note that s is the most important parameter in our models as it

balances between the ‘0-norm and ‘1-norm based penalties.

According to the definition, TLP-SCCA reduces to L1-SCCA if

given a too large s, i.e. s > maxijuij. On the contrary, a too small s,

i.e. s < minijuij, makes TLP-SCCA reduce to the unpenalized

CCA. Therefore, we search the optimal s from a moderate range,

i.e. [0.01, 0.05, � � �, 1] for TLP-SCCA in this paper. In the

Supplementary Material section, we will conduct a series of experi-

ments to show the performance trajectories under different s’s.

Similarly, TGL-SCCA reduces to the conventional group lasso

based SCCA if s > maxkjjGkjj; or becomes the group lasso based

CCA if s < minkjjGkjj, which will not yield sparse results.

Therefore, the s for TGL-SCCA is tuned from [0.5, 0.55, � � �, 1.5].

Further, we know that the regularization parameters for both TLP

and TGL functions are k1

s and k2

s . That is, simultaneously changing

k1 and s will not affect penalization strength, e.g. k1

s ¼
2k1

2s .

Therefore, we fix k1 ¼ k2 ¼ 1 in this paper. Finally, we optimally

tune c1 and c2 by the grid search strategy spanning from 10�2 to

102. The 5-fold nested cross-validation strategy is employed, in

which the inner loop pursuits the best parameters and training and

testing results are obtained from the outer loop. All methods run

on the same partition and the same platform to make a fair

comparison.

We set the stopping criterion of Algorithm 1 to maxijutþ1
i � ut

i j
� � and maxjjvtþ1

j � vt
j j � �, where � is the desirable estimation

error bound. � is empirically set to 10�5 according to experiments.

3.2 Results on synthetic data
We generate four datasets with different properties to assess the per-

formance of these SCCA methods. The four datasets have different

signals and correlation coefficients. We also set the number of obser-

vations to be smaller than the number of variables. The datasets are

generated as follows. We first set up u and v, respectively. Then we

generate a latent variable z from Gaussian distribution N 0; In�nð Þ.
After that, data matrix X is generated according to xi � N ziu;

P
x

� �
with ð

P
x Þjk ¼ exp�juj�uk j. The data matrix Y is created similarly

by yi � Nðziv;
P

yÞ, where
P

y Þjk ¼ exp�jvj�vk j
�

. Now we list the

details of the four datasets. (i) The first dataset has 250 variables for

X and 600 ones for Y. Its true correlation coefficient is 0.62. (ii) The

second one also has 250 variables and 600 ones for X and Y, respec-

tively. Its correlation coefficient is 0.84, and its true signal pattern is

different. (iii) The third dataset has 250 variables for X and 600 var-

iables for Y. But its correlation coefficient (0.75) and true signal pat-

tern are different from the previous two datasets. (iv) The fourth

dataset has 500 variables for X side and 900 for Y side. Its correla-

tion coefficients is 0.65. The true signal of each dataset is shown in

Figure 1 (top row).

We present the trained canonical loadings of all SCCA methods

in Figure 1. Obviously, both TLP-SCCA and L1-SCCA successfully

identify the true signals embedded in the data. However, L1-SCCA

has more small irrelevant signals than our method. The L1-NSCCA

only find out incomplete signals for most u and v, and L1-S2CCA

performs inconsistently across 5-folds. This demonstrates that TLP-

SCCA outperforms those benchmarks in identifying accurate canon-

ical loadings. For structured methods, they both perform consis-

tently on all four datasets, showing their ability in extraction of

grouping features. In Table 1, we also show the correlation coeffi-

cients estimated from both training and testing data, where a higher

value stands for a better performance. We use the boldface to high-

light the best values. On both training and testing sets, we observe

that TLP-SCCA obtains almost all the best correlation coefficients,

which means it performs better than those ‘1-SCCA methods consis-

tently. In addition, we observe that TGL-SCCA performs similarly

to the GL-S2CCA on the training set. However, it outperforms GL-

S2CCA on the testing set. This is more desirable since the better test-

ing performance is truly what we want to use to evaluate a learning

method. In summary, on these diverse simulation data, for the

Fig. 1. Canonical loadings estimated on four synthetic datasets. The first col-

umn is for Dataset 1, and the second column is for Dataset2, and so forth. For

each data, the estimated weight of u is shown on the left subfigure, and v is

on the right. The first row is the ground truth, and each remaining one corre-

sponds to an SCCA method: (i) Ground Truth; (ii) L1-SCCA; (iii) L1-NSCCA;

(iv) L1-S2CCA; (v) TLP-SCCA; (vi) GL-S2CCA; (vii) TGL-SCCA

Table 1. Performance comparison on synthetic data

Dataset data1 data2 data3 data4

Training L1-SCCA 0.651 6 0.04 0.831 6 0.01 0.640 6 0.05 0.672 6 0.03

L1-NSCCA 0.620 6 0.04 0.805 6 0.02 0.751 6 0.04 0.650 6 0.02

L1-S2CCA 0.624 6 0.04 0.830 6 0.02 0.751 6 0.04 0.543 6 0.25

TLP-SCCA 0.665 6 0.04 0.836 6 0.02 0.759 6 0.04 0.683 6 0.02

GL-S2CCA 0.662 6 0.06 0.847 6 0.01 0.763 6 0.01 0.688 6 0.01

TGL-SCCA 0.662 6 0.06 0.846 6 0.01 0.763 6 0.01 0.688 6 0.01

Testing L1-SCCA 0.638 6 0.11 0.835 6 0.04 0.558 6 0.23 0.666 6 0.12

L1-NSCCA 0.615 6 0.16 0.809 6 0.05 0.716 6 0.16 0.664 6 0.05

L1-S2CCA 0.617 6 0.16 0.834 6 0.05 0.713 6 0.16 0.552 6 0.27

TLP-SCCA 0.644 6 0.14 0.838 6 0.04 0.715 6 0.16 0.683 6 0.07

GL-S2CCA 0.622 6 0.20 0.833 6 0.05 0.746 6 0.05 0.678 6 0.06

TGL-SCCA 0.622 6 0.20 0.834 6 0.05 0.748 6 0.05 0.680 6 0.06

Note: Training and testing correlation coefficients (mean 6 std) of 5-fold cross-validation are shown. The best values are shown in boldface.
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individual sparsity, TLP-SCCA performs better than or equal to the

‘1-norm based SCCA methods on not only the correlation coeffi-

cients but also the canonical loadings profiles. For the group spar-

sity, TGL-SCCA and GL-S2CCA hold similar canonical loading

profiles, but TGL-SCCA obtains better testing canonical correlation

coefficients.

3.3 Results on real neuroimaging genetics data
We also compared TLP-SCCA with three ‘1-SCCA methods using

real neuroimaging and genetics (SNP) data. The real brain imaging

genetics data used in the preparation of this article were obtained

from the Alzheime’s Disease Neuroimaging Initiative (ADNI) data-

base (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W.

Weiner, MD. One crucial goal of the ADNI is to test if serial mag-

netic resonance imaging (MRI), positron emission tomography

(PET), other biological markers and clinical and neuropsychological

assessment can be combined to measure the progression of mild cog-

nitive impairment (MCI) and early AD. For up-to-date information,

please refer to www.adni-info.org.

The ADNI cohort studied in this work contained 176 AD,

363 MCI and 304 healthy control (HC) non-Hispanic Caucasian par-

ticipants. Structural MRI scans had been processed with voxel-based

morphometry (VBM) in SPM. Generally, all scans had been aligned

to a T1-weighted template image, segmented into gray matter (GM),

white matter (WM) and cerebrospinal fluid (CSF) maps, normalized

to MNI space and had been smoothed with an 8 mm FWHM kernel.

In the experiment setup we subsampled the whole brain, and aimed to

examine associations between the voxels (GM density measures) and

SNPs, thus we did not merely use ROI summary statistics. On the

account of this point, we could obtain more detailed results. Totally

465 voxels spanning all brain ROIs were extracted as imaging data.

In addition, the impacts of the baseline age, gender, education and

handedness had been also eliminated through regression analysis. For

the genotyping data, we used 58 SNP biomarkers from the AD-

related genes such APOE, TOMM40 and PVRL2, in which APOE

e4 SNP rs429358 is the best-known AD genetic risk factor (Ramanan

et al., 2014). We intend to evaluate the correlations between the vox-

els data and the APOE SNP data using the SCCA methods.

We first show the heat maps of the canonical loadings estimated

from the training set in Figure 2. In this figure, each row corre-

sponds to a participant method. The estimated canonical loading u,

indicating weights for SNPs, is shown on the left panel and the esti-

mated v containing weights for the imaging markers is shown on the

right. We observe that TLP-SCCA shows a very clear picture with

respect to both canonical loadings. It only highlights the APOE e4

SNP rs429358 on the genetic side. This locus is well known to be

related to AD. On the imaging side, TLP-SCCA only captures one

voxel out of 465 ones. The highlight region is the hippocampus

which is highly correlated with AD (Hampel et al., 2008). However,

the benchmark methods report many signals which may misguide

further investigation. We can also observe that the performances of

these competing methods are not stable as they perform differently

on the 5-fold results. While TLP-SCCA has more stable and consist

results than those ‘1-SCCA methods.

In Figure 2, the last two rows, which shows the canonical

weights from two structured SCCA methods, clearly exhibit a group

structure on both genetic side and imaging side. They both identify

all the SNPs in the 7th group for the genotypic data, showing

their relevance to the AD. This group of loci are rs283814

(PVRL2), rs157580 (TOMM40), rs2075650 (TOMM40), rs157582

(TOMM40), rs8106922 (TOMM40), rs1160985 (TOMM40),

rs405697 (TOMM40), rs405509 (APOE) and rs769449 (APOE).

They all locate in the APOE region (i.e. the best known AD risk

region) and most of them have been independently reported to be

associated with Alzheimer’s disease or human longevity (Abraham

et al., 2008; Denny et al., 2013; Harold et al., 2009; Kalra et al.,

2008; Kamboh et al., 2012; Ma et al., 2013; Soerensen et al., 2013).

Strangely, both group methods do not report the locus rs429358 as

a risk factor. One possible reason could be that all the nine loci in

the 7th group are associated with AD, and their combined effects

might be much higher than that of the 8th group where the

rs429358 is located. Since both structured methods are sparse at the

group level, they only consider the 7th group of loci with the highest

influence as risk factors. Now we investigate the imaging markers.

TGL-SCCA and GL-S2CCA find out the group of signals from the

hippocampus, in which atrophy is an evidence of AD (Hampel et al.,

2008). Besides, they identify small signals from the frontal region,

Fig. 2. Canonical loadings estimated on real imaging genetics data. Each row

corresponds to an SCCA method: (i) L1-SCCA; (ii) L1-NSCCA; (iii) L1-S2CCA;

(iv) TLP-SCCA; (v) GL-S2CCA; (vi) TGL-SCCA. For each method, the estimated

weights of u are shown on the left panel, and those of v are on the right one

Table 2. Performance comparison on real data

Training Mean 6 Std.

L1-SCCA 0.24 0.28 0.25 0.24 0.24 0.25 6 0.02

L1-NSCCA 0.15 0.30 0.14 0.26 0.27 0.23 6 0.07

L1-S2CCA 0.25 0.29 0.26 0.27 0.30 0.27 6 0.02

TLP-SCCA 0.26 0.30 0.26 0.27 0.28 0.28 6 0.02

GL-S2CCA 0.18 0.25 0.25 0.26 0.24 0.23 6 0.03

TGL-SCCA 0.22 0.26 0.24 0.24 0.27 0.24 6 0.02

Testing Mean 6 Std.

L1-SCCA 0.24 0.09 0.22 0.21 0.24 0.20 6 0.06

L1-NSCCA 0.10 0.10 0.00 0.25 0.22 0.13 6 0.10

L1-S2CCA 0.36 0.19 0.33 0.29 0.17 0.27 6 0.09

TLP-SCCA 0.34 0.16 0.32 0.27 0.27 0.27 6 0.07

GL-S2CCA 0.18 0.22 0.18 0.16 0.18 0.18 6 0.02

TGL-SCCA 0.25 0.14 0.21 0.21 0.27 0.22 6 0.05

Note: Training and testing correlation coefficients (each fold and

Mean 6 Std.) of 5-fold cross-validation are shown. The best Mean 6 Std. is

shown in boldface.

The i-th element of D
ðtÞ
1 does not exist if u

ðtÞ
i ¼ 0. We regularize

it as 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
juðtÞ

i
j2þf

p with f being a very small positive number. Then the

objective function about u conveys to ‘ðuÞ ¼ �u>X>Yvþ c1

2 jjXujj2 þ
P

i¼1p

k1

2s

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ f
q

þ s� j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ f
q

� sj


. ‘ðuÞ will reduce to the original problem

(10) if f approaches zero. We can use the same strategy for constructing D
ðtÞ
2

when v
ðtÞ
j ¼ 0.
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the inferior temporal gyrus and the precentral gyrus, and all of these

three regions have been reported to be associated with AD (Chan

et al., 2001; Mattsson et al., 2017; Stuss et al., 1992; Woodward

et al., 2010). To show the canonical loadings clearly, we map the

averaged canonical loadings regarding the imaging measurements

onto the brain. Supplementary Figure S3 clearly shows that

L1-SCCA highlights most parts of the whole brain followed by L1-

NSCCA, while TLP-SCCA only highlights a small region. Both GL-

SCCA and TGL-SCCA highlight more voxels than TLP-SCCA due

to their group constraint.

Table 2 exhibits both training and testing correlation coefficients

where each individual result and its mean and standard deviation

are shown. Obviously, TLP-SCCA yields the best mean 6 std on

both training and testing. Moreover, TLP-SCCA is more stable than

L1-S2CCA and L1-NSCCA. Interestingly, both group SCCA meth-

ods obtain smaller but more stable than those ‘1-norm and TLP

based methods. And, TGL-SCCA reveals higher correlation than the

GL-S2CCA, indicating its improved performance. In summary,

TLP-SCCA accurately reveals a biologically meaningful correlation

between APOE SNP rs429358 and the GM density of hippocampus,

an AD related brain region, and TGL-SCCA identify group associa-

tions between genetic loci and imaging markers. Therefore, SCCA

methods using the truncated lasso or group lasso have better detec-

tion ability than those with lasso and group lasso.

4 Conclusion

In this paper, we have proposed a robust and efficient SCCA method

(TLP-SCCA) which is flexible and can avoid time consuming param-

eter tuning. The proposed method employs the truncated ‘1-norm

other than the ‘1-norm, and could reduce the estimation bias. We

have proposed an effective algorithm using the alternate convex

search (ACS) strategy. The TLP-SCCA algorithm is guaranteed to

converge, and we have analyzed its computation complexity. We

also have extended it to the truncated group lasso based SCCA

(TGL-SCCA) to improve the existing group SCCA methods.

We compared TLP-SCCA, with three ‘1-SCCA with different opti-

mization techniques, and compared TGL-SCCA with the GL-SCCA.

The results on four diverse synthetic datasets revealed that TLP-SCCA

obtained comparable correlation coefficients on the training sets and

higher correlation coefficients on the testing sets. Besides, TLP-SCCA

identified clearer canonical loadings than three ‘1-SCCA methods,

and accurately recovered the true signals embedded in the data. The

TGL-SCCA obtained better results than the GL-SCCA in terms of

both correlation coefficients and canonical weights. The result on the

real imaging genetic data showed that TLP-SCCA generated higher

correlation coefficients on both training and testing sets. It also had

the best canonical weights because the patterns are very clear and

clean. That is, TLP-SCCA discovered a biologically meaningful bi-

multivariate association between the hippocampus region and the

APOE e4 genetic locus. As for the group methods, our TGL-SCCA

outperformed GL-SCCA on both canonical coefficient and the canon-

ical weights patterns. Besides individual and group sparsity, the net-

work structure is also of great interest and importance in imaging

genetics. Therefore, in the future work, we will impose related struc-

ture penalty into our model to accommodate this issue.
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