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1 Leave-one-chromosome-out cross-validation (LOCO-CV)
We evaluated all models using LOCO-CV. For each fold we leave out one test chromosome and use the remaining chromosomes to train the model,
applying the same model parameters for all folds. Except where noted, we trained models using balanced sets of 1,000 positive and 1,000 negative
examples. These relatively small training subsets yield accuracy nearly as high as the final model but take less time to train, and this approach allowed us
to estimate variability that arises from using randomised training sets. For testing we can use all available examples for the left-out chromosome, resulting
in unbalanced test sets in most cases. For this reason we report balanced accuracy for all tests.

2 Labeled examples
We constructed our pathogenic (positive) dataset using somatic point mutations from the HGMD database (Stenson et al., 2017) while we used SNVs from
the 1,000 Genomes Project (The 1000 Genomes Project Consortium, 2012) as neutral examples. Bias may be introduced if benign mutations are located
in genomic regions that differ substantially from regions containing pathogenic mutations, such as examples from different genes. To ensure the locations
of putative benign mutations approximate those of pathogenic mutations, we select only those putative benign mutations found within a 1000-nt window
of some pathogenic mutation. This issue has been evaluated more thoroughly in previous studies (Ritchie et al., 2014; Kircher et al., 2014; Shihab et al.,
2015). In addition, we restrict our data to the autosomes (Table 1), as allosomes (sex chromosomes X and Y) have been shown to evolve at a different
rate than the autosomes (see, e.g., (Charlesworth et al., 1987)) and hence may have different sequence conservation profiles. As a result, we are wary of
models or predictions that do not consider this distinction.

We used the Variant Effect Predictor (McLaren et al., 2016), to assess the distribution of examples in our training data and compared them with our
ClinVar test sets (Supplementary Figures 1 and 2 ). In coding regions, we found that the majority of pathogenic examples are missense mutations, causing
a change in the resulting amino acid, whilst the neutral examples are balanced between missense and synonymous mutations. In non-coding regions, a
large proportion of pathogenic examples reside near splice sites, whilst neutral examples tend to be spread more evenly across introns. It is important to
note that the overwhelming majority of human genes undergo alternative splicing, hence mutations tend to fall within multiple transcripts, hence receive
multiple annotations. As a result, the proportions shown in these graphs do not sum to 1. In addition, many examples in coding regions may also function
as non-coding (Noncoding alternatives), for example, when they fall within a cassette exon that is omitted from some transcripts.

3 Feature groups and kernels
Subsequent to our previous work on FATHMM-MKL, we obtained a variety of additional data sets from ENCODE (The ENCODE Project Consortium,
2012) and from NIH Roadmap Epigenomics (Bernstein et al., 2010). These resources provided us with nearly 30 data sources that have proved
informative in predicting haploinsufficient genes, for example (Shihab et al., 2017b). Recently we have also derived new features from the Variant
Effect Predictor (McLaren et al., 2016), from annotated gene models, and from patterns in nucleotide sequence. We converted each of these feature groups
into a set of kernels consisting of: two conservation-based kernels; a nucleotide spectrum kernel; two kernels designed to encapsulate the genomic context
(gene region, amino acid changes, and proximity to gene features), and 27 kernels based on ENCODE data.
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2 Rogers et al.

Coding Non-coding
Chromosome 1000G HGMD 1000G HGMD

1 11,240 5,484 1,909 590
2 7,100 3,674 1,510 611
3 5,540 3,503 909 445
4 4,236 1,450 932 231
5 4,826 1,637 939 337
6 6,358 1,715 1,109 237
7 5,096 3,286 872 406
8 3,609 1,136 712 251
9 4,478 1,697 976 292
10 4,164 1,449 719 180
11 7,099 4,382 1,243 596
12 5,344 2,962 920 371
13 1,682 1,384 376 257
14 4,016 1,639 481 121
15 3,416 1,940 695 281
16 4,984 2,504 1,083 340
17 6,208 3,255 1,008 595
18 1,700 843 500 121
19 9,173 3,131 860 230
20 2,875 953 381 99
21 1,403 591 370 57
22 2,814 799 440 128

Total 107,361 49,414 18,944 6,776
Table 1. Distributions of training examples by chromosome shows the number of examples available for testing and training in LOCO cross-validation. These data
are unbalanced, with up to 3.7 times as many neutral (1000G) examples as positive (HGMD) examples in coding regions and up to 6 times as many in non-coding
regions. Note that for FATHMM-XF, only autosomal chromosomes were used in training and testing the method.

3.1 Conservation and ENCODE data

As in previous studies (Shihab et al., 2015; Rogers et al., 2015; Shihab et al., 2017b) we evaluated distinct ENCODE datasets as potential feature groups
for these classifiers. Broadly speaking, we divide these datasets into eight categories:

• Genomic and Evolutionary: where appropriate, we used a number of genomic properties such as gene length, number of transcripts and the average
number of predicted protein domains across transcripts. In addition, we used a comprehensive set of conservation-based measures, such as dN/dS
ratios between human and 65 different species (one-to-one orthologues). We also used several conservation based measures, e.g., PhyloP (Pollard
et al., 2010) and PhastCons (Siepel et al., 2005) scores, derived from the multiple sequence alignment of 46 and 100 vertebrate genomes to the human
genome (Blanchette et al., 2004).

• Histone Modifications: we used ChIP-Seq peak calls for 14 histone modifications across 45 cell lines from ENCODE (The ENCODE Project
Consortium, 2012) and narrow, broad and gapped regions of enrichment based on consolidated epigenomes from the NIH Roadmap project (Kundaje
et al., 2015).

• Open Chromatin: we used DNase-Seq and Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) peak calls across 119 cell lines from
ENCODE and narrow, broad and gapped regions of enrichment based on consolidated epigenomes from the NIH Roadmap project.

• Transcription Factor Binding Sites: based on PeakSeq and SPP peak calls for 119 transcription factors across 77 cell lines from ENCODE.
• Gene Expression: based on RNA-seq signal coverage using consolidated epigenomes from NIH Roadmap Epigenomics.
• Methylation: based on whole genome bisulphite sequencing (WGBS) from NIH Roadmap Epigenomics.
• Digital Genomic Footprinting Sites: for transcription factor recognition sequences within DNase-hypersensitive sites using consolidated epigenomes

from the NIH Roadmap Epigenomics Project.
• Networks: we used measures of centrality from cell-type specific interactome and tissue-specific co-expression networks.

3.2 Sequence features

One goal for our models is to learn the sequence characteristics that are most susceptible to pathogenic mutations in both coding and non-coding regions.
As a simple method for capturing the disruption that may occur in the sequence surrounding a mutation, we use spectrum kernels (Leslie et al., 2002)
to compare the composition of k-mers within a region before and after a mutation is applied to a sequence. Given a mutation and its flanking sequence,
we obtain the k-spectra for the wild-type and mutated versions of the sequence and concatenate these features to provide a picture of the region before
and after mutation. Formally, borrowing notation from (Leslie et al., 2002), if the k-spectrum of an input sequence s is the set of all k-length contiguous
subsequences, then we define a feature map of all possible subsequences a of length k from alphabetA as follows:

Φk(s) = (φa(s))a∈Ak (1)
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Fig. 1. Distributions of consequence annotations from the Variant Effect Predictor highlight differences between pathogenic and neutral examples in non-coding regions within
the FATHMM-XF training data (top) and the ClinVar benchmark (bottom). In both data sets, splicing regions are by far the most prevalent group within positive (Pathogenic/HGMD)
examples. In the FATHMM-XF training set, intronic variants are prominent amongst the neutral (1000G) data, whilst the ClinVar neutral (Benign) data also feature UTRs and locations
downstream of genes.

where φa(s) is the count of the number of times sequence a occurs in sequence s, from which a kernel matrix can be readily derived (Campbell
and Ying, 2011). We found that these features perform competitively on their own, and improve prediction accuracy in our merged-kernel tests. As this
approach makes no assumptions about the kind of RNA binding proteins that may be impacted by a particular mutation, it may obviate the need to find
and assess known motifs.

For these features we optimise two relevant parameters: the size of the window w flanking each mutation, and the maximum k-mer size, k. For a
single-point mutation we expect the disruption to be confined to a relatively small region around the mutation. This restricts the useful window size
and in turn, the maximum k-mer sizes that will be relevant. For both coding and non-coding models we performed a grid search over these sizes, for
k ∈ [1, . . . , 5] and w ∈ [1, . . . , 10].

3.3 Genomic context features

We also include features that describe the genomic context where a mutation occurs. For coding regions we base these features on information from
the ENSEMBL Variant Effect Predictor (VEP). The VEP provides characteristics for specific genomic locations that we can exploit to predict the likely
impact of a SNV. These may include transcript features and amino acids impacted by a mutation, relative allele frequencies, and scores from pathogenic
variant predictors such as SIFT and PolyPhen (Adzhubei et al., 2010). To mitigate potential bias we are careful not to include these other scores, nor do
we include features such as PubMed IDs that may have been used to curate SNV databases. Hence our features include only the following elements:

• Consequence: the VEP provides these as annotations of 35 types of changes to associated transcripts, such as 3’ UTR variant, missense variant or TF
binding site variant. We represent these using 35-element binary vectors (one bit per annotation), plus a count of the number of transcripts possibly
impacted. Note that we do not encode the impact levels provided on the VEP website (HIGH, MODERATE, MODIFIER, LOW); instead we allow
our model to learn priorities in training.

• Amino acid: the amino acids inferred by the reference and allele nucleotides. To capture the change in amino acid composition, we construct two
sets of features: two 20-element binary vectors that reflect the reference and allele residues, respectively, and two real-valued vectors that represent
specific residue characteristics: molecular weight, hydrophobicity, occurrence frequency, dissociation constants for the COOH and NH+

3 groups,
and the pH at the isoelectric point.

We apply the VEP features only to our coding predictor, as amino acid features are not relevant to SNVs in non-coding regions, and there are far more
non-coding positions than coding positions: such a vast number of VEP queries would be impractical for creating a genome-wide database.

We concatenate two vectors to encapsulate all of the VEP features used in the model for coding regions. The Consequences features consist of a
transcript count (the number of transcripts that may be impacted by a mutation) and a vector of binary flags that represent the possible consequences
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Fig. 2. The distributions of consequence annotations from the Variant Effect Predictor highlight differences between pathogenic and neutral examples in coding regions within
the FATHMM-XF training data (top) and the ClinVar benchmark (bottom). Here we see that both datasets have nearly identical distributions of features.

returned by the VEP (Table 2). The Amino acids features consist of two vectors that encapsulate the possible amino acids associated with each mutation.
The first amino acid vector represents the amino acids associated with the wild-type sequence, and the second represents the amino acids associated with
the mutation. Instead of using a simple binary flag, we use counts to record the number of transcripts impacted by each amino acid change. The accuracy
of this model is recorded as Distance in Table 4.

transcript ablation splice region variant start lost 5 prime UTR variant
upstream gene variant splice acceptor variant regulatory region amplification transcript amplification
incomplete terminal codon variant downstream gene variant 3 prime UTR variant feature elongation
splice donor variant stop retained variant inframe insertion non coding transcript exon variant
TFBS ablation stop gained regulatory region variant inframe deletion
synonymous variant TFBS amplification intron variant feature truncation
frameshift variant coding sequence variant missense variant NMD transcript variant
TF binding site variant stop lost intergenic variant protein altering variant
mature miRNA variant regulatory region ablation non coding transcript variant

Table 2. Consequence codes encapsulated in the VEP features. The coding region classifier uses a binary vector to identify which of these consequences is
annotated for a particular mutation.

3.4 Distance features

For non-coding SNVs we employ a related, but simpler approach: we measure the distance from each SNV to gene features annotated in the ENSEMBL
gene models: start codon, stop codon, gene, UTR, CDS and exon. This approach is simple, yet should enable our models to learn relationships between
SNVs and important gene elements. For example, exon boundaries help to identify mutations close to splice sites. Similarly, 5’ gene boundaries identify
mutations close to transcription start sites or promoter regions. To capture this information, we establish a window w around each mutation and measure
the distance to the nearest example of each element. The features are then the distances to six element types, mapped onto the range [0, 1] as follows. If a
mutation is d positions away from the nearest element, 0 ≤ d ≤ w, then the score s is given as:

s =

{
1
d+1

, d ≤ w.
0, otherwise.

(2)
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FATHMM-XF Supplementary 5

To identify the optimum setting for the window, w, we ran LOCO CV using values from w = 1 to w = 106 and found that w = 10 yielded the best
performance (Distance, Table 3).

3.5 Kernel performance

We evaluated each of these kernels using LOCO-CV (Table 3,4). Conservation kernels yield relatively high accuracy for both non-coding and coding
examples, consistent with previous studies showing the importance of conservation in non-coding regions (Kircher et al., 2014; Shihab et al., 2015). The
spectrum kernel also scored well for both coding and non-coding regions, suggesting that it may learn patterns of regulatory motifs gained or lost through
mutation. Genomic context features also appear amongst the top-performing kernels.

3.5.1 Kernel performance for non-coding variants

Features Accuracy Features Accuracy
100-way cons. 0.91 GappedPeak 0.56
46-way cons. 0.91 BroadHMM 0.55
Distance 0.91 Histone Chip-Seq 0.55
Long RNA-Seq 0.78 Segmentation 0.55
RnaChip 0.72 RIP-Chip GeneST 0.54
Spectrum 0.71 TFBS Peak-Seq 0.53
RNA 0.66 Chia PET 0.53
Riken CAGE 0.68 DNase Uniform 0.52
Repeats 0.61 FDR peaks 0.52
NarrowPeak 0.60 TFBS Uniform 0.52
BroadPeak 0.59 FAIRE 0.51
Mapability 0.58 Footprints 0.51
GC content 0.57 SPP 0.51
Chromatin HMM (15) 0.56 RipSeq 0.50
Chromatin HMM (18) 0.56 Tiling 0.50
Short RNA-Seq 0.56

Table 3. Accuracy of individual feature groups in non-coding regions shows that the conservation groups and distance to genomic features yield by far the
highest accuracy of any group. Groups are sorted in descending order by balanced accuracy in LOCO-CV.

For non-coding regions, conservation scores and gene element distance features yielded by far the highest accuracy. Gene expression estimates given
by RNA-Seq also provided good discrimination, as did evidence for RNA binding proteins and the nucleotide spectrum kernel. The final model also
leverages evidence for chromatin interactions via the Chia PET assay, which is not the most accurate of the chromatin assays on its own, but improves
accuracy in the context of these other groups (Section 3.6).

3.5.2 Kernel performance for coding variants

Features Accuracy Features Accuracy
100-way cons. 0.84 Segmentation 0.53
46-way cons. 0.83 RIP-Chip GeneST 0.53
VEP features 0.75 TFBS Uniform 0.52
RNA 0.62 Chia PET 0.52
Long RNA-Seq 0.59 Mapability 0.52
Spectrum 0.59 TFBS Peak-Seq 0.52
RnaChip 0.58 DNase Uniform 0.51
BroadPeak 0.57 FAIRE 0.51
NarrowPeak 0.57 FDR peaks 0.51
GappedPeak 0.56 GC content 0.51
BroadHMM 0.56 SPP (TFBS) 0.51
Chromatin HMM (15) 0.56 Footprints 0.50
Chromatin HMM (18) 0.56 Repeats 0.50
Histone Chip-Seq 0.55 RipSeq 0.50
Riken CAGE 0.55 Tiling 0.50
Short RNA-Seq 0.54

Table 4. Accuracy of individual feature groups in coding regions shows that the conservation scores and VEP features far outperform other feature groups.
Groups are sorted in descending order by balanced accuracy in LOCO-CV.
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6 Rogers et al.

In coding regions, conservation scores again yielded the highest accuracy, followed by VEP features (amino acid changes and consequence), gene
expression estimates and RNA interaction features. Again the nucleotide spectrum kernel is among the top-performing groups. Interestingly, the final
model improved when we added the Segmentation features that provide gene element information similar to the VEP consequence features (Section 3.6).

3.6 Data-level integration

The simplest kernel method for integrating different data sources is to combine the features from all sources into a single kernel. This allows a model to
discriminate between classes by learning how features from one source may interact with features from other sources. Given more than 30 possible data
sources, there are billions of possible combinations of feature groups, making exhaustive testing impractical. Instead, we used an approach similar to
previous work in which we found that sequential learning could be an effective means to identify an optimal combination of groups (Rogers et al., 2015).
In this work, we use a forward selection method, in which we try all combinations of the top-performing kernel with the remaining kernels to identify the
best two-kernel model. Next, we try all combinations of this two-kernel model with remaining kernels, and continue the process until accuracy plateaus
or starts to decline (Figure 3).
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Fig. 3. Data-level integration for non-coding examples and coding examples: for data-level sequential learning we used balanced sets of 2,000 examples in LOCO-CV for each
combination of features, and average accuracy over 10 LOCO-CV runs. Top: For non-coding regions, accuracy peaks at five feature groups (92.3% accuracy) after which it declines slightly.
Bottom: For coding regions, accuracy reaches a nominal peak at six feature groups (87.0% accuracy).

For non-coding regions, the best model incorporated five feature groups (Figure 3, top): starting at 91.0% accuracy for the first group (100-way
conservation), we see rapid improvement up to 92.1% accuracy for three groups, after which performance plateaus, reaching 92.3% accuracy with five
groups. From that point onward, additional feature groups provide no evident advantage, as average accuracy declines. Hence our final non-coding region
model uses a single kernel constructed from five feature groups.

For coding regions, our best model included six data sets (Figure 3, bottom): accuracy for the best feature group (again, 100-way conservation) is
83.9% and climbs rapidly to 86.9% with four feature groups, reaching its peak with six feature groups at 87.0% accuracy. Our final coding-region model
thus consists of a single kernel constructed from six feature groups.

3.7 Kernel-level integration

In previous studies we found that integration at the kernel level, using multiple kernel learning (MKL) and sequential learning strategies, tended to
outperform integration at the data level (Rogers et al., 2015; Shihab et al., 2015, 2017b). We applied our sequential learning pipeline (Rogers et al., 2015)
to examples in both coding and non-coding regions. For non-coding regions, the best MKL model achieved 89% accuracy; for coding examples, the best
MKL model achieved 85% accuracy. Both models thus yielded accuracy slightly below the best models from data-level integration.

3.7.1 Alternative classification models
For both coding and non-coding classifiers we investigated a variety of kernel-based models using the scikit-learn package (version 0.17.1) (Pedregosa et al.,
2011). We selected the package for its relatively robust performance and for the variety of models available. We evaluated seven different classification
models to select the one yielding the best performance, and to observe changes in accuracy that could reflect potential overfitting (see Table 5). For
each classifier we first used LOCO-CV to establish optimal parameters, then compared the accuracy, averaged over 10 runs, to identify the strongest
performers in non-coding and coding regions. For each LOCO fold we used balanced training sets of 2,000 examples. In non-coding regions we found
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that gradient boosting (Schapire, 2003), random forest (Ho, 1995) extra trees (Geurts et al., 2006) and Adaboost (Freund and Schapire, 1995) yield the
highest accuracy, with no significant differences observed between them. In coding regions, the rankings are nearly the same, the lone exception being
the Naive Bayes classifier. Based on these results we selected gradient boosting for our models in both regions.

Algorithm Non-coding Coding
Gradient boosting 0.923 0.870
Extra trees 0.922 0.857
Random forest 0.921 0.854
Adaboost 0.918 0.855
Naive Bayes 0.912 0.562
SVM 0.908 0.833
Decision tree 0.880 0.801

Table 5. Evaluation of different classification models shows that Gradient Boosting yields the best performance in both non-coding and coding regions. Models
were trained in LOCO-CV using balanced training sets of 2,000 examples. Average accuracy was computed over 10 runs. Models are sorted in order of decreasing
accuracy on non-coding data.

4 Cautious classification
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Fig. 4. Cautious classification curves show that prediction accuracy consistently improves with increasing p-scores up to the optimum thresholds. Left: accuracy increases
monotonically for the non-coding model, reaching 99% at the optimum threshold τ = 0.96, with predictions for nearly 40% of examples. Right: for the coding model, accuracy again
increases monotonically, peaking at 98% at τ = 0.97, with predictions for nearly 40% of examples.

By associating a confidence measure with each prediction, we can evaluate test accuracy against possible confidence measure thresholds, τ . Figure 4
shows model accuracy as a function of p-score cutoff for the non-coding and coding predictors in LOCO-CV, along with the proportion of examples
whose p-scores exceed the cutoff. For the non-coding model (Figure 4, top), accuracy increases monotonically, reaching 99% at the optimum threshold
τ = 0.96. At this threshold, the model yields predictions for nearly 40% of examples. At lower thresholds, accuracy remains high while the model yields
predictions for the vast majority of examples: at τ = 0.90, the model yields predictions for more than 75% of examples, maintaining accuracy over 97%;
at τ = 0.80, it yields predictions for almost 90% of examples, with accuracy above 95%.

For the coding model (Figure 4, bottom) accuracy again increases monotonically, reaching 98% at its optimum threshold τ = 0.97, yielding
predictions for nearly 40% of examples. Once again we see that at slightly lower thresholds the model still achieves high accuracy while generating
predictions for a much greater proportion of examples: at τ = 0.90, it yields predictions for more than 66% of examples, with accuracy over 96%, and
at τ = 0.80, the coding model yields predictions for more than 80% of examples at 94.0%.

5 Results
To evaluate our models, we compared them with several state-of-the-art genome-wide predictors: CADD (Kircher et al., 2014), DANN (Quang et al.,
2014), FATHMM-MKL (Shihab et al., 2015) and GAVIN-adjusted CADD (van der Velde et al., 2017). First we compared each model’s test results
from LOCO cross-validation with those of top competitors. Next, we also compared both models with top competitors on an independent set of ClinVar
examples (April, 2017) (Landrum et al., 2014). ClinVar uses the terms benign, likely benign, likely pathogenic and pathogenic to annotate each example.
We selected benign and likely benign examples as negatives and pathogenic and likely pathogenic as positives. Some examples have both designations,
so we removed these from our set. We also removed any examples that appeared in our training data. The final test sets thus contained 31,099 examples
in non-coding regions (3,806 positive and 27,293 negative) and 62,884 examples in coding regions (26,023 positive and 36,861 negative).
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8 Rogers et al.

5.1 Statistics definitions

In this work we use several statistics to evaluate classifier performance, including balanced accuracy, sensitivity, specificity, Matthews correlation
coefficient (MCC) and positive predictive value (PPV). For any given test set, we count the number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), where pathogenic SNVs are considered “positive” and neutral SNVs are considered “negative”. Hence pathogenic
SNVs with p-scores p > 0.5 are counted as TP, whilst those with p ≤ 0.5 are counted as FN. Similarly, neutral SNVs with p-scores p ≤ 0.5 are counted
as TN, whilst those with p > 0.5 are counted as FP. The statistics are then computed as follows:

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

balanced accuracy = 0.5 ∗ (sensitivity + specificity)

PPV =
TP

TP + FP

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

In addition to these statistics, we also measure the area under the ROC curve (AUC). Note that we are unable to produce ROC curves for GAVIN, as
it yields only predicted labels (Pathogenic or Benign). In addition, its adjusted scores are gene-specific and hence ranking comparisons cannot easily be
made between scores from different genomic locations.

5.2 Non-coding variants

File Acc. AUC Sens. Spec . MCC PPV
FATHMM-XF 0.93 0.97 0.89 0.97 0.86 0.91

cautious (39% coverage) 0.99 0.99 0.99 0.99 0.98 0.99
FATHMM-MKL 0.90 0.95 0.85 0.94 0.80 0.87
GAVIN 0.83 — 0.68 0.97 0.71 0.90
CADD (v1.3) 0.71 0.93 0.94 0.49 0.41 0.44
DANN 0.67 0.91 0.96 0.38 0.35 0.40

Table 6. FATHMM-XF outperforms all competitors on LOCO CV test examples for non-coding regions. The new model yields higher accuracy, AUC,
specificity and Matthews correlation (MCC) than its competitors when evaluated using LOCO-CV. At the optimum cautious classification threshold (τ = 0.96),
FATHMM-XF yields nearly perfect classification whilst yielding predictions for 38.7% of examples.

We compared the non-coding model test results from LOCO cross-validation with those of top competitors CADD, DANN, FATHMM-MKL and
GAVIN-adjusted CADD. At the default threshold (τ = 0.5), the new model outperforms all other methods, reaching 93% accuracy and 0.97 AUC
(Table 6). In addition, the new model yields substantially higher MCC and PPV scores. At the cautious classification threshold (τ = 0.96), the new
model yields nearly perfect classification whilst yielding predictions for 38.7% of examples.

File Acc. AUC Sens. Spec. MCC PPV
FATHMM-XF 0.89 0.97 0.95 0.84 0.53 0.36

cautious (30% coverage)) 0.96 0.99 0.99 0.93 0.87 0.82
FATHMM-MKL 0.88 0.95 0.94 0.82 0.49 0.33
GAVIN 0.87 — 0.82 0.93 0.61 0.52
CADD (v1.3) 0.64 0.95 0.98 0.30 0.18 0.12
DANN 0.61 0.95 0.99 0.23 0.15 0.11

Table 7. FATHMM-XF outperforms competitors on unseen ClinVar examples for non-coding regions. At the default threshold, the new model yields slightly
higher statistics than its nearest competitor, FATHMM-MKL. However, we note that GAVIN yields higher Specificity, MCC and PPV values, as it yields the fewest
false-positives on this benchmark set. At the cautious classification threshold, FATHMM-XF yields nearly perfect classification, achieving by far the highest scores,
whilst yielding predictions for more than 30% of examples.

Testing all methods on the ClinVar non-coding data set, at the default threshold (τ = 0.5), the new model matches or outperforms all other methods,
reaching 89% accuracy and 0.97 area under the ROC curve (AUC, Table 7). FATHMM-MKL yields accuracy nearly as high, but overall it tends to
under-perform the new model slightly. GAVIN also yields competitive accuracy, but achieves better MCC and PPV scores. At the cautious classification
threshold (τ = 0.96), the new model yields nearly perfect classification whilst yielding predictions for 30.9% of examples.
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Fig. 5. ROC curves demonstrate that FATHMM-XF outperforms competitors in non-coding regions both on LOCO-CV test examples (left) and on the independent ClinVar test set
(right).

File Acc. AUC Sens. Spec. MCC PPV
FATHMM-XF 0.88 0.95 0.89 0.88 0.74 0.77

cautious (39% coverage) 0.98 0.99 0.98 0.99 0.96 0.97
GAVIN 0.89 — 0.90 0.88 0.76 0.80
FATHMM-MKL 0.80 0.90 0.91 0.69 0.58 0.61
CADD (v1.3) 0.63 0.92 0.98 0.28 0.31 0.42
DANN 0.60 0.90 0.99 0.20 0.27 0.40

Table 8. FATHMM-XF performs as well as any competitors on LOCO CV test examples in coding regions. At the cautious classification threshold (τ = 0.97)
it yields significantly better performance, reaching 98% prediction accuracy for 38.8% of examples.

5.3 Coding variants

We compared the coding model test results from LOCO cross-validation with the same set of top competitors (Table 8). At the default threshold,
FATHMM-XF outperforms all methods except GAVIN, whose accuracy at 89% is slightly higher than FATHMM-XF (88%). We note that GAVIN yields
dramatically higher accuracy than the CADD predictions it is based upon; a similar approach applied to FATHMM-MKL or FATHMM-XF scores may
yield similarly impressive results. At the cautious classification threshold (τ = 0.96), FATHMM-XF again yields nearly perfect classification whilst
yielding predictions for 39.1% of examples.

File Acc. AUC Sens. Spec. MCC PPV
FATHMM-XF 0.88 0.96 0.84 0.92 0.76 0.83

cautious (40% coverage) 0.97 0.99 0.94 1.00 0.96 0.99
GAVIN 0.89 — 0.90 0.87 0.74 0.76
FATHMM-MKL 0.80 0.90 0.91 0.70 0.56 0.58
CADD (v1.3) 0.63 0.91 0.98 0.29 0.30 0.38
DANN 0.60 0.89 0.99 0.20 0.25 0.36

Table 9. FATHMM-XF outperforms most competitors on unseen ClinVar examples in coding regions. At the default threshold (τ = 0.5) the new model
yields substantially higher accuracy than any competitors except GAVIN, which is nominally more accurate on this benchmark set. However, FATHMM-XF’s
AUC, Specificity, MCC and PPV scores are all higher than any competitor. At the cautious classification threshold, FATHMM-XF again achieves exceptionally
high scores, whilst yielding predictions for more than 40% of examples.

Testing all methods on the ClinVar coding data set, at the default threshold FATHMM-XF matches or outperforms nearly all methods, reaching 88%

accuracy and 0.96 AUC (Table 9). Again we see that GAVIN yields nominally higher accuracy, but with reduced Specificity, MCC and PPV. GAVIN also
yields competitive accuracy, but achieves better MCC and PPV scores. At the cautious classification threshold (τ = 0.96), FATHMM-XF again yields
exceptional performance whilst yielding predictions for 42.4% of examples.
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Fig. 6. ROC curves demonstrate that FATHMM-XF outperforms all competitors in coding regions both on LOCO cross-validation test examples (left) and on the independent ClinVar
test set (right).

6 Optimum performance
GAVIN provides unequivocal Pathogenic (positive) and Benign (negative) predictions for all examples, but the other methods provide scores, along with
default thresholds for identifying positive and negative predictions. To explore further the performance of the ranking methods, we iterated over all scores
for each and evaluated the balanced accuracy and false positive rates (FPR) on our training data and on the benchmark test sets (Supplementary Figures 7
through 10). This provides a comprehensive view of their performance, and potentially may lead to alternative thresholds we can use to present each of
them in its best possible light. Overall we found that FATHMM-XF and FATHMM-MKL yield relatively consistent performance across both training and
test data sets, except at the extreme ends of their score ranges, whilst CADD and DANN are far more sensitive to the threshold being used.

6.1 Non-coding regions
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Fig. 7. Balanced accuracy as a function of threshold on FATHMM-XF training data for non-coding regions shows that FATHMM-XF and FATHMM-MKL yield highly consistent
performance while CADD and DANN are more sensitive to thresholds. For FATHMM-XF, peak balanced accuracy of 92.5% is reached at a threshold of 0.492; FATHMM-MKL,
reaches balanced accuracy of 89.9% at a threshold of 0.707; CADD reaches 88.6% at a threshold of 0.922, and DANN reaches 86.2% at 0.862. All methods except DANN achieve a
relatively low false-positive rate (FPR) near the middle of their score ranges.
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Fig. 8. Balanced accuracy as a function of threshold on the ClinVar benchmark for non-coding regions shows that FATHMM-XF and FATHMM-MKL yield consistent performance
while CADD and DANN more sensitive to thresholds. To achieve peak accuracy, all methods require a higher threshold than on the FATHMM-XF training data: FATHMM-XF reaches
92.8% accuracy at a threshold of 0.917; FATHMM-MKL reaches 90.1% accuracy at a threshold of 0.906; CADD reaches 90.2% accuracy at a threshold of 2.07, and DANN reaches
90.1% accuracy at a threshold of 0.913. Of the four methods, CADD yields the lowest FPR near the top end of its scoring range, while DANN yields the highest FPR throughout most of
its range.

6.2 Coding regions
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Fig. 9. Balanced accuracy as a function of threshold on FATHMM-XF training data for coding regions shows that FATHMM-XF and FATHMM-MKL yield highly consistent
performance while CADD and DANN are more sensitive to thresholds. For FATHMM-XF, peak balanced accuracy of 88.1% is reached at a threshold of 0.464; FATHMM-MKL,
reaches balanced accuracy of 83.7% at a threshold of 0.834; CADD reaches 86.7% at a threshold of 3.01, and DANN reaches 84.8% at 0.974. All methods except DANN achieve a
relatively low false-positive rate (FPR) near the middle of their score ranges.
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Fig. 10. Balanced accuracy as a function of threshold on the ClinVar benchmark for non-coding regions shows that FATHMM-XF and FATHMM-MKL yield consistent
performance while CADD and DANN are sensitive to thresholds. To achieve peak accuracy, all methods require a higher threshold than on the FATHMM-XF training data: FATHMM-XF
reaches 89.3% accuracy at a threshold of 0.326; FATHMM-MKL reaches 83.5% accuracy at a threshold of 0.825; CADD reaches 86.3% accuracy at a threshold of 2.91, and DANN
reaches 84.4% accuracy at a threshold of 0.974. FATHMM-XF yields relatively low FPR for most of its scoring range, while DANN yields relatively high FPR throughout its range.

7 Website
Pre-computed predictions for the GRCh37/hg19 version of the human genome are available online at fathmm.biocompute.org.uk/fathmm-xf. Users query
the database by entering comma-separated strings consisting of chromosome, position, reference and mutant alleles, or they may upload files in VCF
format. The webserver can process queries at an approximate rate of 3, 300 non-coding queries per minute or 50, 000 coding queries per minute. The
difference is due to the relative size of the two databases, as the non-coding database is by far the larger of the two, with nearly 8.5 billion predictions,
compared with 100 million predictions in coding sequence. Users who submit very large lists of queries may provide an e-mail address where they will
receive notification when the job has finished. The pre-computed databases are also available for download along with a Python script that performs the
same queries as the website.

The full set of predictions are also available as tracks on the Genome Tolerance Browser (GTB) (Shihab et al., 2017a). Users may access the tracks
at gtb.biocompute.org.uk.
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