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Abstract

Motivation: In some prediction analyses, predictors have a natural grouping structure and select-

ing predictors accounting for this additional information could be more effective for predicting the

outcome accurately. Moreover, in a high dimension low sample size framework, obtaining a good

predictive model becomes very challenging. The objective of this work was to investigate the bene-

fits of dimension reduction in penalized regression methods, in terms of prediction performance

and variable selection consistency, in high dimension low sample size data. Using two real data-

sets, we compared the performances of lasso, elastic net, group lasso, sparse group lasso, sparse

partial least squares (PLS), group PLS and sparse group PLS.

Results: Considering dimension reduction in penalized regression methods improved the predic-

tion accuracy. The sparse group PLS reached the lowest prediction error while consistently select-

ing a few predictors from a single group.

Availability and implementation: R codes for the prediction methods are freely available at https://

github.com/SoufianeAjana/Blisar.

Contact: soufiane.ajana@u-bordeaux.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-dimensional data have become of increasing importance in the

biological domain. Data generated by high-throughput technologies

allow to measure up to millions of features at once (Clarke et al.,

2008). A new type of information is thus generated, commonly

known as ‘omics’ data. Selecting a few predictors associated with a

biological or clinical outcome among such high-dimensional data is

a challenging task (Filzmoser et al., 2012). Traditional approaches

usually fail because of intrinsic multicollinearity among the very

large number of potential predictors (James et al., 2017).

The concepts of sparsity and penalization have shifted from being
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exclusively used by statisticians to becoming commonly used techni-

ques by biologists and clinicians. Note that sparsity here does not

refer to techniques dealing with sparse data but instead refers to

models having a few non-zero parameters (Hastie et al., 2015). In

high-dimensional data, the presence of predictors with very small

contributions to predictive power is likely. Keeping these predictors

in the model may generate noise, leading to overfitting and lowering

the prediction performance when the true vector of parameters is

sparse (Géron, 2017).

When the aim is to reach a compromise between model inter-

pretation (i.e. parsimonious model) and prediction performance,

many approaches have been proposed in the literature.

Genuer et al. proposed VSURF, a variable selection approach

based on random forests (Genuer et al., 2010). Other nonlinear

methods also performing variable selection such as support vector

machines (Zhang et al., 2016) or boosting (Xu et al., 2014) were

also widely discussed in the literature. However, since we position

ourselves in a high dimension low sample size (HDLSS) framework,

such complex models would tend to overfit our data while linear

models proved to be more generalizable (Boucher et al., 2015). For

instance, penalized linear regression methods allow for variable se-

lection by penalizing the size of the estimated parameters.

Particularly, the lasso method (Tibshirani, 1994) shrinks the regres-

sion coefficients towards zero and estimates some of them to exactly

zero. However, in some situations, when the predictors are highly

correlated for example, the lasso fails to select the most relevant

ones. A generalized version of the lasso, known as elastic net (Zou

and Hastie, 2005), tackles this issue by giving highly correlated pre-

dictors similar regression coefficients, up to a change of signs if

negatively correlated. Alternatively, one can also handle high corre-

lations among predictors by incorporating dimension reduction in

penalized regression methods. Particularly, sparse partial least

squares (sPLS) (Chun and Keleş, 2010; Lê Cao et al., 2008) seeks

sparse latent components (i.e. linear combinations of the original

predictors) that are highly correlated with the outcome and have a

high variance (Hastie et al., 2009). These kind of approaches have

been successfully applied in many domains (Bastien et al., 2015; Lê

Cao et al., 2009).

In some applications, predictors have a natural grouping struc-

ture and selecting predictors clustered into groups could be more ef-

fective for predicting accurately the outcome than considering single

predictors. For instance, in the BLISAR study (presented in Section

3), our objective was to predict retinal omega 3 (n-3) polyunsatur-

ated fatty acids (PUFA) levels from circulating biomarkers measured

in blood samples using gas chromatography (GC) and liquid chro-

matography coupled to electroSpray ionization tandem mass spec-

trometry (LCMS) techniques (Acar, 2012; Berdeaux et al., 2010).

We measured these circulating biomarkers from several blood com-

partments using different methods that structured them into 5

groups (Supplementary Fig. S2). A prediction model for retinal n-3

PUFA including predictors from a few groups would make the inter-

pretation of the model easier and its use cheaper, by lowering the

number of biological analyses to perform. Indeed, since each ana-

lysis results in a spectrum allowing for the concomitant measure-

ment of a large number of biomarkers, the number of biomarkers

measured in one compartment has little impact on the cost while

adding a compartment increases a lot the cost.

Over the years, some authors proposed extensions to the previ-

ously presented statistical methods to take into account the grouping

structure of high-dimensional predictors as shown in Supplementary

Figure S1. Yuan and Lin proposed the group lasso (gLasso)

(Yuan and Lin, 2006) which selects or discards an entire group of

predictors (‘all-in-all-out’ fashion). To achieve a bi-level sparsity, a

recent method known as sparse group lasso (sgLasso) (Simon et al.,

2013) performs variable selection at the group level but also within

each relevant group (Friedman et al., 2010). In the same line, sPLS

was also extended to group PLS (gPLS) and sparse group PLS

(sgPLS) (Liquet et al., 2016). We will refer to sPLS based approaches

as dimension reduction methods in the rest of this article.

Surprisingly, the benefits of dimension reduction in penalized re-

gression approaches were never investigated when the predictors are

structured into groups.

The objective of this article is to compare the prediction per-

formances and the variable selection consistency of seven methods

in high-dimensional settings while accounting or not for the group

and high correlation structures. The present study aspires to lend

insights into best practices when such methods are required.

The rest of this article is organized as follows. In Section 2, we

give an overview of penalized regression methods (lasso, gLasso,

sgLasso, elastic net) and dimension reduction approaches (sPLS,

gPLS, sgPLS). In Section 3, we present the BLISAR study and we

compare these methods on this real dataset in terms of variable se-

lection frequency and prediction accuracy, using a repeated double

cross-validation scheme. Main results are confirmed on a second

dataset described in the Supplementary Material. Finally, we sum-

marize and discuss some perspectives in Section 4.

2 Materials and methods

In regression settings, we commonly use the linear regression model

to predict a real-valued response Y from a set of predictors X. When

predictors have a natural grouping structure, we can write the linear

regression model as:

Y ¼
XL

l¼1
Xlbl þ e (1)

where Y is the n� 1 response vector of n observations, X ¼
X1; . . . ;XLð Þ is the n� pð Þ matrix of predictors and Xl ¼
Xl1; . . . ;Xlpl

� �
is the n� pl matrix of pl predictors in group l such

that l ¼ 1; . . . ;L and p ¼
PL

l¼1 pl, b ¼ bT
1 ; . . . ; bT

L

� �T

is the p� 1

vector of parameters to estimate and bl ¼ bl1; . . . ; blpl

� �T is the pl � 1

vector of parameters associated to the lth group. The random error

vector e n� 1ð Þ is a mean-zero with constant variance r2 normally

distributed variable. We also assume that the outcome is centered,

and therefore, no intercept is included in the model.

A famous estimator for such a model is the ordinary least squares esti-

mator (OLS) obtained by minimizing the residual sum of squares (RSS).

b̂ ¼ XTXð Þ�1
XTY

However, in high-dimensional settings n� pð Þ, two issues are

to be considered: collinearity of predictors and the signal to noise

ratio (i.e. sparsity of the true vector of parameters). Collinearity is a

property relative to the presence of redundancy/correlation among

some predictors. In this case, rank Xð Þ < p and XTX becomes singu-

lar (Naes and Mevik, 2001; Tropp and Wright, 2010). In such set-

tings, direct application of traditional variable selection methods

(such as stepwise subset selection) may result in lack of stability,

high computational effort or both. In this case, there is no unique b̂
to minimize the RSS (Strang, 2016) and we need to regularize the es-

timation process. Even in low-dimensional settings p � nð Þ, predic-

tors can be highly correlated and we may still need some

regularization. The signal to noise ratio is relative to the concept of
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parsimonious models (only a few predictors associated with the re-

sponse among a large set of available predictors). Penalized regres-

sion and dimension reduction methods are two approaches based on

these concepts. The former technique makes a prior assumption that

a few predictors are individually related to the outcome. The latter

approach is based on the assumption that a few latent variables

(also called underlying components) contribute to the observed co-

variance between the predictors and the outcome.

2.1 Penalized regression methods
Penalized regression methods investigated in this work (namely

lasso, gLasso, sgLasso and elastic net) perform the estimation of

parameters and variable selection simultaneously. Indeed, a penalty

term, controlling the size of b, is added to the RSS in the optimiza-

tion problem in order to reduce the variance and thus stabilize the

OLS estimates. When the predictors are structured into groups, the

optimization problem to solve becomes:

argminb

�����Y �
XL

l¼1

Xlbl

�����
2

2

þ k akbk1 þ 1� að Þ
XL

l¼1

ffiffiffiffi
pl

p
kblk2

0
@

1
A

8<
:

9=
;
(2)

where a 2 0; 1½ � is a tuning parameter which controls the combin-

ation between the L1 and L2 penalties and k � 0 is a tuning param-

eter determining the sparsity of the solution by controlling the bias-

variance tradeoff. Larger values of k lead to a sparser vector of the

estimated parameters b̂. The
ffiffiffiffi
pl
p

term accounts for the group size.

Moreover, note that when L ¼ p, all groups are composed of one

predictor.

Otherwise, when there is no a priori group assumption, the opti-

mization problem simplifies to:

argminbfkY �Xbk2
2 þ kðakbk1 þ 1� að Þkbk2

2Þg (3)

2.1.1 Lasso

The lasso (Tibshirani, 1994) is a shrinkage method imposing an L1

penalty (a ¼ 1 in (2) or (3)). The non-differentiability of the L1 pen-

alty at 0 allows an automatic variable selection (by shrinking some of

the coefficients to exactly 0). Indeed, when k is sufficiently large, the

lasso produces a sparse solution. However, the lasso suffers from some

major limitations: (i) when n < p, the number of selected predictors is

bounded by the sample size and (ii) in case of highly correlated predic-

tors, the lasso fails to perform grouped selection and selects instead

only one variable from the entire group of correlated predictors.

2.1.2 Elastic net

The elastic net (Zou and Hastie, 2005) is a combination of the L2

and L1 penalties (0 < a < 1 in (3)) and can be considered as a gen-

eralization of the lasso. The L2 penalty (squared) allows the elastic

net to account for high collinearity and to select highly correlated

predictors (e.g. genes located close on the same chromosome) by giv-

ing them similar weights, up to a change of signs if negatively corre-

lated. Moreover, the L1 penalty gives the elastic net the sparse

property of the lasso. Finally, the number of selected predictors is

not bounded by the sample size as in lasso.

2.1.3 Group lasso

To consider the inherent interconnections inside a natural group of

predictors, the gLasso (Yuan and Lin, 2006) mimics the lasso selec-

tion procedure but at the group level (a ¼ 0 in (2)). Indeed, the L2

penalty (not squared) is non-differentiable at the origin, setting

groups of coefficients to exactly 0. In contrast, the elastic net per-

forms grouped selection of highly correlated predictors when the

group information is unknown a priori (Zeng et al., 2017). It is

worth mentioning that the gLasso is equivalent to the lasso if the

size of each group is 1. However, the gLasso is not able to discrimin-

ate signal from noise inside a group since it either selects or discards

the whole group of predictors. Moreover, the gLasso performs bet-

ter than lasso when data are truly structured into groups (Huang

et al., 2009).

2.1.4 Sparse group lasso

A further refinement of the gLasso is the sgLasso (Simon et al.,

2013), which is a convex combination of the gLasso and the lasso

penalties (0 < a < 1 in (2)). Indeed, the sgLasso performs a bi-level

selection by combining two nested penalties. The L2 penalty allows

for group selection by taking into account the prior group informa-

tion and the L1 penalty performs within-group selection and produ-

ces more parsimonious and more interpretable models. Thus, the

sgLasso identifies important groups and discards irrelevant predic-

tors inside each relevant group simultaneously.

2.2 Dimension reduction methods
The aforementioned penalized regression methods assume that some

predictors contribute individually to the prediction of the outcome.

By contrast, dimension reduction approaches assume that only a few

latent variables inform the model. For example, each latent variable

T 2 Rn of our predictors matrix X n� pð Þ is constructed as a linear

combination of the original predictors with their weight coefficients

stored in a loading vector u 2 Rpsuch that T ¼ Xu. Dimension re-

duction methods investigated in this work (namely sPLS, gPLS and

sgPLS) are designed to relate a matrix of predictors X to a matrix of

responses Y n� qð Þ by maximizing the covariance of their projec-

tions onto orthogonal latent variables (also called latent scores). In

the present study, we focus on the case of a univariate response

q ¼ 1ð Þ and one latent dimension as explained in Section 3.2. Under

such conditions, the maximization criterion can be written as:

XL

l¼1

covðXlul;YÞ � k
�
akuk1 þ ð1� aÞ

ffiffiffiffi
pl

p
kulk2

�� 	
(4)

where ul is the estimated loading vector associated to the lth group.

k � 0 is a tuning parameter which determines the amount of

penalization, while a 2 0; 1½ � controls the trade-off between the L1

and L2 penalties. Larger values of k lead to a sparser vector of the

estimated loadings. The
ffiffiffiffi
pl
p

term accounts for the group size.

2.2.1 Sparse PLS

The sPLS (Chun and Keleş, 2010; Lê Cao et al., 2008) aims at com-

bining variable selection and dimension reduction in a one-step pro-

cedure. Indeed, the sPLS performs variable selection to obtain sparse

loading vectors by imposing an L1 penalty (a ¼ 1 in (4)). This means

that only a few original predictors will contribute to each latent vari-

able. Moreover, the sPLS is especially well suited for highly corre-

lated predictors since it considers a contribution from all the

relevant predictors when constructing a latent variable. However, if

we can structure the data into groups, the sPLS cannot take into ac-

count this additional information.
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2.2.2 Group PLS

Inspired by the gLasso approach, when the underlying model exhib-

its a grouping structure, the gPLS (Liquet et al., 2016) aims to select

only a few relevant groups of X which are related to Y by imposing

an L2 penalty (a ¼ 0 in (4)). In gPLS, each latent score is con-

structed as a linear combination of all the predictors inside the

selected groups. However, as gLasso, the gPLS is not able to select

the most predictive predictors inside each relevant group.

2.2.3 Sparse group PLS

The sgPLS (Liquet et al., 2016) is performed by combining the L1 and

the L2 penalties (0 < a < 1 in (4)). When the objective is to con-

struct latent scores while achieving sparsity at both the group and the

individual levels, the sgPLS can be a good alternative to gPLS. Indeed,

as sgLasso, the sgPLS is capable of discriminating important predic-

tors from unimportant ones within each selected group.

3 Design of the comparative study

3.1 Real data
The general aim of the BLISAR study is to identify and validate new

circulating biomarkers of lipid status that are relevant for retinal

aging. In this application, our objective is to predict retinal n-3

PUFA concentrations from circulating biomarkers in post-mortem

samples from human donors.

Samples of retina, plasma and red blood cells were collected

from human donors free of retinal diseases according to previously

published procedures (Acar, 2012; Berdeaux et al., 2010). Retinal n-

3 PUFA status was measured using GC. Circulating biomarkers

were obtained from 5 sets of analyses (Supplementary Fig. S2): GC

applied to lipids from total plasma (PL), cholesteryl esters (CE),

phosphatidylcholines (PC) and red blood cells (GR). Finally, struc-

tural analyses of red blood cells were performed by LCMS as

detailed previously (Acar, 2012; Berdeaux et al., 2010). Therefore,

the analyses were performed on N¼46 subjects and 332 predictors.

3.2 Repeated double cross-validation scheme
We compared the prediction performances of the regression meth-

ods on the BLISAR dataset via a repeated double cross-validation

scheme. Estimating both the tuning parameters and prediction errors

by using a single cross-validation would lead to an overly optimistic

estimate of the error rate value (Smit et al., 2007). As an alternative,

we designed a double cross-validation scheme to limit overfitting by

performing model selection in the internal loop and model assess-

ment in the external loop (Supplementary Fig. S3) (Ambroise and

McLachlan, 2002; Baumann and Baumann, 2014).

For all the compared methods, we estimated the tuning parame-

ters in a data-driven fashion. Concerning dimension reduction meth-

ods, we considered one latent dimension as we are predicting a

univariate outcome and to facilitate interpretation of the model.

Furthermore, cross-validation can fail to correctly estimate the opti-

mal number of latent variables when the ratio of sample size to pre-

dictors is very low (Rendall et al., 2017), as in our case. Moreover,

the choice of the PLS dimension remains an open research question

as mentioned by several authors (Boulesteix, 2004; Lê Cao et al.,

2008).

Our double cross-validation algorithm is the following

(Supplementary Fig. S3):

1. outer cross-validation cycle: randomly split the entire dataset

into training (outer train) and test (outer test) sets using 10-fold

cross validation (to reduce the sampling dependence and thus

better estimate the prediction performance as well as its

variability).

2. inner cross-validation cycle: the outer train portion is used to es-

timate the optimal tuning parameters using a leave-one-out

cross-validation and a grid search over the parameters space

(Arlot and Celisse, 2010).

3. using the optimal tuning parameters selected at step 2, estimate

the model on the whole outer train set.

4. predict the outcome values in the outer test set and compute the

criteria for evaluating the quality of prediction.

As recommended, we repeated the double cross-validation pro-

cedure 100 times with different random splits into outer train and

outer test sets in order to estimate the variance of the prediction per-

formances (Garcia et al., 2014; Martinez et al., 2011; Molinaro

et al., 2005). Additionally, Filzmoser et al. reported that repeated

double cross-validation is well suited for small datasets (Filzmoser

et al., 2012).

We used the cran R package SGL to train and to test the lasso,

the gLasso and the sgLasso. We fitted the sPLS, the gPLS and the

sgPLS to our data via the R package sgPLS which relies heavily on

the package mixOmics. Concerning the elastic net, we used the

package glmnet.

3.3 Model evaluation criteria
3.3.1 Root-mean-squared error of prediction

The root-mean-squared error of prediction (RMSEP) is frequently

used to assess the performance of regressions (Ivanescu et al., 2016;

Mevik and Cederkvist, 2004). In the present study, we calculated

the RMSEP through cross-validation for both model selection and

model assessment by averaging the squared prediction errors of the

test sets:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPntest

i¼1 yi � ŷið Þ2

ntest

s

where ntest is the test sample size, yi (respectively ŷi) is the observed

(respectively predicted) value of the outcomes for the ith individual.

Lower values of RMSEP are associated with better performances.

3.3.2 Goodness of fit (R2)

We calculated the coefficient of determination (R2) as the square of

Pearson correlation coefficient (Feng et al., 2012) between observed

and predicted outcome values in the test set. This coefficient evalu-

ates the prediction performance and thus was also used to compare

our models. It is noteworthy that the R2, calculated via cross-

validation on the test data, assesses the quality of predictions on in-

dependent sets (Acharjee, 2013; Rendall et al., 2017).

4 Results

We show the prediction performance of each method according to

the RMSEP and the R2 in Table 1. We also reported the number of

predictors selected in at least 60% of the samples. The sgPLS model

had the lowest prediction error (RMSEP¼2.27), while selecting

only one group (CE) and only 7 predictors inside that group.

Interestingly, sPLS had a behavior very close to that of sgPLS al-

though it does not consider explicitly the grouping structure. Indeed,

sPLS had a RMSEP of 2.32 and selected only 8 predictors: 7 lipids

from the CE group (identical to those selected by sgPLS) and 1 lipid

from the PL group. In comparison, gPLS had a somewhat higher
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RMSEP (2.43) and selected only the CE group, but retained all the

32 predictors of this group.

The Supplementary Figure S4A of the Venn diagram displays the

intersection between predictors selected by the three dimension re-

duction methods.

Without dimension reduction, penalized regression methods

exhibited higher RMSEP and lower R2. The lasso had the highest

RMSEP and the lowest R2, while selecting only four predictors

(from CE and PC groups). The sgLasso and the gLasso models per-

formed similarly to lasso in terms of RMSEP but retained more

groups and many more predictors. Notably, gLasso selected four

groups out of five while sgLasso selected three groups. The groups

selected by gLasso included those selected by lasso and sgLasso. The

sgLasso selected many predictors inside each group, reaching a total

of 143 predictors. The elastic net obtained similar prediction per-

formances as gLasso and sgLasso but selected only 23 predictors

from four groups. Intersections between selected predictors from the

four penalized regression methods without dimension reduction are

displayed in Supplementary Figure S4B. Interestingly, three out of

the four predictors commonly selected by penalized regression meth-

ods were included in the seven ones commonly selected by dimen-

sion reduction methods.

As a result of the repeated double cross-validation scheme, we

observed a variability in the tuning parameters estimates and thus in

the trained models. Therefore, we also reported the selection fre-

quency of the predictors by each method (see Supplementary Figs

S5–S11). Indeed, the most relevant predictors tend to be more often

selected during the model training. We observed that sgPLS and

gPLS were the most stable methods in terms of variables selection

frequency. These two methods systematically retained the most fre-

quently selected predictors (say over 60% of the times) across the

random different splits and over the 100 runs. These findings were

still valid even if we slightly lowered the threshold. Nevertheless,

sgPLS had the advantage of consistently selecting fewer predictors

compared to gPLS. Furthermore, standard deviations of RMSEP and

R2 values were lower for sPLS, gPLS and sgPLS compared to penal-

ized regression methods without dimension reduction (Table 1).

To further investigate the variance of the prediction accuracy

obtained by each method over the 100 runs, we considered sgPLS as

a benchmark. For each of the other methods and for each run, we

computed the difference between their RMSEP and that of sgPLS.

Supplementary Figure S12 displays the boxplots of these differences

and shows that sgPLS outperformed the other methods for all runs

(except for sPLS). As mentioned before, although not as good as

sgPLS, sPLS performed similarly to sgPLS in terms of prediction ac-

curacy. Of note, the R2 criterion showed similar results

(Supplementary Fig. S13).

We also compared the performances of these seven methods on an-

other real dataset (DALIA trial) (Lévy et al., 2014; Liquet et al., 2016).

The results are presented in the Supplementary Material. Again, sgPLS

reached the best performances in terms of prediction accuracy while

consistently selecting only a few relevant predictors from a single

group. To summarize, adding dimension reduction exhibited a net and

robust benefit for penalized regression methods in terms of prediction

performances and stability of variable selection.

5 Discussion

In this study, we compared the prediction performances of several

regression methods based on their RMSEP and R2 for HDLSS data

with a group structure of the predictors. All the compared

approaches performed variable selection. The penalized regression

methods performed better when combined with dimension reduc-

tion. Particularly, lasso had the worst prediction performance. In

contrast, sgPLS reached the lowest (resp. the highest) RMSEP (resp.

R2) and found almost systematically a better predictive model than

the other approaches. Interestingly, sPLS behaved similarly to sgPLS

in terms of prediction performances.

In terms of variable selection, at the group level, sgPLS selected

predictors from only one group (CE) compared to the sPLS which

selected predictors form two different groups (CE and PL). Since

selecting fewer groups would help to diminish the related costs, we

retained sgPLS as the best approach. The fact that sgPLS selected

consistently only a few predictors (7) suggests that our signal is rela-

tively scarce with only a few relevant predictors.

From a biological point of view, since CE was the only group

selected by sgPLS (and gPLS), one can suggest that prediction of ret-

inal n-3 PUFA concentrations may rely on this analysis only, thereby

much simplifying the analytical work. This observation is consistent

with some of our preliminary findings, showing that retinal n-3

PUFA correlated strongly with n-3 in CE of the underlying vascular

structure (retinal pigment epithelium/choroid) (Bretillon et al.,

2008). To our knowledge, this is the first study showing the benefits

of dimension reduction in penalized regression methods while

accounting for the grouping structure.

All the compared methods in the present study had a common

objective: predict the outcome while dealing with different levels of

collinearity and sparsity by discarding irrelevant predictors. There

is, however, no guarantee that these kinds of approaches will always

give the best results in all situations. The best prediction method will

usually depend on the nature and the underlying structure of the

data at hand, which cannot be known beforehand. If the data con-

tains numerous noise predictors that can be discarded, then sparse

methods may yield high prediction performances. Otherwise, if the

true model is not parsimonious (many predictors driving the re-

sponse), it is likely that a method using a linear combination of all

the predictors, like PLS or ridge regression, would yield better

Table 1. Comparison of the multivariable regression methods for 10 random divisions with 100 runs (N¼ 46, P¼ 332)

Method Test data R2 (SD) Test data RMSEP (SD) Number of selected predictorsa Selected groupsa

Lasso 0.14 (0.05) 2.73 (0.14) 4 CE, PC

sgLasso 0.20 (0.05) 2.72 (0.16) 143 CE, PC, LCMS

gLasso 0.21 (0.05) 2.69 (0.15) 285 CE, PC, PL, LCMS

Elastic net 0.18 (0.05) 2.65 (0.12) 23 CE, PC, PL, LCMS

sPLS 0.36 (0.03) 2.32 (0.05) 8 CE, PL

gPLS 0.30 (0.03) 2.43 (0.05) 32 CE

sgPLS 0.38 (0.02) 2.27 (0.04) 7 CE

aIn at least 60% of the samples.
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prediction performances than sparse methods. In the biological do-

main, the number of subjects is often small and the measured quanti-

ties are generally highly correlated. If one has prior information

about the group structure of the data and aims at selecting fewer

groups then sgPLS seems to be a good approach.

Some of the considered models did not achieve good predic-

tion performances. This could be due firstly to the linearity as-

sumption of all the compared models. The true relationship

between the outcome and the predictors may be nonlinear.

However, we could not apply more complex methods (e.g. neural

network or support vector machines) because of our small sample

size. Such approaches would tend to overfit our data and predict

with less accuracy (Boucher et al., 2015). In contrast, linear mod-

els tend to be more generalizable and may outperform nonlinear

approaches in case of a small training sample size or sparse data

(Hastie et al., 2001). Secondly, some of the applied methods may

not be consistent in terms of variable selection, which could

lower their prediction performances. Particularly, lasso shrinks

each regression coefficient by the same amount. Thus, it heavily

penalizes large coefficients and could lead to inconsistent model

selection (Zou, 2006). As gLasso and sgLasso are built on lasso,

they may suffer from similar problems (Fang et al., 2015) and

may also tend to select irrelevant predictors in the model.

Additionally, when the data is structured into few groups and

when each group contains more predictors than observations, the

sgLasso is not expected to perform well in terms of variable selec-

tion (Simon et al., 2013).

In contrast, adaptive lasso (Zou, 2006), adaptive gLasso (Wei and

Huang, 2010) and adaptive sgLasso (Fang et al., 2015) remedy these

shortcomings by using adaptive weights for penalizing different re-

gression coefficients. Thus, the adaptive alternatives to lasso, gLasso

and sgLasso are selection consistent. However, the adaptive methods’

performances depend on the initial estimator used in their initial selec-

tion step. Therefore, there is a high risk of missing important predic-

tors with an inappropriate initial estimator (Benner et al., 2010).

Thirdly, it is also possible that the true active set of predictors was not

included as input. Indeed, it is very likely that the concentrations of

circulating n-3 PUFA measured in blood samples are not sufficient to

predict the retinal concentrations of n-3 PUFA with a high accuracy.

Some other techniques not investigated in the present work could

also be good alternatives to reach better generalization performances.

Stacked generalization, also called stacking or blending, consists in

combining the predictions obtained by several models to form a final

set of predictions (Wolpert, 1992). This approach was successfully

applied in many domains, especially in machine learning challenges

(e.g. Netflix challenge) (Sill et al., 2009) but makes interpretation of

the selected associations more challenging. The gain in prediction

performance is often not worth the complexity of the final model.

Furthermore, interesting interpretation properties could also be

reached via orthogonal projection to latent structures (OPLS) method

which removes variation from the predictors matrix that is not corre-

lated to the outcome (Féraud et al., 2017; Trygg and Wold, 2002). In

particular, OPLS modeling of a univariate outcome requires only one

predictive component. However, sparse generalizations of OPLS tak-

ing into account the group structure of the data are not implemented

yet and could be investigated in future work.

In conclusion, one objective of this study was to assess the bene-

fits of dimension reduction in penalized linear regression approaches

for small sample size with high-dimensional group structured pre-

dictors. The other objective was to lend insights into best practices

when such methods are needed. Adding dimension reduction while

considering both group structure and high correlations allowed to

select the most biologically relevant group of predictors and to im-

prove the prediction performance.
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