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Abstract

Motivation: Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence
and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general
computational methods for solving an integer linear program, or a constraint satisfaction program, which, although
guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or
alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods
that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize
this technology.

Results: We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound al-
gorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset.
PhISCS-BnB not only offers an optimality guarantee, but is also 10–100 times faster than the best available methods
on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived
from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phyl-
ogeny in <4 h. The resulting phylogeny agrees with and extends the published results by providing a more detailed
picture on the clonal evolution of the tumor.

Availability and implementation: https://github.com/algo-cancer/PhISCS-BnB.

Contact: cenk.sahinalp@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a highly dynamic, evolutionary disease. Constantly shaped
by mutation and selection, cancer progression often results in the
emergence of distinct tumor cell populations with varying sets of
somatic mutations, commonly known as (sub)clones. The diverse
pool of subclones may harbor treatment-resistant mutations. When
favorably selected for in the tumor environment by treatment expos-
ure, treatment-resistant subclones may gain dominance over others
and eventually contribute to treatment failure (Alizadeh et al.,
2015). The challenges in developing effective cancer therapies under
the heterogeneous tumor landscape thus motivate the following

question: can we reconstruct the tumor phylogeny and unravel spa-
tial and temporal intra-tumor heterogeneity (ITH) to enlighten can-
cer treatment strategies?

In recent years, several computational tools for analyzing ITH
and evolution from bulk sequencing data of tumor samples have
been developed (Deshwar et al., 2015; Donmez et al., 2017; El-
Kebir et al., 2015, 2016; Hajirasouliha et al., 2014; Jiao et al., 2014;
Malikic et al., 2015; Marass et al., 2016; Popic et al., 2015; Satas
et al., 2017; Strino et al., 2013). However, bulk sequencing data
provides only an aggregate signal over large number of cells and,
due to its limited resolution, all of these methods have several limita-
tions in unambiguously inferring trees of tumor evolution. Most
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notably, they typically rely on clustering of mutations of similar cel-
lular prevalence. Consequently, if two sets of mutations evolving on
different branches of phylogenetic tree have similar cellular preva-
lence values, they get clustered together. Furthermore, even in cases
where the cellular prevalence values of clusters are different, meth-
ods based on bulk sequencing data are frequently unable to distin-
guish between multiple trees that describe the observed data equally
well (Kuipers et al., 2017; Malikic et al., 2019a).

The rise of single-cell sequencing (SCS) has enabled exploration
of ITH at a higher, cellular resolution. Unfortunately, even SCS can-
not trivially provide a comprehensive understanding of ITH. Among
the lingering caveats with SCS, the most prominent is the prevailing
presence of sequencing noise (Zafar et al., 2018). We are particular-
ly interested in three types of noise in SCS datasets: (i) false positive
mutation calls, potentially from sources like read errors, (ii) false
negative mutation calls, potentially from sources like variance in se-
quence coverage or allele dropout and (iii) missing values for muta-
tions from sites affected by DNA amplification failure. [A final noise
source is the doublets, the technical artifacts of two (or rarely more)
cells with heterogeneous mutation profiles treated and sequenced as
a single cell. Since there are a number of preprocessing techniques
such as (Roth et al., 2016) to detect and eliminate doublets fairly
well we will not focus on doublets as a source of noise in this paper.]
The multi-faceted and high levels of sequencing noise have
prompted the development of novel computational approaches that
need to infer a tumor evolutionary model while compensating for all
three sources of noise.

The first principled approaches for studying ITH by the use of
SCS data were all based on probabilistic formulations that aim to
infer the most likely perfect phylogeny (PP) of a tumor. SCITE (Jahn
et al., 2016) and OncoNEM (Ross et al., 2016) are among these
methods that primarily aim to build a PP (i.e. an evolutionary tree
where no mutation can appear more than once and is never
lost).[Another tool, SiFit (Zafar et al., 2017) aims to allow for dele-
tion events and loss of heterozygosity.] Following up on this, SPhyR
(El-Kebir, 2018) formulates the tumor phylogeny reconstruction
problem as an integer linear program (ILP) under the constraints
imposed by the k-Dollo parsimony model where a gained mutation
can only be lost k times. SCIU (Singer et al., 2018) simultaneously
performs mutation calling and the tumor phylogeny inference taking
read counts data as the input, rather than the more commonly used
genotype matrix with inferred mutations, represented by columns,
in distinct cells, represented in by rows.

As datasets with matching SCS and bulk sequencing data become
publicly available, methods to infer tumor phylogeny through inte-
grative use of these two data types are becoming available. B-SCITE
(Malikic et al., 2019a) e.g. combines CITUP, which is designed for
bulk sequencing data, with SCITE through a Monte Carlo Markov
Chain (MCMC) strategy. More recently PhISCS (phylogeny infer-
ence using SCS) (Malikic et al., 2019b), offers the option of formu-
lating integrative reconstruction of the most likely tumor phylogeny
either as an ILP or as a Boolean constraint satisfaction program
(CSP), while allowing for a fixed number of PP violating mutations.
The CSP version of PhISCS, when employing state-of-the-art CSP
(more specifically weighted max-SAT) solvers such as RC2 (Ignatiev
et al., 2019) and Open-WBO (Martins et al., 2014) turn out to be
the fastest among all available techniques even when only SCS data
are available. Nevertheless, none of the available techniques can
scale up to handle emerging datasets that involve thousands of cells
(Laks et al., 2019); even moderate size SCS data involving a few
hundred mutations and cells turn out to be problematic especially
with the current ‘standard’ false negative rate of 15–20%. Other re-
cent techniques such as scVILP (Edrisi et al., 2019) and SiCloneFit
(Zafar et al., 2019) focus on adding new features to (or relax con-
straints for) the tumor phylogeny reconstruction problem and are
(typically) not faster. [One exception is ScisTree (Wu, 2019) which
is reported to be faster but is a heuristic approach with no optimality
guarantees.] Finally, even though new sequencing techniques such as
single-cell cloning (SCC, i.e. bulk sequencing of homogeneous cell
populations, each derived from a single cell) offer much lower false
negative rates, the scale of the data they produce—involving

thousands of mutations, require much faster solutions to the tumor
phylogeny reconstruction problem.

In this paper, we present a branch and bound (BnB) algorithm
and its implementation (called PhISCS-BnB, phylogeny inference
using single-cell sequencing via branch and bound) to optimally re-
construct a tumor phylogeny very efficiently. Generally speaking,
our BnB approach clusters entries of the input genotype matrix and
processes them together, enabling faster execution (Section 3.1 and
Lemma 3.1). We introduce a number of bounding algorithms, some
faster but offering limited pruning and others slower but with better
pruning efficiency. Among them, a novel bounding algorithm with a
2-SAT formulation is a key technical contribution of our paper:
through its use, PhISCS-BnB improves the running time of the fastest
available methods for tumor phylogeny reconstruction by a factor of
up to 100 (Section 4).

2 PP reconstruction problem

Given a binary genotype matrix I, we would like to reconstruct the
most likely phylogeny by discovering how to flip the smallest num-
ber of entries of I so it can provide a PP.

Preliminaries. Our input is a binary (genotype) matrix
I 2 f0; 1gn�m. The n rows represent genotypes of single cells
observed in an SCS experiment and the m columns represent a set of
considered somatic mutations. (Germ line is typically available.)
Iði; jÞ ¼ 1 indicates that mutation j is present in cell i; Iði; jÞ ¼ 0 indi-
cates that it is not.

The three-gametes rule stipulates that a binary matrix X 2
f0; 1gn�m should not have three rows and two columns (in any
order) with the corresponding six entries displaying the configur-
ation (1, 0), (0, 1) and (1, 1). If the forbidden configuration is pre-
sent, we say that there is a violation, referenced by the three rows
and the two columns containing it. It was shown in Gusfield (1991)
that satisfaction of the three-gametes rule by I is necessary and suffi-
cient for the existence of a PP corresponding to I.

Given input matrix I, we call a binary matrix X a descendant of
I if all entries of X are identical to those of I except some that have
been flipped from 0 to 1. For a matrix X, F0!1ðI;XÞ is defined as
the number of entries that are 0 in I and 1 in X. We sometimes refer
to this value as the number of flips to get to X from I.

Our problem. Given a genotype matrix I, we would like to ob-
tain a minimum-cardinality set of bit flips (from 0 to 1, indicating a
correction for a false negative—since false positive rates are several
orders of magnitude lower) (In general both false negative and false
positives (respectively, 1 read as 0 and 0 read as 1) happen with dis-
tinct probabilities. The qualitative difference in these probabilities is
due to the sequencing technology in use and thresholding rules
employed in establishing I. As is well known, the false positive rate
is three orders of magnitude or more lower than the false negative
rate. In fact, in emerging data, e.g. from SCC experiments, the false
positive rate approaches zero and thus can be ignored. As a result,
we focus only on false negatives and our proposed algorithm and its
subroutines make use of this assumption.) that removes all three-
gametes rule violations in I and thus transforms I into a matrix Y
that provides a PP.

3 BnB method

In order to discover the smallest number of 0 to 1 flips that will re-
move all violations in input matrix I, we use a BnB technique. In
what follows, we give an overview of the building blocks of our BnB
approach. Then we put all of them together in Algorithm PhISCS-
BnB.

Our BnB algorithm forms a search tree where each node contains
a matrix, with input matrix I at the root—for simplicity we might
refer to a node with its label as well as its matrix. In this tree, a ma-
trix X at node v is a descendant (as described in the preliminaries) of
the matrix Y at v’s parent node; all matrices in the tree are thus
descendants of I. The tree terminates in leaf nodes that are PP; non-
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PP nodes will have two child nodes as the tree grows unless they
have been pruned due to detected non-optimality.

When a node v with matrix X is formed, v is assigned a priority
score equal to the number of bit flips needed to get from I to X plus
a lower bound on the number of flips necessary to remove all the
violations in X. All nodes are kept in a priority queue and are
explored in ascending order of their priority scores, unless they have
been removed from consideration (pruned) by the bounding mech-
anism. When the whole tree has been explored or pruned, one of the
PP nodes with the smallest number of flips away from I yields the
answer.

For matrix X, we let RX
a;bðp; qÞ denote the set of rows with a in

column p and b in column q, i.e. RX
a;bðp; qÞ ¼ fi jXði; pÞ ¼

a ^Xði;qÞ ¼ bg. We drop the superscript, when the matrix X is
clear from the context, and only write Ra;bðp; qÞ.

3.1 Branching
Let X be the matrix at the node being explored. If X has no viola-
tion, it is considered a leaf. Otherwise, let (p, q) be the pair of col-
umns for one particular violation that was found (If there are
multiple pairs of columns involved in violations we impose an order-
ing on them and pick a pair according to this order; thus, we are al-
ways considering a single column pair.), i.e. jRa;bðp; qÞj > 0 for all
ða; bÞ 2 fð0;1Þ; ð1;0Þ; ð1;1Þg: We have two options for fixing the
violation. As a violation involving columns p, q contains both a (1,
0) and a (0, 1) in different rows, we have the option of converting ei-
ther one to a (1, 1) to remove the violation. To reflect this, we con-
struct two child nodes from the current node, one for each option.
As an added optimization, once we decide to fix a (0, 1) [resp. (1,
0)] on columns p, q, we fix all (0, 1) [resp. (1, 0)] on these two col-
umns, by changing them to (1, 1). In particular, in the left child, all
entries whose row is in R0;1ðp; qÞ and whose column is p are flipped
from 0 to 1. Similarly, in the right child entries whose row is in
R1;0ðp; qÞ and whose column is q are flipped.

In some cases, the above branching rule, which can flip multiple
0 s at a time, shrinks the height of the search tree compared to the al-
gorithm in Chen et al. (2006) and Cai (1996), which flips a single 0
in a child node. The following lemma formally expresses why we
flip several entries in a column together at Lines 8 and 11 of the
pseudocode: if a (0, 1) in a violation involving columns p, q of ma-
trix X is a (1, 1) in a PP descendant X0 of X, all other (0, 1) on (p, q)
are (1, 1) as well. An analogous statement holds for (1, 0).

Lemma 3.1 For any X 2 f0; 1gn�m with a violation involving columns

p, q, let X0 be any PP descendant of X. Then, at least one of the follow-

ing holds:

• 8r1 2 R0;1ðp; qÞ;X0ðr1; pÞ ¼ 1; or
• 8r2 2 R1;0ðp; qÞ;X0ðr2; qÞ ¼ 1.

Proof. Assume that the lemma is false; i.e. there is an X0 such that

9r1 2 R0;1ðp; qÞ; X0ðr1; pÞ ¼ 0 ^ 9r2 2 R1;0ðp;qÞ; X0ðr2; qÞ ¼ 0.

Since (p, q) corresponds to a violation and all the 1 entries in X
have to remain 1 in X0, there should be a row r3 such that
X0ðr3;pÞ ¼ X0ðr3; qÞ ¼ 1. This implies that the pair of columns (p, q)
and the triplet of rows ðr1; r2; r3Þ corresponds to a violation. This
contradicts the assumption that X0 is PP. h

3.2 Bounding mechanisms
A bounding algorithm is a method that computes a lower bound for
the number of flips needed to transform matrix X at a node v to a
PP matrix. It thus helps the BnB algorithm to prune the nodes that
are provably worse than the currently maintained best node, i.e. the
variable Best_Node in Algorithm PhISCS-BnB.

We reuse the calculated lower bound as the estimate of how
many flips a matrix X will require to transform into a PP matrix,
and then add the number of flips needed to transfer I to X, in order
to set the priority score of the node containing X. Recall that all the
introduced nodes are pushed to a priority queue, and in each iter-
ation the node with the lowest priority score is chosen to be

explored. So, the node X we pick will represent the lowest number
of total flips from I to a PP node going through X.

One observation that leads to a lower bound is as follows.
Consider a pair of columns that have at least one row with pattern
(1, 1), then the number of flips, involving columns p and q, is at least
min(jR0;1ðp; qÞj; jR1;0ðp;qÞj). Therefore, for an arbitrary partitioning
of the set of columns to pairs, we can aggregate these bounds to
achieve a lower bound for the whole matrix.

In the above, one would expect the choice of the partition to
have an impact on the quality of the lower bound estimate. To ex-
plore this, in what follows, we present three bounding algorithms
that progressively add more sophistication to the above idea. These
three bounding algorithms offer a tradeoff between the per-node
running time and the accuracy of the bound. For some inputs, the
fast (and possibly not-so accurate) bounding results in a faster exe-
cution, but for other inputs a different tradeoff is better. It is worth
mentioning that for biologically plausible inputs, our experiments
show that the higher accuracy of bounding is much more important
to total time than the per-node running time. We present first two
bounding algorithms in Section 3.2.1. The third and the most
sophisticated one is presented in Section 3.2.2 and is used in our
experiments to compare with previous tools in the literature.

3.2.1 Random partition versus maximum weighted matching

As our first bounding method, we partition the columns of the ma-
trix into pairs uniformly at random. The technique is simple, but
more sophisticated techniques might give tighter bounds.

As our second method, we describe a method based on max-
imum weighted matching (MWM). Construct a weighted undirected
graph G ¼ ðV;E;wÞ where the vertices are the columns of I, each
column representing a mutation: V ¼ fc1; . . . cmg (ci corresponds to

Algorithm 1 PhISCS-BnB

Input: I 2 f0; 1gn�m: Original input to the algorithm

Output: Y 2 f0; 1gn�m such that

Y ¼ argminPPðyÞ
F0!1ðI;YÞ.

1: BestNode  A simple PP solution (see Section 3.3)

2: Q An empty priority queue

3: Push I in Q

4: while Q is not empty do

5: C  pop next node from Q with the lowest priority

score

6: Newnode1
 C

7: for r 2 R0;1ðp; qÞ do " See Lemma 3.1

8: Newnode1
ðr; pÞ  1 " F0!1ðI;Newnode1Þ is also

updated here

9: Newnode2
 C

10: for r 2 R1;0ðp; qÞ do

11: Newnode2
ðr;qÞ  1

12: for i 2 f1; 2g do

13: if Newnodei
is a PP then " i.e. Newnodei

is a leaf

14: if F0!1ðI;NewnodeiÞ < F0!1ðI;BestNodeÞ then

15: BestNode Newnodei

16: else " Use any bounding algorithm proposed in

Section 3.2

17: lb A lower bound for the number of flips to get

to a PP matrix from Newnodei

18: if lbþ F0!1ðI;NewnodeiÞ < F0!1ðI;BestNodeÞ
then

19: Push Newnodei in Q with priority score set to

lbþ F0!1ðI;NewnodeiÞ
20: Return BestNode

PhISCS-BnB i171

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_1/i169/5870466 by guest on 23 April 2024



i-th mutation) and the edges are column pairs that display a (1, 1):
E ¼ ffci; cjg j jR1;1ðci; cjÞj > 0g. In the following, we calculate a
weight corresponding to an edge e ¼ fci; cjg 2 E, to be a lower
bound on the number of entries in columns ci and cj that have to be
flipped to make I a PP matrix. Formally, for each edge
e ¼ fci; cjg 2 E; wðeÞ ¼ minðjR0;1ðci; cjÞj; jR1;0ðci; cjÞjÞ. The process
of constructing G takes Hðnm2Þ time. In this graph theoretic formu-
lation, each partitioning corresponds to a matching G. Thus, we
take advantage of the algorithm described in Galil (1986) to find
MWM with Oðm3Þ running time.

In both bounding algorithms, one can maintain the bounds dy-
namically by processing only small changes from one node to an-
other node near it (in some cases, to its sibling). The details of such
dynamic maintenance are out of the scope of this work.

3.2.2 2-SAT

For this approach, we present a novel constraint satisfaction formu-
lation that describes a set, containing but not necessarily equal to,
all the valid flips-set corresponding to I. Let zi;j denote a binary vari-
able corresponding to the (i, j)-th entry. We define variables for only
zero entries. Consider a pair of columns (p, q) with jR1;1ðp; qÞj > 0.
For any row r1 2 R0;1ðp; qÞ and any row r2 2 R1;0ðp; qÞ add
zr1 ;p _ zr2 ;q. The intuition is that for any violation sextuplet, either
one of zeros should be flipped. Satisfying these constraints is neces-
sary to achieve a PP matrix, but not sufficient.

Let MWS (short for minimum weighted SAT) denote an arbi-
trary off-the-shelf tool that, given a satisfiable Boolean formula, out-
puts a satisfying assignment with the minimum number of variables
assigned to true. Then the number of variables with true value in an
optimal assignment, satisfying all these constraints, is a lower bound
for the optimal number of flips resulting in a PP matrix. Formally,
the lower bound is equal to

MWS
^

p; q 2 ½m� : p < q
r1; r2 : r1 2 R0;1ðp;qÞ ^ r2 2 R1;0ðp;qÞ

zr1 ;p _ zr2 ;q

0
@

1
A: (1)

After achieving a minimum weight satisfying assignment, we flip
those zero entries that correspond to z variables with value 1.

Compact formulation. The formulation in Equation (1) can be
expressed in fewer constraints by introducing a new set of variables
and following the case distinction in Lemma 3.1: for each pair of
columns p, q define a corresponding binary variable Bp;q. The
weight of this new set of variables is set to zero in MWS formula-
tion. If this variable is set to zero (by an MWS routine) then all vari-
ables zr1 ;p; r1 2 R0;1ðp;qÞ, take value 1. Similarly, if the variable is
set to one, then all zr2 ;q; r2 2 R1;0ðp;qÞ take value 1. Formally, the
formulation changes to MWSðH1 ^H2Þ, where

H1 ¼
^

p; q 2 ½m� : p < q
r1 : r1 2 R0;1ðp;qÞ

ðBp;q _ zr1 ;pÞ

H2 ¼
^

p; q 2 ½m� : p < q
r2 : r2 2 R1;0ðp;qÞ

ðBp;q _ zr2 ;qÞ:
(2)

The number of constraints corresponding to the column pair
(p, q) will decrease from jR0;1ðp; qÞj � jR1;0ðp; qÞj in Equation (1) to
jR0;1ðp; qÞj þ jR1;0ðp; qÞj in Equation (2). There are two advantages
to the compact formulation: (i) the time spent on forming the set of
constraints is shorter, (ii) for some set of inputs, heuristic sat-solvers
run more efficiently on the formulation given in Equation (2) than
on Equation (1), even though they are logically equivalent. In each
experiment, we use only one of these formulations and it is specified
in the corresponding description of the experiment.

Extra constraints. As another version of our lower bound, we
add a set of new constraints. These constraints improve the lower
bound to be a closer estimate of the optimal number of flips for
some inputs. The tighter bound helps the BnB framework explore
fewer nodes, even though the time to compute the bound per node
increases. This advantage comes with a dip in the running time of
the bounding calculation within each node.

The idea for the new set of constraints is to preclude some solu-
tions that satisfy all constraints in Equation (1) but still do not re-
move all violations. In particular, when, for a specific pair of
columns (p, q), R1;1ðp;qÞ is empty, there is no constraint involving
pair (p, q) in Equation (1). As an example, assume columns 1, 2 con-
tain both (1, 0) and (0, 1) rows, but no (1, 1). Columns 2, 3 contain
a violation, which MWS removes by flipping 0 s in column 2. This
might create a (1, 1) in columns 1, 2, and create a violation that was
not there in the beginning. Since, Equation (1) does not contain any
constraints for columns 1, 2, this new violation is not removed.

In order to avoid such an outcome, we add new constraints to
our formulation. Now, if some flip introduces a new violation, the
extra constraints will enforce at least one additional flip to remove
the newly created violation(s). Formally, the proposed set of con-
straints to add to Equation (1) is E1 ^ E2, where

E1 ¼
^

p;q 2 ½m� : p < q
r1; r2; r3 :

r1; r3 2 R0;1ðp;qÞ ^ r1 6¼ r3

^ r2 2 R1;0ðp;qÞ

zr1 ;p _ zr2 ;q _ zr3 ;p

0
BBB@

1
CCCA

E2 ¼
^

p;q 2 ½m� : p < q
r1; r2; r3 : r1 2 R0;1ðp;qÞ

^ r2; r3 2 R1;0ðp;qÞ ^ r2 6¼ r3

zr1 ;p _ zr2 ;q _ zr3 ;q

0
B@

1
CA
:

(3)

The number of constraints corresponding to columns (p, q) is
jR0;1ðp; qÞj � jR1;0ðp;qÞj � ðjR0;1ðp; qÞj þ jR1;0ðp;qÞjÞ. This is higher
than the number of constraints in both Equations (1) and (2).
However, for some matrices (e.g. the one processed in Section 4.1)
the resulting tighter bound improves the running time of overall BnB
algorithm tremendously.

3.3 Initial solution
For the above bounding mechanism to start pruning, a feasible solu-
tion is required to initialize the variable BestNode at pseudocode line
1. When using random partition or MWM as a bounding algorithm,
find an initial value as follows. We first find a pair of columns corre-
sponding to a violation and flip one of the zero entries involved in
the violation. We repeat this until no violation is left. On the other
hand, when 2-SAT bounding is used, we solve the corresponding
formulation from Equations (1), (2) or (3). We then apply the
chosen entries to flip and repeat this process until we obtain a PP
matrix. In each iteration, at least one flip will be performed and
there are finitely many zero entries to flip. Therefore, this process al-
ways terminates and results in a PP matrix.

3.4 Analysis
Correctness. In the search tree explored by the BnB algorithm, we
are guaranteed to find the optimum path from I to a PP matrix. This
is because throughout the execution (a lower bound on) the pro-
jected number of flips that a node needs to reach PP is compared
against the currently best-known way of reaching PP. If the node has
no chance of beating the current best, it and all of its descendants
are pruned. Consequently, PhISCS-BnB does not prune any nodes
on the path to an optimum solution before reaching an optimum so-
lution for the first time. Therefore, as long as our lower bounding
techniques work correctly, our algorithm will discover an optimum
PP.

In both the random partition and MWM techniques for obtain-
ing a lower bound, we consider a partitioning of columns to pairs
and calculate the minimum number of flips within each pair. Since
the absence of violations within these pairs is necessary (but possibly
not sufficient) for the removal of all violations, this estimate is a
lower bound for the whole matrix.

In the 2-SAT approach, we form a set of constraints that must be
satisfied in order to reach any PP descendant of a given node. That
means the set of potential solutions obtained by satisfying all the
constraints in the 2-SAT formulation is a superset of all PP matrices.
That is why the optimum solution satisfying these conditions
requires the same number of or fewer flips than any PP matrix.
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Running time. The worst-case running time of Algorithm
PhISCS-BnB is Oð2copt � TÞ where copt is the minimum number of
flips needed to turn I to a PP matrix, and T is the running time of
the bounding algorithm. The term 2copt is an upper bound on the
number of explored nodes, since PhISCS-BnB never explores a node
with a priority score higher than copt. A naive bounding algorithm,
as in Chen et al. (2006) and Cai (1996), incurs a running time of
T ¼ OðmnÞ. This is asymptotically the same as the running time for
our random partition technique. Similarly, MWM runs in time
T ¼ Oðnm2 þm3Þ: the first term is for forming the weighted graph,
and the second term is for solving MWM. Solving the 2-SAT formu-
lation takes super-polynomial time in the worst case as the weighted
2-SAT problem is NP-hard. While one might expect infeasibly long
running times due to the hardness of 2-SAT, our experiments gener-
ally seemed to avoid worst-case behavior as the running times stayed
mostly reasonable even for large matrices.

4 Experimental results

In this section, we discuss our experimental results on real data and
simulations.

4.1 SCC data from mouse melanoma model
We first demonstrate the utility of PhISCS-BnB in studying evolu-
tionary history on a real dataset harboring a large number of somat-
ic mutations. This dataset was recently published in Wolf et al.
(2019), where the effect of the extent of ITH on the immune re-
sponse in melanoma was studied. In total, 20 single-cell clones
(SCCs), denoted as C3, C4,. . ., C22, were derived from parental
mouse melanoma B2905 cell line and bulk whole exome sequenced
at the mean depth of 100�. [See Wolf et al. (2019) for additional
details.]

After read alignment, calling and filtering the variants in all 20
SCCs, 2367 distinct SNVs were identified to be in at least one SCC.
Importantly, the distribution of mutational variant allele frequencies
revealed that many SCCs in the original dataset were comprised a
mixture of one major and one or more minor subclonal populations.
In order to obtain genotypes reflecting true single-cell data to be
used as an input to PhISCS-BnB, we considered only those variants
whose SCC specific overall read coverage is at least 20� and whose
variant allele frequency is at least 40% as present in that SCC. All
other entries in the genotype of the SCC were set to 0. Even though
a stringent threshold on minimum variant allele frequency used in
this genotype calling strategy can result in a number of false negative
mutation calls, PhISCS-BnB was observed to successfully correct for
this type of noise. (The empirical false negative rate reported by
PhISCS-BnB was �8% due to stringent thresholding we applied on
read coverage and variant allele frequency.)

The tree inferred in the original study (shown in the right part of
Fig. 1) was derived by the use of non-private mutations only (i.e.
mutations present in at least two SCCs) through clustering by the
SciClone tool (Miller et al., 2014), followed by manual post-
processing and filtering of some of the reported clusters and finally
phylogenetic tree was inferred by the use of ClonEvol (Dang et al.,
2017), a tool that treats each SCC as a mixture of cell populations
and aims to heuristically build a single joint tumor phylogeny.

In order to facilitate a fair and natural comparison of the results
by PhISCS-BnB to those in the original study, we first excluded all
private mutations. The phylogeny reported by PhISCS-BnB on the
remaining set of 1225 non-private SNVs is shown in the left part of
Figure 1. As can be seen PhISCS-BnB inferred phylogeny generally
agrees with that of the original study but is much more detailed with
specific positions for mutations and cells in the tree topology.
Furthermore, PhISCS-BnB suggests subtle but important differences,
e.g. with respect to the placement of (i) clones C8 and C11 with re-
spect to C4 and C16, (ii) clone C13 with respect to C21 and C22 as
well as C12 and C18 and (iii) clones C9 and C17 on the trunk of
tree. A more detailed depiction of the tumor phylogeny with muta-
tion assignments for the chromosomes of each clone (marked blue)
as well as PhISCS-BnB corrected false negative mutations (marked

red) can be found in Supplementary Figure S5. As can be seen, the
mutations in C9 form a subset of those in C17, which in turn is a
subset of the mutations of their inferred descendants C7 and C15.
Neither C9 nor C17 required many false negative corrections to be
placed in the trunk. Similar observations can be made for other
modifications suggested by PhISCS-BnB increasing our confidence
with respect to the resulting tree topology.

In a second step, we built a more detailed phylogeny by including
all 2367 mutations—as can be seen in Supplementary Figure S4. As
expected, the tree constructed by PhISCS-BnB over the complete set
of mutations is topologically equivalent to that presented in Figure 1
for the non-private mutations.

On NCI’s Biowulf cluster PhISCS-BnB was able to compute the
phylogeny for the complete set of mutations in <4 h and that for the
non-private mutations in <2 h (specifics of the Biowulf cluster can
be found in Supplementary Section B2). For performance compari-
son purposes, we also ran (to the best of our knowledge) the fastest
available algorithmic tool, PhISCS-B (Malikic et al., 2019b) on this
dataset; PhISCS-B required >24 h to compute the same tree.

4.2 Comparison of PhISCS-BnB against PhISCS-B and

PhISCS-I on simulated data
Next, we compared the running time of PhISCS-BnB on simulated
data against the fastest available algorithmic tool, PhISCS (Malikic
et al., 2019b), which offers two variants: PhISCS-B is based on a
CSP whereas PhISCS-I is based on ILP. Both were compared to
PhISCS-BnB on simulated SCS data with 100–300 cells and 100–
300 mutations, with false negative error rates ranging from 5% to
20%. In each case, 10 distinct trees of tumor evolution were simu-
lated, each with 10 subclones. We allowed all three programs to run
up to 8 h on each simulated dataset (details of the computational
platform we used can be found in Supplementary Section B1).
Figure 2 clearly shows that PhISCS-BnB is faster than the best avail-
able alternative (i.e. PhISCS-B) by a factor of 10–100. (Note that we

Fig. 1. The clustering and implied tree on the right is from Wolf et al. (2019) and

was obtained by ClonEvol (Dang et al., 2017) after the set of non-private mutations

in 20 clonal sublineages of the B2905 cell line, derived from a mouse melanoma

model, was manually filtered and clustered. The phylogeny on the left was obtained

by PhISCS-BnB on the same set of mutations without manual processing. In each

node of the PhISCS-BnB derived tree, the number inside the square brackets denotes

the node id whereas the number inside the parentheses denotes the total number of

mutations occurring on the path from the germline (root) to that node (i.e. the total

number of mutations harbored by the node). Each edge is labeled with the number

of mutations occurring between the associated parent and child nodes. The com-

plete list of mutations occurring at each edge can be found at here. The nodes that

are colored blue correspond to actual clonal sublineages whose labels are given in

bold letters
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used the compact formulation that is mentioned in Section 3.2.2 to
run PhISCS-BnB on the simulated data but not on real data.)

4.3 Comparison of PhISCS-BnB against SCITE on

simulated data
In a final experiment, we compared PhISCS-BnB against one of the
best-known tools for tumor phylogeny reconstruction, SCITE (Jahn
et al., 2016), this time with respect to accuracy. As mentioned ear-
lier, SCITE is based on MCMC and as such requires the user to spe-
cify the number of iterations, thus indirectly its running time. (The
approximation of the time that SCITE takes per iteration for a given
input matrix was calculated by running it 10 times, each with
20 000 iterations with 1 restart and then taking the average running
time per iteration in this set of runs.) As input data, we simulated
tumor phylogenies, each with 100–300 cells and 100–300 muta-
tions, with false negative error rates ranging from 5% to 20%. In
each case, 10 distinct trees of tumor evolution were generated, each
with 10 subclones. We allowed SCITE to run with three restarts,
each with a running time (the number of iterations allowed was cal-
culated by dividing this time with the average time per iteration we
calculate) 10 times that of PhISCS-BnB on the same input (again,
details of the computational platform we used can be found in

Supplementary Section B1) giving a significant advantage to SCITE
over PhISCS-BnB.

For computing the accuracy of the inferred tumor phylogenies in
comparison to the ground truth, we first used the multi-labeled tree
similarity measure (MLTSM) (Karpov et al., 2019) introduced re-
cently. Since MLTSM is a normalized similarity measure, the closer
its value to 1.0 implies a higher level of similarity between the
inferred tree and the ground truth. The MTLSM between the ground
truth trees and the inferred trees is presented in Figure 3. As can be
expected, since PhISCS-BnB constructs the optimal tree, the similar-
ity of its output to the ground truth is �1:0 for all datasets. On the
other hand, even though SCITE was given significantly more run-
ning time than required by PhISCS-BnB, its output has a relatively
low similarity to the ground truth (in the range of ½0:2; 0:6�).

We have additionally compared the trees obtained by SCITE to
those by PhISCS-BnB with respect to a number of commonly used
measures of similarity to the ground truth—definitions given in e.g.
Malikic et al. (2019a); see Supplementary Section D1 for detailed
results. As can be seen, with respect to every measure and in every
setting PhISCS-BnB offers on-par or superior performance in the
given time limit. Note that we have also let SCITE to run for (ap-
proximately) 24 h to evaluate its full capability when the time limits
are relaxed. As can be seen in Supplementary Section D4, SCITE can

Fig. 2. Comparison of PhISCS-BnB with PhISCS-B and PhISCS-I in terms of running time (seconds) in log base 10. In each case, 10 distinct trees of tumor evolution were gener-

ated, each with 10 subclones. A time limit of 8 h was used for running each tool (those cases that exceed the time limit are not represented here). In the plot, n, m and fn, re-

spectively, denote the number of cells, the number of mutations and the false negative error rate

Fig. 3. Comparison of PhISCS-BnB with SCITE with respect to the MLTSM (Karpov et al., 2019). For each panel, 10 distinct trees of tumor evolution were generated, each

with 10 subclones. In the plot, n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative error rate
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then produce trees similar to the ground truth as per PhISCS-BnB.
Finally, we compared PhISCS-BnB and SCITE when it was allowed
to restart 3 times in two separate experiments; in the first one, we
upper bounded the running time with a 1 h time limit—in the second
one, we bounded the number of iterations to 1 million. The results
can be found in Supplementary Sections D2 and D3, respectively. As
can be seen SCITE does not perform well on larger data on any of
the above settings.

As a final step, we have assessed the robustness of PhISCS-BnB
on simulated data with non-zero false positive rates. Details of these
simulations and the resulting performance of PhISCS-BnB can be
found in Supplementary Section D5.

5 Conclusions

We presented new algorithms and based on them a software pack-
age, PhISCS-BnB, to solve the PP problem on noisy single-cell (muta-
tion) sequencing data from tumors. On both simulated data and real
data from mouse melanoma cell lines, we showed that PhISCS-BnB
is one to two orders of magnitude faster than the best available
methods, and can solve large instances of practical importance to
optimality.

PhISCS-BnB is a BnB method, employing a variety of bounding
techniques that use either state-of-the-art solvers for classical NP-
hard problems such as max-SAT or polynomial time algorithms for
2-SAT and MWM, to prune efficiently and effectively the search
tree of solutions. In theoretical computer science, different NP-
complete problems are presented as equivalent and reducible to one
another (in polynomial time) (Cormen et al., 2009). However, the
disproportionate practical importance of a few NP-complete prob-
lems, such as max-SAT and the Traveling Salesperson Problem
(TSP) (Applegate et al., 2006), has led to high-quality software that
can solve instances of these NP-complete problems efficiently and to
optimality. Therefore, efficient reduction of an NP-complete prob-
lem (such as PP) to max-SAT or TSP can leverage existing software
to solve the problem much more efficiently. Even if the reduction
does not preserve solutions (as per our reductions to 2-SAT or
MWM problems), but only gives a bound on solution costs, the re-
duction can be used within a BnB framework, as we have done in
PhISCS-BnB. This paradigm is widely applicable in bioinformatics
in which domain-specific NP-complete problems abound (Gusfield,
2019).

Better understanding of SCS data may lead to better treatments
or better strategies for drug development. In current treatment strat-
egies, mutation sequencing data are presented to tumor boards to
decide the course of treatment (Mueller et al., 2019). In that clinical
context, the rapid availability of phylogenetic trees to identify the
tumor subclones could inform treatment. Hence, improving the effi-
ciency of phylogenetic analysis of tumor data, as we have done in
PhISCS-BnB, could have a direct impact on clinical treatment
decisions.
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