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Abstract

Motivation: In this work we present REINDEER, a novel computational method that performs indexing of sequences
and records their abundances across a collection of datasets. To the best of our knowledge, other indexing methods
have so far been unable to record abundances efficiently across large datasets.

Results: We used REINDEER to index the abundances of sequences within 2585 human RNA-seq experiments in
45 h using only 56 GB of RAM. This makes REINDEER the first method able to record abundances at the scale of �4
billion distinct k-mers across 2585 datasets. REINDEER also supports exact presence/absence queries of k-mers.
Briefly, REINDEER constructs the compacted de Bruijn graph of each dataset, then conceptually merges those de
Bruijn graphs into a single global one. Then, REINDEER constructs and indexes monotigs, which in a nutshell are
groups of k-mers of similar abundances.

Availability and implementation: https://github.com/kamimrcht/REINDEER.

Contact: camille.marchet@univ-lille.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

An overwhelming amount of sequencing data is now publicly avail-
able in repositories such as the European Nucleotide Archive (ENA)
(Amid et al., 2020) and the Sequence Read Archive (SRA) (Leinonen
et al., 2011). They contain a wealth of nucleic sequencing experi-
ments on model and non-model species, tumor biopsies, cell lines,
metagenomes. Searching within them, in a holistic setting, would
open the tantalizing possibility of making scientific discoveries using
world-scale biological data. However, the immense size of these
repositories renders any large-scale investigation extremely difficult.
SRA hosts around 30 petabases of experiments at the time of writ-
ing. Not only is searching within this mass of data impractical, but
also merely downloading a copy of ENA or SRA would take in the
order of years. Thus, there is a pressing need for solutions that, pos-
sibly using a centralized server, would provide search functionality
across these databases.

We use the term dataset to refer to a set of reads resulting from
sequencing an individual sample. Searching for a sequence within a
single assembled genome [e.g. with BWA-MEM (Li, 2013)] or with-
in a single dataset [e.g. with BEETL (Janin et al., 2014) or SRA-
BLAST (Camacho et al., 2009)] is now routine and can be consid-
ered to be a well-managed computational problem. Since two deca-
des, searching within collections of assembled genomes [e.g. with
BLAST (Altschul et al., 1990) or DIAMOND (Buchfink et al.,
2015)] is equally practical. However, searching for sequences within
collections of (unassembled) datasets is still extremely challenging,

and under very active computational investigation (Marchet et al.,
2019a). Examples of recent works are HowDeSBT (Harris and
Medvedev, 2018), Mantis (Pandey et al., 2018), SeqOthello (Yu
et al., 2018) and BIGSI (Bradley et al., 2019). They introduced novel
k-mer (substrings of size k in biological sequences) data structures,
showing that k-mer searches are a useful proxy for exact and ap-
proximate sequence search. In a nutshell, state of the art methods
are able to determine the presence/absence of any k-mer within col-
lections containing up to around 104 indexed datasets. Any longer
sequence such as a gene or a transcript can be queried through its
constituent k-mers. To the best of our knowledge, no method is cur-
rently able to record abundances of k-mers across collections at this
scale.

While nearly all recent works on indexing datasets have focused
on recording the presence/absence of k-mers, in this work we focus
on the more space-expensive matter of indexing their counts, i.e.
how many times is a k-mer present within each dataset. Foremost,
large-scale efforts for indexing abundances in transcriptome collec-
tions are currently ongoing. For example the GTEx project
(Lonsdale et al., 2013) hosts a database of transcript-level abundan-
ces across 17k tissue samples (as of January 2020). Pan-cancer stud-
ies such as TCGA (Tomczak et al., 2015) collect the expression of
genes, exons, miRNAs, as well as genomic copy-numbers. Those sig-
nals are usually recorded at the level of genes or comparatively long
genomic regions, yet they would further benefit from nucleotide-
level resolution, for example to investigate SNPs and splice junc-
tions. Secondly, metagenomic sequencing is providing a widening
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window onto the diversity of life on earth. Comparing abundances
of contigs, SNPs or species across different metagenomic datasets is
a vital step in understanding how community composition varies
with context. Thirdly, sequencing now increasingly provides coun-
ters or sensors for events: this progression can be seen from CHIP-
seq, ATAC-seq, through to single-cell RNA sequencing—after which
counts are modelled based on the precise experiment.

We also highlight that merely adapting existing data structures
by transforming the 1-bit presence/absence information into a (e.g.
16-bit) counter is unlikely to be a viable strategy. For instance, con-
sider the HowDeSBT data structure (Harris and Medvedev, 2018), a
recent technique for indexing the presence/absence of k-mers across
dataset collections. It saves space by using a single memory location
to encode the presence of a k-mer across multiple datasets. Yet this
scheme cannot be adapted to record abundances, as a k-mer may be
present in multiple datasets at different abundances, which cannot
all be recorded by a single memory location. Likewise, BIGSI
(Bradley et al., 2019) uses Bloom filters with 25% false positive rate
to encode presence/absence of k-mers; extending Bloom filters to
support abundance queries (e.g. using Count-Min sketches) at a
comparable false positive rate would possibly introduce significant
abundance estimation errors.

Here, we introduce REINDEER (REad Index for abuNDancE
quERy), a novel computational method that performs indexing of
k-mers and records their counts across a collection of datasets.
REINDEER uses a combination of several concepts. The first nov-
elty is to associate k-mers to their counts within datasets, instead of
only recording the presence/absence of k-mers as is nearly universal-
ly done in previous works. To achieve this, a second novelty is the
introduction of monotigs, which allows space-efficient grouping of
k-mers having similar count profiles across datasets. An additional
contribution is a set of techniques to further save space: discret-
ization and compression of counts, on-disk row de-duplication al-
gorithm of the count matrix. As a proof of concept, in this article
we apply REINDEER to index a de facto benchmark collection of
2585 human RNA-seq datasets, and provide relevant performance
metrics. We further illustrate its utility by showing the results of
queries on four oncogenes and three tumor suppressor genes within
this collection.

2 Problem statement

The questions addressed by REINDEER can be formally framed as
follows. Let S be a nucleic sequence of arbitrary length (such as a
gene, a transcript or a shorter sequence), and C a collection of data-
sets. The aims are, for each dataset in C, to either (a) determine the
presence of S or (b) count the number of occurrences of S. In its sim-
plest form, aim (a) amounts to returning the subset of datasets in
which S appears.

In a seminal work, Solomon and Kingsford (2016) slightly
reformulated aim (a) to facilitate its resolution. Considering the set
Q of all k-mers extracted from S, they propose to instead deter-
mine the subset of datasets in which at least t k-mers of Q appear,
with 0 < t � jQ�. This is not strictly equivalent to computing the
(exact or approximate) match of S within datasets. In this new for-
mulation k-mers from Q may also be found in different sequences
across a dataset, e.g. if ACT and CTG are two k-mers seen in two
different reads, sequence ACTG is assumed to be present in the
dataset regardless of whether it is actually part of a read. Yet this
reformulation can be considered as a reasonable approximation.
Thus, in this work, we propose a low-footprint index, based on k-
mer counts, for efficiently supporting (a) and (b) queries and more
concretely:

1. Assess S’s count in datasets. Estimate the abundance of S in

each dataset by reporting the mean count of all k-mers from Q

that are (exactly) present in the dataset.

2. Assess S’s presence in datasets. Output a list of datasets in

which at least t k-mers from Q appear.

Supporting queries of type 1 will be the main improvement pro-
posed by this work compared to the state-of-the-art. In the rest of
the manuscript, we will only focus on solving type 1 queries. For
queries of type 2 the same principles will apply, as they can be
derived from queries of type 1: S is considered to be present if and
only if it has non-zero abundance.

3 Preliminaries

3.1 de Bruijn graphs and associated concepts
In this section, we recall the concepts of de Bruijn graphs, unitigs
and compacted de Bruijn graphs. We further describe two recent
concepts: spectrum-preserving string sets (Rahman and
Medvedev, 2020) and the BLight indexing scheme (Marchet
et al., 2019b).

A set of reads R (also called dataset) is a set of finite strings over
the alphabet fA, C, G, Tg. We will consider all the strings of length
k (called k-mers) present in R, for some fixed value of k>0. For
simplicity of presentation, strings are 1-indexed and reverse-
complements are omitted from the definitions, but they are taken
into account in the canonical way in the software: each k-mer is rep-
resented by the lexicographically smallest of the forward string and
reverse-complemented string.

Definition 1 de Bruijn graph (DBG). The de Bruijn graph is a directed

graph GkðRÞ ¼ ðV;EÞ where V is the set of k-mers that appear in R, and

for u; v 2 V; ðu; vÞ 2 E if and only if u½2; k� ¼ v½1; k� 1�.

Importantly, this definition of the Bruijn graphs is node-centric
(Chikhi et al., 2019), i.e. the set of edges can be inferred given the
nodes. A node-centric de Bruijn graph contains the same informa-
tion as a k-mer set.

We call unipath in Gk a maximal-length sequence of distinct
nodes s ¼ u0; . . . ; un such that, for each 0 � i � n� 1; ðui; uiþ1Þ
2 E; in and out-degrees are equal to 1 for each uj such that
1 � j � n� 1; if n>1 the out-degree of u0 is 1; if n>1 the in-
degree of un is 1. Singleton k-mers are also unipaths. Intuitively, a
unipath is a maximal-length linear portion of the DBG.

Definition 2 Unitig. The string corresponding to a unipath s ¼ u0; . . . un

can be defined by concatenating u0 with all the ui½k� (the kth letter of ui),

in order, for 0 < i � n. The resulting string of length kþ n is called a

unitig.

Definition 3 Compacted de Bruijn graph. The directed graph where

nodes are unitigs, and edges correspond to ðk� 1Þ-overlaps between

two nodes sequences, is called a compacted de Bruijn graph.

Contrary to a regular DBG, a compacted DBG has nodes of vari-
ous lengths (� k). In the following, unless explicitly mentioned, the
objects referred to as ‘de Bruijn graphs’ are compacted de Bruijn
graphs. Even though compacted DBGs are technically not DBGs,
they do equivalently represent the same k-mer set. Each k-mer has a
count corresponding to the number of times it appears in the reads
of a dataset, which can be obtained using a k-mer counter (Kokot
et al., 2017).

Definition 4 Unitig abundance. We call the unitig abundance c(u):

cðuÞ ¼ 1

n

Xn

i¼1

countðkiÞ

for k1; ::; kn the k-mers of the unitig u of length nþ k� 1.

Definition 5 Union de Bruijn graph. Given a collections of de Bruijn

graphs fG1
k; . . . ;Gc

kg, we call union de Bruijn graph the de Bruijn graph

which has a node set equal to the union of the nodes set of

fG1
k; . . . ;Gc

kg, and edges correspond to ðk� 1Þ-overlaps between k-mers

of the node set.
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It follows that a union DBG also represents a k-mer set (the union
of c k-mer sets). We now recall the recent concept of spectrum-
preserving string sets (Rahman and Medvedev, 2020) to draw new
bridges between previous works, and also with our contribution.

Definition 6 Spectrum-preserving string set (SPSS) (Rahman and

Medvedev, 2020). Given a multiset of k-mers X, a set of strings S of

length � k is a SPSS representation of X if the multiset of all k-mers

from S is exactly X.

In particular, a SPSS can be used to represent the node set of a
DBG. In such case, the SPSS represents a set (i.e. a multiset with no
duplicates) as all k-mers are distinct. Unless explicitly noted, we will
further consider in the rest of the article that all SPSSs represent sets
and not multisets.

Given a set of k-mers X, the trivial set of all k-mer strings of X is
itself a SPSS of X, albeit not a very space-efficient one. The set of
unitigs constructed from X is also of SPSS of X. We will discuss
more types of SPSSs below.

3.2 Spectrum-preserving string sets in relation to k-mer

indexing
One of the fastest and most space-efficient techniques available to
index and associate information to k-mers is BLight (Marchet et al.,
2019b), a hash table scheme tailored to large sets of k-mers. Given a
collection of datasets, the input data given to BLight is a SPSS of the
k-mers from the union de Bruijn graph of this collection. In its inner
steps, BLight relies on a particular type of SPSS, where in each se-
quence of the SPSS all k-mers need to have the same minimizer.

Definition 7 Minimizer (Roberts et al., 2004). The m-minimizer of a se-

quence S is the smallest substring of size m in S, according to some

ordering.

Here, m-minimizers are computed on k-mers, hence m<k, and
the order on m-mers is given by a hash function (i.e. not the lexico-
graphic order).

Definition 8 BLight indexing scheme (Marchet et al., 2019b). Given a

set of k-mers X, let S be a SPSS of X such that in each string s 2 S, all k-

mers in s have the same m-minimizer. Then BLight uses S to compute a

static, collision-free hash table where the set of keys is X.

In the original BLight article, the SPSS of X is the set of all the
super-k-mers found in the unitigs, as defined below.

Definition 9 Super-k-mer (Kokot et al., 2017). Given a sequence x, a

super-k-mer is a substring of x of maximal length such that all k-mers

within that substring have the same m-minimizer sequence.

Observation 1 Given a set of k-mers X, the set of all super-k-mers con-

structed from the unitigs of the DBG of X is a SPSS of X.

Concretely, the original version of BLight takes as input the uni-
tigs of the DBG of X, and transforms them into another SPSS: the
super-k-mers of unitigs, partitioned according to their minimizers.
However, it is important to note that this is not the only possible
SPSS scheme that can be used by BLight. In fact, in this article we
will use another one.

In the inner workings of BLight, querying a k-mer x consists in
first computing the minimizer of x to identify in which partition it is
expected to be found. Then a minimal perfect hash function
(Limasset et al., 2017) associates x to its position within a sequence
of the SPSS. The position is then converted into a number that indi-
cates a location in memory that can be used to associate some piece
of information to each k-mer. Of note, BLight only records informa-
tion about the set of k-mers itself, but has no additional information
such as their presence/absence within a collection of datasets, nor
their counts. Another data structure will be needed along with

BLight to record such information, which is in fact the purpose of
REINDEER.

So far, we have reviewed the following SPSSs for a set of k-mers X:
X itself, the unitigs of X, any set of super-k-mers that together contains
all k-mers of X (such as the super-k-mers of the sequencing reads where
X originated from), and the super-k-mers of the unitigs of X. To this
list we can add the recently introduced (and equivalent) concepts of
UST and simplitigs (B�rinda et al., 2020; Rahman and Medvedev,
2020). They are SPSSs that aim to minimize their total number of
nucleotides. Note that contigs resulting from a genome or transcrip-
tome assembly of X, unlike unitigs, are not a SPSS as they typically dis-
card some of the k-mers to generate consensus sequences. Table 1
recapitulates all SPSS schemes (monotigs will be defined later in the art-
icle). In the next section, we will show that the choice of SPSS is im-
portant for our specific application. We will introduce a new SPSS that
is better suited to the purpose of indexing collection of datasets.

4 SPSSs for indexing k-mer counts

Due to the stochasticity of sequencing coverage, genomes and tran-
scriptomes are not evenly covered by sequencing reads. Thus, k-
mers coming from regions that have the same copy-number (in
genomes,—or abundance, in transcriptomes) often have close but
non-identical counts. Yet, if those k-mers had identical counts, such
redundancy could be exploited to save space when indexing counts.
While it would be unrealistic to assume that k-mer counts are con-
stant across long genomic regions of same copy-numbers (or of same
abundances across a transcript), we will assume it for shorter
regions (unitigs) throughout the rest of the article.

Assumption 1 Within a dataset, the counts of k-mers that are part of the

same unitig are assumed to all be identical.

We argue that Assumption 1 yields a robust approximation of k-
mer counts. To support this claim, we computed the Pearson (r) and
Spearman (q) correlation coefficients of true k-mer counts versus
counts averaged per unitig, across 15 RNA-seq datasets, resulting in
r¼0.999 and q ¼ 0:910 on average (see Supplementary Fig. S2).

4.1 Count vectors and SPSSs
Using the indexing scheme presented in the previous section (a SPSS
indexed by BLight), our aim is to associate to each k-mer its abun-
dances in datasets.

Definition 10 Count-vector. Given an ordered list of datasets and a k-

mer x, the count-vector of x is a vector in which the integer at position i

represents the number of times x is seen in the ith dataset.

Our initial motivation is to seek a SPSS scheme where a single
count-vector can be associated to each string of the SPSS. In other
words, for each string s of the sought SPSS, all k-mers in s need to
have the same count-vector.

Observation 2 Under Assumption 1, given a super-k-mer constructed

from the unitigs of a union DBG, it is possible that not all k-mers in the

super-k-mer have the same count-vector.

We show a proof of Supplementary Observation S2, illustrated
by Figure 1. It is immediate that a possible instance of the sought
SPSS is X itself. Since each string of that SPSS only contains a single
k-mer, a single count-vector is associated to each element of the
SPSS. However this is not a scalable solution, as thousands of
mammalian-sized datasets contain billions of distinct k-mers, lead-
ing to prohibitively high memory consumption.

Yet recall that BLight allows to index any SPSS, as long as it sat-
isfies the minimizer condition of Definition 8. It turns out, perhaps
surprisingly, that none of the SPSS schemes of the previous section
would be suitable for associating elements to single count-vectors.
We describe why below.
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Most of the time, the k-mers within a unitig do not share the same
minimizer, thus unitigs cannot be used as a SPSS for BLight. This is why
in the original BLight scheme, super-k-mers are extracted from the uni-
tigs to construct a suitable SPSS. Even so, a second issue occurs: in the
union DBG, two k-mers coming from two different datasets can over-
lap over k – 1 nucleotides, forming in a unitig a ðkþ 1Þ-mer that exists
in no single dataset. We will call such unitigs chimeric (see Fig. 1, and
leftmost unitig in Fig. 2). It is clear that k-mers within chimeric unitigs
do not all have identical count-vectors. This leads to the impossibility of
associating a single count-vector to chimeric unitigs or even to super-k-
mers of chimeric unitigs.

Of note, the other SPSS schemes UST and simplitigs aim to
merge unitigs as much as possible. These schemes suffer from the
same issue of having multiple count-vectors within a single se-
quence, at an even more extreme level than with single unitigs.

4.2 Monotigs
As we saw in the previous section, super-k-mers constructed from
the unitigs of the union DBG were likely to be a suitable SPSS, ex-
cept that Observation 2 shows that a single count-vector cannot al-
ways be associated to each of them. However, this issue does not
arise when considering a single dataset at once. This allows us to
introduce the new concept of monotig.

Definition 11 Monotig. A monotig is the sequence of a path in the union

DBG in which all constituent k-mers have the same count-vector and

the same minimizer.

Observe that monotigs are not necessarily substrings of super-k-mers of

unitigs as they can in principle span multiple unitigs (see e.g. Fig. 3 step

2/). The set of monotigs forms a partition of the nodes of the DBG. Note

that contrary to other SPSSs, due to the count vector constraint, mono-

tigs are not solely defined using k-mers of the de Bruijn graph.

5 REINDEER data structure

Given a collection of datasets, REINDEER is an index that associ-
ates to any k-mer its counts in all datasets. As a byproduct of record-
ing counts, it is also possible to query the presence/absence of k-
mers within these datasets. This makes REINDEER a memory-
efficient representation of colored de Bruijn graphs, such as other re-
cent methods in the literature (Muggli et al., 2017; Pandey et al.,
2018; Yu et al., 2018), and in particular Bifrost (Holley and
Melsted, 2019) which indexes unitigs through the minimizers of
their constituent k-mers. But note that REINDEER does more than
representing colors (it also records unitig-averaged abundances),
and it is static (unlike Bifrost) and not particularly designed for effi-
cient graph traversal.

In line with recent works (Harris and Medvedev, 2018; Pandey
et al., 2018; Yu et al., 2018), REINDEER conceptually transforms
an input collection C of datasets into a set of multisets of k-mers. As
a pre-requisite, a compacted DBG needs to be built for each dataset
[e.g. using BCALM2 (Chikhi et al., 2016)]. REINDEER then takes
as input the collection of compacted DBGs, and a single count value

Table 1. Categories of spectrum-preserving string set schemes known from previous literature (and monotigs, introduced in this article)

SPSS scheme Description

k-mers Trivially, a set of k-mer strings is its own SPSS

Unitigs Compacted unipaths in a de Bruijn graph

Super-k-mers of reads Substrings of reads of maximal length such that all k-mers in a super-k-mer share the same m-minimizer

[e.g. KMC (Kokot et al., 2017)] Note: unlike all others, this SPSS represents the multiset of k-mers (with duplicates) from the reads, not a set

of distinct k-mers

Super-k-mers of unitigs Same as above, except substrings of unitigs instead of substrings of reads

[e.g. BLight (Marchet et al., 2019b)]

UST (Rahman and Medvedev, 2020) Set of sequences obtained by greedily concatenating unitigs to minimize the total number of nucleotides in

the SPSS

Simplitigs (B�rinda et al., 2020) Similar to Rahman and Medvedev (2020)

Monotigs A set of paths that covers the (uncompacted) de Bruijn graph such that all k-mers have an identical count-

vector and minimizer

Note: See also Figure 2 for an example of each category.

Fig. 1. Example of a de Bruijn graph (left part) and various SPSS schemes over the set of nodes of the graph (rightmost panel). There are three datasets (circle/star/square sym-

bols). In this first panel, the minimizer of each k-mer is highlighted in grey (k¼4, m¼2). Dots below k-mers symbolize their non-zero abundance (filled symbols) or absence

(1) across the three datasets. In the five other panels, sequences within each SPSS scheme are roughly represented according to the positions of constituent k-mers in the DBG,

only for visual indication. Observe that monotigs are the only SPSS scheme where each sequence can be associated to a single combination of colored dots

Fig. 2. Left: 2 datasets and their k-mers (k¼5). Right: a union DBG is built over these k-mers, and contains 3 unitigs (top row). Symbols (e.g. circle, star) above each k-mer

symbolize the per-dataset abundances. In the left-most unitig, the two k-mers have the same abundance information. Thus the monotig is here equivalent to the unitig. In the

center and right-most unitigs, k-mers that have contrasted abundances share a k – 1 overlap and can be compacted. On the contrary, monotigs will stop at differences between

the coverage profiles of overlapping k-mers
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per unitig present in each DBG. It represents implicitly the union
DBG of all the compacted DBGs, which is never explicitly con-
structed in memory. To summarize, REINDEER is built in three
steps, illustrated in Figure 3:

1. For each dataset, build an individual DBG that also records k-

mer counts, averaged per unitig.

2. Construct monotigs (according to the greedy algorithm of

Section 5.1) to index all k-mers from the union DBG of all

datasets.

3. Associate count-vectors to monotigs, and further discard dupli-

cated count-vectors.

The following three sections describe monotig construction, and
the association of monotigs to count-vectors in more details.

5.1 Construction of the monotigs
We propose a greedy algorithm to compute a set of monotigs effi-
ciently. The algorithm takes as input a set of compacted DBGs (one
DBG per dataset). First, super-k-mers of unitigs are computed for
each dataset. The rationale for using super-k-mers instead of k-mers
is to save space, as opposed to having to store all k-mers on disk.
Each super-k-mer records its count in the DBG it originates from
(there is a unique count, according to Definition 4). The super-k-
mers are partitioned into files according to their minimizers. At this
step, the same k-mer may be present in multiple super-k-mers within
a file (in fact, the k-mer is repeated as many times as the number of
datasets where it is present).

Then, for each minimizer file, super-k-mers are broken into their
constituent k-mers. The k-mers and their count-vectors are inserted
into a hash table (github.com/martinus/robin-hood-hashing). When
a k-mer is first inserted, it has a count-vector that records the abun-
dance of its originating super-k-mer in the corresponding dataset.
When a duplicate of a k-mer already in the hash table is met by pars-
ing another super-k-mer (i.e. the same k-mer coming from another
dataset), the associated count-vector is updated by adding the abun-
dance of the other dataset.

In each minimizer file, monotigs are constructed by greedily
merging k-mers having identical count-vectors and a ðk� 1Þ over-
lap. Concretely, each k-mer at an extremity of a monotig queries the
hash table for the existence of a (uncompacted) DBG neighbor (e.g.
for a right extremity, neighbors are the ðk� 1Þ-suffix of the k-mer
appended with either A, C, T or G). A monotig is extended by an ar-
bitrary neighbor if one is found. The procedure is repeated until no
more extension is possible. Observe that each minimizer file can be
processed independently and in parallel.

5.2 Construction of the count-vector matrix
Once all monotigs are computed, they are given as input to BLight.
The BLight scheme is slightly modified to associate a single memory
location to all k-mers within a monotig, instead of one memory lo-
cation per k-mer. This is done in a straightforward way by returning
the monotig’s identifier instead of the position of the queried k-mer
within that monotig.

Once the BLight index is built, a count-vector matrix M is cre-
ated such that its rows are the monotigs count-vectors, organized
according to the order of the monotigs referenced by the values of
the BLight hash table. In other words, the value M½i�½j� in this matrix
gives the count of all k-mers within the ith monotig in the jth data-
set. The matrix is stored in a row-major order; each row can be
accessed efficiently during queries.

5.3 De-duplication of rows in the count-vector matrix
Colored de Bruijn graphs and similar works initially used matrices
to record colors (i.e. presence/absence information) of k-mers within
a de Bruijn graph (Muggli et al., 2017). More recently, color equiva-
lence classes have been introduced to decrease the redundancy in the
matrix (Holley et al., 2016; Pandey et al., 2018). We apply a similar
idea to save space, by de-duplicating rows of the count-vector
matrix.

Simply put, we do not store the count-vector matrix, but instead
we store a transformed version (the de-duplicated count matrix)
which contains only distinct rows. In addition, we maintain an inte-
ger vector that associates to each monotig its corresponding row in
the de-duplicated count-matrix.

5.4 Query
Queries in REINDEER are performed as follows. A query sequence
S of size L is decomposed into its constituent k-mers, which are then
individually queried in the index. Behind the scenes, the index con-
verts each k-mer into a monotig identifier, used to access the corre-
sponding row of the de-duplicated count-vector matrix, then
retrieves the counts associated to this k-mer in all datasets.

Note that the presence/absence of a query k-mer x can be directly
inferred from the count-vector matrix. Indeed, if x has a non-zero
count in dataset j, it means that x is present in one of the unitigs of
the DBG of dataset j and thus in some monotig i of the union DBG.
Thus, the presence of x can be deduced by computing whether
M½i�½j� > 0.

To determine the abundance of S in each dataset, we first check
whether S is present in the dataset: whether at least h of the constitu-
ent k-mers of S have non-zero abundance in the dataset (by default,
h ¼ 40%). If REINDEER is asked to only determine the presence/ab-
sence of S, the query stops here. For abundance queries, a matrix of
integers Count is recorded, of size m� c where m ¼ L� kþ 1 is the
number of k-mers in S and c the number of datasets. Each value
Count½i�½j� corresponds to the count of the ith k-mer of S inside data-
set j.

Instead of directly reporting the matrix Count, we perform an
additional step that de-duplicates identical values within each col-
umn. For example if in a given dataset j all the counts of k-mers pre-
sent in S are identical (jfCount½i�½j�; 8is:t:Count½i�½j� > 0gj ¼ 1), then
we report a single count value for this dataset. On the contrary, if
not all Count½i�½j�s are identical at a fixed j, then a list containing all
seen count values is reported for dataset j. This second case happens
when k-mers from S fall into different unitigs of dataset j, and these
unitigs have different abundances (as defined by Definition 4). Thus
the final query result for a given sequence S is a tuple containing c
(possibly single-valued) lists.

Fig. 3. Overview of REINDEER index construction. At step 1/, for each dataset, the (compacted) de Bruijn graph is given as input along with the count of each unitig. At step

2/, monotigs (corresponding to paths in dark grey) are computed on the k-mers of the union de Bruijn graph of all datasets, and these monotigs are indexed. During step 3/each

monotig is associated (through an integer array) to a row in the de-duplicated count-vector matrix (rightmost matrix). In this matrix no two rows are equal, and in practice

each row is compressed
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An example of REINDEER output is given in Supplementary
Figure S1. Relying on BLight allows for fast queries and, unlike
other methods based on the Burrows-Wheeler transform, a constant
(and small) number of memory accesses are performed. Query com-
plexity for the presence/absence (or abundance) of a sequence of
length L ðL > kÞ in an index of c datasets is in time OðL� cÞ.
Although queries that scale linearly with the number of datasets are
not ideal theoretically, in practice engineering mitigates this prob-
lem. Indeed, grouping all datasets in a single index enhances cache-
locality and allows rapid queries by reaching all datasets for a given
k-mer in less than c RAM accesses. Other data structures [Mantis
(Pandey et al., 2018), Bigsi (Bradley et al., 2019)] also have this
query complexity. Moreover, a main focus of REINDEER is to have
a low-footprint during queries. This is possible since REINDEER
benefits from compression, which allows loading in-memory all
datasets information at once while reducing the memory footprint.

5.5 Implementation details
5.5.1 REINDEER index

When loaded in memory, the BLight index is not further compressed
and the abundance matrix is compressed with RLE. Both are com-
pressed (with gzip) when dumped to disk, and are reloaded into
memory (de-gzipped) when doing a query.

5.5.2 Discretization of counts

If the accuracy of k-mer counts is not critical, then encoding counts
using reduced integer precision leads to more effective de-
duplication of the count-vector matrix. In REINDEER, we imple-
ment two different techniques. (i) Applying a function (termed dis-
cretization) that encodes counts from 0 to 50 000 in 8-bit integers,
ensuring that discretized counts are at most 5% different from the
real raw counts (Following code by G. Rizk, github.com/GATB/
gatb-core/blob/f58d96b/gatb-core/src/gatb/tools/collections/impl/
MapMPHF.hpp#L85). (ii) A log2 transformation of counts (formal-
ly, maxð0; d log2ðcountÞeÞ) yields an even more extreme discret-
ization (in terms of loss of precision). An example of these
transformations is shown in Table 2. We emphasize that these are
not the only possible discretization schemes. Further investigations
would also be necessary to determine their impact on biological
queries. For example a 5% difference in large counts (e.g. 10 000
versus 10 500) may turn out significant in differential expression
analysis, but would be masked by discretization.

5.5.3 Low-memory de-duplication of rows in the matrix

We iteratively compute the count-vectors of monotigs and compress
them with run-length encoding (RLE) (github.com/powturbo/
TurboRLE), and then partition the whole multiset of count-vectors,
using hashing, into files stored on disk. When a count-vector is writ-
ten to disk, its monotig identifier given by BLight is also recorded
next to it. Then, reading each file separately, we select a single repre-
sentative of each vector by inserting it into an efficient dynamic hash
table1. Once a partition is processed, we write the set of de-
duplicated count vectors to disk, and record the mapping between
monotig indices and their positions in the de-duplicated count-vec-
tor matrix.

5.5.4 Query speed-up and low-memory footprint

In order for a query length to not increase the memory footprint, we
only decompress and read a single count-vector at a time, i.e. we

process k-mers sequentially. We also take advantage of the fact that
consecutive k-mers x, y in a query are also likely to be present in the
same monotig. If it is the case, we directly copy the information of x
for y instead of again interrogating the de-duplicated count-vector
matrix.

6 Results

In their work, Solomon and Kingsford (2016) indexed 2652 human
RNA-Seq samples to demonstrate the scalability of their approach.
Since then, other competing methods have also used this dataset. It
was further reduced to 2585 datasets to remove experiments con-
taining short reads that could not be indexed with 21-mers (Harris
and Medvedev, 2018), and has become a de facto benchmark. We
use results from a recent and exhaustive review (Marchet et al.,
2019a) to compare REINDEER with the state-of-the-art in indexing
collections of datasets. Despite not having run all methods on the
same machine, the comparison of space usages for each data struc-
ture will nevertheless be accurate; results regarding execution times
will certainly be machine-dependent but orders of magnitudes are
expected to be roughly preserved.

We compare our approach with five others: Solomon and
Kingsford’s original Sequence Bloom Tree (SBT) (Solomon and
Kingsford, 2016); HowDeSBT, the most recent improvement of SBT
(Harris and Medvedev, 2018); other hashing-based methods [BIGSI
(Bradley et al., 2019), SeqOthello (Yu et al., 2018)]; and a recent
method relying on a de Bruijn graph [Mantis (Pandey et al., 2018)].
Among those approaches, only REINDEER and Mantis support
exact k-mer queries, all the others are probabilistic, meaning that a
given k-mer may be said to be present, while it is not. REINDEER is
the only index that provides count information (as opposed to just
presence/absence). We provide scripts and guidelines (github.com/
kamimrcht/REINDEER/tree/master/reproduce_manuscript_results)
to reproduce the following results.

6.1 Index construction
6.1.1 Comparison to state of the art

We first build REINDEER indexes on the 2585 datasets and filter
out the rare k-mers on the same criteria as the other methods (the
following thresholds, set according to the dataset sizes, were used:
https://www.cs.cmu.edu/�ckingsf/software/bloomtree/srr-list.txt),
resulting in a total of �3755 millions of distinct k-mers to index
after filtering. We then compare our performance metrics to those
reported by other tools on the same dataset (Marchet et al., 2019a).
Several construction modes are assessed: indexing presence/absence
information only (for the sake of comparison only as our contribu-
tion consists in providing counts); and indexing counts in different
modes (normal, discretized, log2). To be comparable to other
results, we used a k value of 21 (and m¼10). Other parameters in
REINDEER are set to default values, with commit version d8a9eec.

Table 3 shows the resources required at construction. Globally,
REINDEER requires comparable resources as the existing methods,
yet they only support presence/absence queries. REINDEER requires
more disk space and the index is about as space consuming as
Mantis, which also offers exact k-mer queries. However
REINDEER was not conceived with presence/absence queries in
mind, but for abundance queries. In such a case we see that the
index is very efficient as it is about 2–4 times more space-expensive
than presence/absence methods (yet with many of them having false
positives). REINDEER space consumption can be additionally
reduced by a third when storing approximate counts.

We also built REINDEER index on a different data type (meta-
genomic samples), and show the results in Supplementary Table S3.

6.1.2 Scalability and influence of k
In this paragraph we assess the performance of constructing
REINDEER on several datasets sizes and k sizes. To fairly compare
the different runs, we selected a set of 2512 datasets that have reads
of lengths � 31 bases among the 2585 previously mentioned

Table 2. Types of count-vectors associated to k-mers

Type Sample values for four datasets

Raw counts 27 0 101 40 812

Discretized counts 27 0 102 41 000

log2-transformed counts 4 0 7 16

Presence/absence 1 0 1 1
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datasets. We assessed the scalability of the REINDEER index (for
raw counts) on 10 to 2512 datasets (Table 4). The resources
required grow roughly linearly with the number of distinct k-mers.

The performance of REINDEER can be impacted by the chosen
k-mer size. Intuitively, longer k-mers can lead to larger monotigs,
thus to a reduction of REINDEER index size. We show the behavior
of REINDEER on several k values in Supplementary Table S1.
Monotigs are longer with k¼31 (35 bases on average, compared to
22 bases on average for k¼21). Additional metrics (number of
monotigs, de-duplication and RLE gains) can be found in
Supplementary Table S2.

6.1.3 Comparison with the jellyfish and other hash tables

We selected Jellyfish (Marçais and Kingsford, 2011) for a compari-
son with REINDEER because it is one of the most straightforward
existing alternatives: Jellyfish implements a hash table that associ-
ates to each k-mer its count within a dataset. We compare
REINDEER and Jellyfish by estimating the space consumption of
Jellyfish per key to index, and let aside the abundance storage. The
space usage of recording 4 billion distinct k-mers with Jellyfish is ap-
proximately 2l � 2k�lþrþ1

8 ¼ 92 GB (according to Jellyfish manual,
with l ¼ log2ðK=0:8Þ; r ¼ b log2ð62Þc � 1, k¼21 and K ¼ 4 � 109).
In comparison, REINDEER indexed monotigs and their associations
to memory locations using roughly 15 GB of memory, that is, a
84% space saving relative to Jellyfish.

We also briefly compare the monotigs indexing part of
REINDEER with two other hashing schemes: Short Read Connector
(SRC) (Marchet et al., 2020) and the original BLight scheme
(Marchet et al., 2019b). SRC indexes k-mers directly, and was
shown to outperform classical hashing techniques (such as Cþþ un-
ordered maps). As described above, BLight indexes super-k-mers of
unitigs. We experimentally tested the original BLight implementa-
tion on 4 billion distinct k-mers, resulting in 15 GB of memory
usage, similarly to REINDEER. This demonstrates that switching
the SPSS strategy from unitig super-k-mers to monotigs has no nega-
tive impact on the index size. On the other hand, SRC used 23 GB
of memory.

6.2 Query performance
We then estimated the abundance of some test sequences in the
2585 datasets using the REINDEER index. Queried sequences were
randomly sampled from the RefSeq human transcripts. Batches of
10, 100, 1000 and 10 000 sequences were created to study query
scalability. The mean sequence size over the batches was 3341
nucleotides. Each batch type was repeated 10 times with random
sampling, and results show the mean, max and min query wallclock
times for each batch type (using 20 threads). Results are shown in
Table 5. The query wallclock time can be divided into a first step in
which REINDEER loads the index into memory, and a second step
in which k-mers from each query are queried in the REINDEER
structure. Final results are computed and written to an output file.
We used the same parameters as for the index construction
ðk ¼ 21;m ¼ 10; �S ¼ 75%Þ, with �S being the minimum percent-
age of found k-mers required to return a hit in a dataset. All the
experiments were performed after first warming the cache with the
index. The peak of RAM consumption is also represented in
Table 5, and fluctuates only moderately as it represents the size of
the unzipped index in memory, plus an additional structure corre-
sponding to the n count-vectors of size 2585 for the n k-mers of a
query sequence.

As measurements of query times are architecture-dependent,
comparisons with other methods are given here as a rough estimate.
According to a recent benchmark (Bingmann et al., 2019),
SeqOthello and Mantis performed queries on 1000 sequences in a
similar experiment in around a minute. For the same task, SBT
would take an hour or so, and the more recent HowDeSBT around
5 min.

6.3 Abundance matters: an example with oncogenes
Although individual cancers have highly variable origins, genes from
the oncogene and tumor suppressor families often show abnormal
expression in cancer tissues. Certain oncogenes have low expression
in healthy tissues but are over-expressed in cancer, while certain
tumor suppressors vary in the opposite fashion.

Table 3. Index construction resource requirements on 2585 RNA-seq datasets on REINDEER and as reported in the literature for the other

indexes

Tool Max ext. memory (GB) Time (h) Peak RAM (GB) Index size (GB) Counts (Y/N)

SBT 300 55 25 200 N

HowDeSBT 30 10 N/A 15 N

Mantis 110 20 N/A 30 N

SeqOthello 190 2 15 20 N

BIGSI N/A N/A N/A 145 N

REINDEER—presence/absence 6800 40 27 36 N

REINDEER—raw counts 7000 45 56 52 Y

REINDEER—discretized 7000 40 44 44 Y

REINDEER— log2 7000 64 32 34 Y

Note: The ‘Max Ext. Memory’ column reports the maximal external (i.e. disk) space taken by the method. Execution times of methods are reported in wall-

clock hours. ‘Index size’ indicates the final REINDEER index size as stored on disk (i.e. the sum of three components: the index of monotigs, the abundance ma-

trix and the vector mapping monotigs to matrix rows). N/A indicates that the value was not reported in the article of the given method.

Table 4. Performance of REINDEER (raw counts, k¼ 21) on subsets of datasets from the 2512 human RNA-seq datasets

Number of datasets Millions of k-mers Max ext. memory (GB) Wallclock time (h) Index size (GB) Peak RAM (GB)

10 �112 1.7 0.80 0.43 1.0

100 �479 39 0.97 3.6 1.8

500 �792 288 2.6 9.4 5.7

1000 �1265 894 6.6 18 9.5

2512 �3755 6500 39 55 51

Note: Columns are: number of distinct k-mers, maximum space usage on the disk, construction wall-clock time (20 threads), index size after construction and

memory peak during construction.
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Some oncogenes are normally expressed in healthy patients but
can be over-expressed in cancer patients. With our REINDEER
index we will demonstrate a simple in silico experiment involving
theses abundances.

For genomic data, where reads are used to reconstruct the gen-
ome, k-mer-indexes can be used to query presence of alleles, but
(modulo copy-number differences) all of them should be there at the
genome-wide average abundance. In stark contrast, the situation is
different for RNA-seq. There, every transcript may be expressed at a
different abundance, and one might look for different patterns of ex-
pression. Given an index of an expression archive, it becomes pos-
sible to perform hitherto impossible queries. One can take an array
of genes/transcripts, and collect an abundance signature across thou-
sands of datasets, and then perform unsupervised clustering to look
for patterns. One can pick a transcript of interest (e.g. from an onco-
gene) and compare the abundance of that and a control transcript,
across all datasets, or maybe compare this query across tumor and
normal samples (assuming appropriate metadata is available).

As a proof of concept we selected four oncogenes well known
for their role in breast cancer (ERBB2, FOXM, MYC and PIK3CA),
as well as three tumor suppressor genes (BRCA1, PTEN and TP53)
(Perera and Bardeesy, 2012; Song et al., 2017). We launched
REINDEER on the longest transcript of those genes. The transcript
was split in 100 bp long sequences, to be able to take into account
matches on a few exons. We required at least 78% of the k-mers to
be found in the split sequences. We averaged the counts returned by
REINDEER in each split sequence and kept the maximal value
among them. The distribution in each dataset, for which counts are
reported, are displayed in Figure 4. We recall that our protocol is
only a demonstration of what could be done with REINDEER.
Obtaining robust quantifications, in a similar way as e.g. Kallisto
(Bray et al., 2016) but on thousands of datasets in a single query, is
an important direction left for future work.

Even with crude un-normalized counts, we observe that the
counts in oncogenes are higher in the ‘cancer-related’ datasets com-
pared to the ‘non cancer-related’. This is particularly true for the
ERBB2 gene where counts higher than 1000 are only present in the
cancer-related samples. The tumor suppressor genes have noticeably
closer cancer/non-cancer medians abundances, but further investiga-
tions such as normalization of counts and improved metadata

classification would be needed to draw clear conclusions. Those
experiments demonstrate that (even exact) presence/absence queries
on such transcripts would not be sufficient to reveal important bio-
logical information. The level of expression brings valuable informa-
tion as shown with the over-expression of oncogenes in cancer-
related samples.

7 Conclusion

REINDEER is the first and currently only tool that enables scalable
indexing of k-mer counts in a collection of sequencing datasets. As a
byproduct it allows to query the abundances of arbitrary sequences
in these datasets. REINDEER relies on the new concept of monotigs,
on run-length encoding of count-vectors, optional lower-precision
encoding of k-mer counts, and on the de-duplication of rows within
the count-vectors matrix. To the best of our knowledge and despite
their apparent simplicity, neither monotigs nor the greedy construc-
tion algorithm described here have previously appeared in the litera-
ture. A related idea of breaking unitigs at color changes was used in
Kallisto (Bray et al., 2016). Note that REINDEER does not encode
k-mer counts as they exactly appear in a dataset, but instead relies
on averaged counts per unitig as an approximation; thus it is not an
index that records exact raw counts. REINDEER is able to answer
presence/absence queries, although it is not particularly optimized to
this task: other techniques such as HowDeSBT, Mantis and
SeqOthello, produce indices that occupy smaller space.

Several exciting future features can be envisioned for
REINDEER. We plan on exploring index partitioning (i.e. con-
structing several REINDEER indices on subsets and merging query
results) to accelerate REINDEER’s construction and aim toward
indexing SRA-scale collections of datasets. To reduce memory usage
at the expense of query speed, we are also investigating the possibil-
ity of performing on-disk queries.

Dataset quality control is also crucial for some applications such
as RNA-seq to draw correct biological conclusions. Removing low
abundance k-mers before indexing appears to be necessary, as nu-
merous artefactual k-mers are created due to sequencing errors. In
our experiments with the 2585 datasets benchmark, we used k-mer
counts thresholds set in previous literature, but more adaptive

Fig. 4. Distribution of the average counts reported by REINDEER in the longest transcript, both in ‘cancer-related’ datasets (left barplot in each panel) and in ‘non-cancer-

related’ (right barplot) datasets for four oncogenes (ERBB2, FOXM1, MYC and PIK3CA) and three tumor suppressor genes (BRCA1, PTEN and TP53) considered. The me-

dian fold changes are, respectively, 2.1, 2.4, 1.9, 1.8, 1.4, 1.1 and 0.93

Table 5. Performance of REINDEER in terms of index loading time, query time and peak memory during query, for different human tran-

scripts batch sizes

Batch size Index loading (s, wallclock) Sequences query and I/O (s, wallclock) Peak RAM (GB)

Mean/Min/Max Mean/Min/Max

10 sequences 867/836/916 92/89/95 84.8

100 sequences 149/139/160 88.4

1000 sequences 394/362/410 83.8

10 000 sequences 1042/986/1095 87.0

Note: Bold entries show mean values.
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thresholds would allow a better compromise between index size and
loss of information. Another important aspect is the normalization
of returned counts (taking into account dataset size) to accurately
quantify transcripts, e.g. for the purpose of differential expression
analysis.
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