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Abstract
Motivation: Mathematical models in systems biology help generate hypotheses, guide experimental design, and infer the dynamics of gene
regulatory networks. These models are characterized by phenomenological or mechanistic parameters, which are typically hard to measure.
Therefore, efficient parameter estimation is central to model development. Global optimization techniques, such as evolutionary algorithms
(EAs), are applied to estimate model parameters by inverse modeling, i.e. calibrating models by minimizing a function that evaluates a measure
of the error between model predictions and experimental data. EAs estimate model parameters “fittest individuals” by generating a large
population of individuals using strategies like recombination and mutation over multiple “generations.” Typically, only a few individuals from
each generation are used to create new individuals in the next generation. Improved Evolutionary Strategy by Stochastic Ranking (ISRES),
proposed by Runnarson and Yao, is one such EA that is widely used in systems biology to estimate parameters. ISRES uses information at most
from a pair of individuals in any generation to create a new population to minimize the error. In this article, we propose an efficient evolutionary
strategy, ISRESþ, which builds on ISRES by combining information from all individuals across the population and across all generations to
develop a better understanding of the fitness landscape.

Results: ISRESþ uses the additional information generated by the algorithm during evolution to approximate the local neighborhood around the
best-fit individual using linear least squares fits in one and two dimensions, enabling efficient parameter estimation. ISRESþ outperforms ISRES
and results in fitter individuals with a tighter distribution over multiple runs, such that a typical run of ISRESþ estimates parameters with a higher
goodness-of-fit compared with ISRES.

Availability and implementation: Algorithm and implementation: Github—https://github.com/gtreeves/isres-plus-bandodkar-2022.

1 Introduction

In systems biology, information from large volumes of se-
quencing and spatiotemporal gene expression data is typically
condensed to build mathematical models that can describe the
data concisely and make predictions to guide experimental de-
sign. These models tend to have several phenomenological
(statistical) or mechanistic parameters. Statistical model
parameters determine correlation among experimental data
while mechanistic model parameters have biophysical inter-
pretations such as binding/dissociation rates of protein com-
plexes. Biological systems have complex dynamics, making it
usually difficult to experimentally measure all the parameters.
Inverse modeling is applied to estimate parameters by mini-
mizing an objective function that measures the error between
model predictions and experimental data. Such a parameter
estimation problem can be represented as a function optimiza-
tion problem where the objective is to estimate the values of
the parameters that reduce a measure of error between model
predictions and experimental data (Hengenius 2014).

These models are usually expressed in the form of coupled
ordinary or partial differential equations, where the state vari-
ables are protein/mRNA concentrations which are then fit to
the experimental data (Hengenius 2014). From a geometric
perspective, these models form a hyper-surface of all possible
predictions in high-dimensional data space called the model
manifold. The structure of the manifold makes it difficult to
correctly estimate certain parameters (Ashyraliyev et al.
2009a, Mannakee et al. 2016). A global optimization ap-
proach to estimate these parameters is to employ Nature-
inspired algorithms (NIAs) such as evolutionary strategies,
simulated annealing, ant colony optimization, and particle
swarm optimization to solve complex problems with scant
data and a range of feasible solutions in multidimensional
hyper-planes using metaheuristic techniques (Kar 2016,
Kumar et al. 2023). Genetic algorithms (GAs) are an evolu-
tionary strategy (ES) inspired by biological evolution. They
evaluate the fitness of randomly generated solutions and
apply mechanisms such as reproduction, natural selection,
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mutation, and recombination to generate a set of potential
solutions and attempt to converge on a globally optimum sol-
utions (Sun et al. 2012). Particularly, the Stochastic Ranking
Evolutionary Strategy (SRES) uses stochastic ranking to avoid
local minima (Carrell et al. 2017). It enables faster conver-
gence and a higher number of feasible solutions (Moles et al.
2003, Mezura-Montes and Lopez-Ramirez 2007). SRES is
widely used in systems biology to estimate model parameters
due to superior performance compared with other optimiza-
tion algorithms (Moles et al. 2003, Fomekong-Nanfack et al.
2007, Fakhouri et al. 2010, Liberman et al. 2017, Parmar
and Mendes 2019, Rrapaj et al. 2021). An Improved
Stochastic Ranking Evolutionary Strategy (ISRES) uses a pen-
alty function to constrain feasible solutions and has been
shown to perform better than SRES (Runarsson and Yao
2005). SRES and ISRES have been implemented to solve mul-
tiobjective optimization problems in systems biology (Maeda
et al. 2019). This has enabled means to reverse-engineer sig-
naling pathways (Ashyraliyev et al. 2009b, Jostins and Jaeger
2010, Crombach et al. 2012, Kozlov et al. 2012), infer the dy-
namics of signaling networks (Lobo and Levin 2015,
O’Connell and Reeves 2015, Liu et al. 2016, Filkova et al.
2019), and understand the design principles of gene regula-
tory networks (Spirov and Holloway 2013).

If a vector of model parameters represents an individual in
a population, the ISRES (Runarsson and Yao 2005) algorithm
is basically a strategy for the evolution of a population of ran-
domly chosen individuals in search space to a population that
is tightly clustered around the fittest individual. The fittest in-
dividual at the end of the evolution would represent the final
vector of model parameters that best fit the model predictions
to the data. In a constrained optimization problem, the fitness
of an individual is determined by evaluating an objective func-
tion that measures the error between model predictions and
data, and a penalty function determines the feasibility of the
solution. ISRES generates an initial population of random
individuals from a uniform distribution. All the individuals in
a generation are ranked based on a fitness score that is
assigned to them by evaluating the objective and penalty func-
tions. ISRES uses stochastic ranking to balance the objective
and penalty. A fixed number of highest ranked individuals are
selected to produce offspring to create a new population. This
is done partially by recombination, where the fittest individ-
ual mates with the other selected individuals, and partially by
mutation of the constituent parameters of the selected individ-
uals. Thus, the recombination component biases the search
while the mutation component ensures all individuals contrib-
ute to the search. In this manner, the algorithm converges to a
region around a function minimum and continues to improve
its estimate by exploring successively smaller regions of the
search space by creating tightly distributed population
clusters.

In this article, we present ISRESþ, an upgraded algorithm
that builds on the ISRES (Runarsson and Yao 2005). ISRESþ
takes advantage of the excess information generated by the
ES. In every generation, a population of a large number of
individuals is created to explore the fitness landscape but only
a few are selected to generate progeny for the next generation.
Our goal is to not only use information from the population
but also from the lineage of all individuals in the population
to better understand the fitness landscape. We use linear least
squares to fit either a linear or a quadratic model to the data
in every generation. The linear least squares fit coefficients

can then be correlated to the coefficients of a Taylor series ex-
pansion to construct an approximate gradient and an approx-
imate Hessian. A linear model is used to build an estimate of
the gradient, which is used to perform an approximate gradi-
ent descent step and a quadratic function model is used to
build an estimate of the Hessian, which is used to perform an
approximate Newton’s method of function optimization step.
In every generation, in addition to the recombination and mu-
tation contributions, new individuals are created from top-
ranked individuals by the linear least squared fits and added
to the population. Note that these methods add only minimal
overhead to the creation of new offspring since neither the
gradient nor the Hessian is really computed, such that
ISRESþ takes a similar wall-clock time compared with ISRES
(Supplementary Section S5). Both are estimated using the
coefficients of the linear least squares fit. To maintain maxi-
mum progress, the fitting is done in the local neighborhood of
the fittest individual found in all generations. The population
size is kept constant in every generation by adding these indi-
viduals at the expense of some of the mutation contributions
of the lowest-ranked individuals. The aim is to provide a bet-
ter estimate of the search direction that complements the re-
combination method of the ES and improve the efficiency of
ISRES such that a typical run of ISRESþ will more likely con-
verge to a better solution than ISRES.

We test the performance of ISRESþ in estimating model
parameters for three widely applied systems biology models
and found that when the linear least squares fit-based meth-
ods contribute �2% to a new population in every generation,
there was a higher probability of converging to a better solu-
tion for the same set of hyperparameters that characterize the
ES, such as the population size and the number of genera-
tions. In addition, the final distribution of best parameter val-
ues was narrower with the addition of the linear least squares
fit contributions to ISRES compared with without it. Finding
a better fit parameter set allows the models to be better cali-
brated to make predictions and infer underlying regulatory
mechanisms.

2 Methodology

In this study, we test the performance of the ISRESþ algo-
rithm on three systems biology models described by Ordinary
Differential Equations (ODEs) and compare it with ISRES
(Runarsson and Yao 2005). The choice of these models is mo-
tivated by numerous factors such as model complexity, the
number of free parameters, the number of state variables, and
the number of spatiotemporal points (Table 1). The first
model, referred to as the Dorsal/Cactus (Dl/Cact) model,
describes a morphogen system that patterns the dorsal–ven-
tral axis of early Drosophila embryos (Kanodia et al. 2009,
O’Connell and Reeves 2015, Schloop et al. 2020). The second
model, referred to as the Smad signaling model, describes
TGF-b-induced Smad2 signaling in HaCat cells (Schmierer
and Hill 2007, Schmierer et al. 2008). The third model, re-
ferred to as the gap gene circuit model, describes the pattern-
ing of the anterior–posterior axis of early Drosophila
embryos (Jaeger et al. 2004, Manu et al. 2009, Surkova et al.
2009) (see Supplementary Section S1 for additional details on
the systems biology models).

The objective function is defined as the sum of squares er-
ror according to the following equation:
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f xð Þ ¼
X

s;t
y x; s; tð Þmodel � y s; tð Þexp

h i2
; (1)

where x is the parameter vector and s and t are the spatial and
time coordinates. When applicable, constraints on the feasible
regions are expressed as,

gj xð Þ � 0; where j ¼ 1;2; :: m; (2)

where m is the number of constraints. The fitness function is
then represented as,

w xð Þ ¼ f xð Þ þ r/ gj xð Þ
� �

; (3)

where the penalty function / xð Þ is a quadratic penalty func-
tion defined as

/ gj xð Þ
� �

¼
Xm

j¼1
max 0; gj xð Þ

� �2
(4)

and r is a vector of penalty coefficients that regulates the dom-
inance between the objective and the penalty functions in de-
termining fitness. ISRES uses stochastic ranking to handle
constraints in a way that neither under-penalizes (low r) nor
over-penalizes (high r) the fitness function. The aim of sto-
chastic ranking is to maintain a balance between the objective
and penalty functions ensuring that an optimum search direc-
tion is maintained not just in the overall search space but in
the feasible search space (Runarsson 2002). We use the fitness
function suggested by the authors for ISRES for all three mod-
els (see Supplementary Section S1).

The search boundaries for the parameters of each of the
models ranges from 1e� 4 to 1eþ 4, unless it is known from
experimental observations or scaling arguments that a param-
eter is restricted to vary in a different range (see
Supplementary Section S1). The objective is to find a value for
the parameter vector x, that the algorithm would characterize
as the fittest individual found over the course of evolution
across all generations.

3 Algorithm

ISRESþ builds on the ISRES algorithm, proposed by
Runnarson and Yao, for the minimization of continuous vari-
able non-linear functions (Runarsson and Yao 2005).
Figure 1 describes the ISRESþ algorithm, which builds on
ISRES. The underscored strategies in Fig. 1 are only imple-
mented in ISRESþ, whereas all the other strategies are com-
mon to both ISRES and ISRESþ. In the original ISRES
algorithm, a population of k individuals is initialized from an
n-dimensional uniform distribution, where an individual is a
set of n parameters that characterize the model. The

population is then ranked using stochastic ranking by main-
taining a balance between the objective and penalty functions
in a way that it only slightly favors the feasible search space
(which is defined as the region of the search space in which
the penalties are satisfied). If it is an unconstrained optimiza-
tion problem, then only the objective function is used for
ranking. In every generation, l < kð Þ top-ranked individuals
are selected for evolution to the next generation while the rest
are discarded. The selected individuals produce offspring to
populate the next generation by two methods.

In the first method, the top-ranked individual mates with
the other parents to produce l� 1 offspring by the process of
recombination according to the equation,

x
gþ1
i ¼ x

g
i þ c x

g
i � x

g
1

� �
; (5)

where, i ¼ 2; . . . ;lð Þ, g refers to the generation, and c is the
recombination parameter. In the second method, each of the
selected parents are repeated rank-wise to fill the remaining
k� lþ 1 population and the constituent parameters of an in-
dividual are subject to random mutations according to a
gaussian probability distribution, according to the equation,

x
gþ1
i ¼ x

g
i þ ggþ1

i;j Nj 0;1ð Þ; (6)

where, i ¼ lþ 1; . . . ; kð Þ, j ¼ 1; . . . ; nð Þ, Nj is a normally dis-
tributed random number for each parameter, and

g
gþ1
i;j ¼ g

g
i;j exp s

0
N 0;1ð Þ þ s Nj 0;1ð Þ

� �
; (7)

where gi;j is a strategy parameter which is essentially a mea-
sure of mean step sizes for each model parameter to take to
maintain maximum progress to reach the function minimum,
s0 ¼ u=

ffiffiffiffiffiffi
2n
p

is the learning rate for an individual, s ¼
u=

ffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
n
pp

is the learning rate for each parameter, and N 0;1ð Þ
is a normally distributed random variable vector (Beyer 1995,
Schwefel and Rudolph 1995). The variable u is the expected
rate of convergence and is usually set equal to 1. The muta-
tion strategy is self-adaptative, as the strength of mutation is

Table 1. Model complexity across systems biology models investigated

in the study.

Model Number of

free

parameters

Number of

optimization

points

Number of

system

variables

Model 1: Dl/Cact model 15 �12 000 �300
Model 2: Smad signaling model 10 �50 25
Model 3: Gap gene circuit model 44 �1800 228

Figure 1. The ISRESþ algorithm. The ISRESþ algorithm initializes a

random population of k individuals. The algorithm then uses scoring and

ranking strategies followed by selection of l fittest individuals. To create a

new generation, the algorithm uses recombination, mutation, Linstep, and

Newton step to generate new offspring. Linstep and Newton step are

strategies implemented only in ISRESþ (underscored) to improve the

performance of the original ISRES. Finally, if the offspring is out of

bounds, then the strategy parameter is used to restore it within bounds.
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independent of the rest of the population and depends only
on its parents’ strategy parameters, and is non-isotropic, as
each parameter of each individual is multiplied by a distinct
random number. At the end of each generation, mutation
strength is reduced by exponential smoothing according to
the equation,

g
gþ1
i ¼ g

g
i þ a g

gþ1
i � g

g
i

� �
; (8)

where i ¼ 1 . . . kð Þ and a is the smoothing factor (Runarsson
2002). The ratio of recombination contributions to that of
mutation is kept at �1/7 to roughly ensure an equal probabil-
ity of success in finding a fit individual by the two methods
(Runarsson and Yao 2005).

ISRESþ extends the original ISRES algorithm by obtaining
directions to evolve the individuals in by fitting the fitness
landscape in the local neighborhood of the best individual to
either first- or second-order polynomials of the parameters.
The process of evolution generates excess individuals that are
discarded as the generations proceed. The idea is to use the
additional information to better understand the fitness land-
scape and improve the search direction estimates. Linear least
squares fit between the individuals and fitness values is per-
formed using first- and second-order polynomials. The coeffi-
cients obtained are then correlated to a Taylor series
expansion to obtain a pseudo gradient and a pseudo-Hessian.
The gradient is used to perform a gradient-descent step and
the Hessian is used to perform one iteration of the Newton’s
method of function optimization.

To fit a first-order polynomial (hyperplane), a minimum of
nþ 1 feasible individuals are required. First, all feasible indi-
viduals are sorted by Euclidean distance from the fittest one.
The fittest individual along with the cluster of the closest n
individuals around it are then used to fit a hyperplane, which
is then used to determine the gradient v ¼ df=dx for all indi-
viduals in the cluster, where f is the fitness and x is the param-
eter vector. The obtained gradient approximates the direction
of the steepest descent. Individuals from the cluster are then
translated along the steepest direction according to the
equation,

x
gþ1
i ¼ x

g
i � blindclustervi; (9)

where i ¼ k� nlinð Þ; ::; k; nlin is the number of Linstep contri-
butions to the population; blin � 1 and dcluster are the diame-
ter of the cluster bubble of individuals that were used to
determine the gradient. The value of blin is generally close to
1. This method, henceforth called Linstep, is an approximate
steepest descent step. (See Supplementary Section S2.1 for a
detailed derivation of Linstep.)

To fit a second-order polynomial, the fittest individual along
with a cluster of the closest n2 þ nð Þ=2 individuals are used. The
coefficients of the second-order polynomial are used to construct
an approximate Hessian, H ¼ d2f=dx2, and a new value of the
gradient. These approximations are then used to perform a sin-
gle iteration of Newton’s method of function optimization on
the fittest individual, according to the equation,

x
gþ1
i ¼ x

g
i � bnewtH

�1vi; (10)

where i ¼ k� nlin� nnewtð Þ; :; k� nnewtð Þ and 0 < bnewt

� 1; nnewt is the number of Newton step contributions to the

population. This method will henceforth be called Newton step.
In each case, a minimum number of individuals are chosen to
determine these directions and if the resulting matrix of the gra-
dient or the Hessian is ill-conditioned, then more individuals are
used. (See Supplementary Section S2.1 for a detailed derivation
of Newton step.)

Note that, while nlin of the top-ranked individuals are
translated in the direction of the approximate steepest descent
in Linstep with a fixed value of blin, only the fittest individual
is used to generate Newton step contributions since all indi-
viduals for which the Hessian and the gradient are computed
moved to the same point (see Supplementary Section S2).
Multiple contributions (nnewt) are made by using random
values for bnewt. Since Linstep fits a hyperplane, its strategy to
generate new individuals is spread across multiple fit individu-
als used to yield the fit. Since Newton step fits a quadric hy-
persurface around the best-fit individual, its strategy to
generate new individuals is to perform a Newton’s method of
function optimization step using the best-fit individual. In this
case, multiple contributions are made varying the step size.
The individuals contributed by Linstep and Newton step are
added to the population at the expense of mutation contribu-
tions around the least fit parents according to the ES, thus
maintaining the size of the population k. We chose a small
value of nlin to make sure the algorithm is not biased towards
the fittest individual in the earlier generations and nnewt
equal to 1 as a full Newton step leads all individuals consid-
ered in the Hessian calculation to move to the same point.
The population continues to evolve by each of the four meth-
ods for a user-defined number of generations. The algorithm
outputs the fittest individual found in all generations and the
value of its objective function, along with some statistics
about the evolution.

4 Results

We tested the performance of ISRESþ in estimating parame-
ters for three ODE-based systems biology models and com-
pared it with ISRES. For the ES part of the algorithm, we used
the recommendations for the settings of the hyperparameters
from the original ISRES algorithm proposed by Runnarson
and Yao in all three models (Runarsson and Yao 2005). For
every combination of hyperparameters, we ran each of the
algorithms at least 50 times. The performance of ISRESþ
(blue) over successive generations and the inverse fitness (er-
ror) of the fittest individual over all generations was com-
pared with the original ISRES (red) algorithm for all three
models.

For the Dorsal/Cactus (Dl/Cact) model (see Supplementary
Material for additional details on the Dl/Cact model), the
number of Linstep and Newton step contributions to the pop-
ulation were varied and the performance of ISRESþ was com-
pared with ISRES. In Fig. 2, the inverse fitness (minimum
value of error obtained by evaluating the objective function)
for the fittest individual across at least 50 independent simula-
tions is plotted in the first two rows of plots while the last row
of plots are histograms of the inverse fitness best individual
obtained at the end of the simulation. The three plotlines in
the first two rows of plots indicate the 25th, 50th, and 75th
percentile of the inverse fitness for every generation across the
>50 independent simulations. The histogram plots, however,
represent the inverse fitness of the fittest individual over all
generations normalized by probability for all independent
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simulations of ISRES and ISRESþ. In Fig. 2A–C, only Linstep
is active during the entire duration of the simulation and con-
tributes two individuals to the population in every generation,
while in Fig. 2D–F, only Newton step is active and contributes
one individual. In Fig. 2G–I, both Linstep and Newton step
are active, with the former contributes two individuals and
the latter contributes one individual to the population in every
generation. Figure 2A and B indicates that when only Linstep
is on, the ISRESþ algorithm performs slightly better than
ISRES at the 25th and 50th percentile. The histogram of the
inverse fitness in Fig. 2C indicates that, across more than 50
independent runs, ISRESþ performs significantly better (p-
value calculated using Wilcoxon sum test in MATLAB is less
than 10�9) than ISRES when only Linstep is on. As seen in
Fig. 2D–F, when only Newton step is on, the final perfor-
mance improves only slightly, as seen by comparing the me-
dian line between Fig. 2E and B. However, there is a

noticeable change in the final distribution of individuals that
forms a much tighter cluster as also demonstrated by the his-
tograms. When both Linstep (nlin ¼ 2) and Newton step
(nnewt ¼ 1) contribute to the population, the breadth of the fi-
nal distribution is intermediate to the cases when only one of
the two methods is active but is better than either case. While
the Newton step-only case certainly has a tighter distribution
than this case, the trend from G ¼ 500 indicates that the
lower percentile curves are getting better. This distribution of
inverse fitness of the fittest individual over all generations is
significantly better (p-value calculated using Wilcoxon sum
test in MATLAB is less than 10�9) for ISRESþ than ISRES as
can also be seen in the histograms, that are plotted over all
the results (Fig. 2F and I). Note that the 75th percentile plot-
line for ISRESþ follows that of ISRES, when only Linstep is
active (Fig. 2A–C), and the plotline converges markedly at G
ffi 300 when only Newton step is active. When both Linstep
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better than ISRES as the distribution is narrower compared with ISRES and all three plot lines are lower than that of ISRES. (I) More ISRESþ runs have a

lower inverse fitness than ISRES (p-value was calculated using Wilcoxon test in MATLAB).
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and Newton step are active, the converging behavior is ob-
served later at G ffi 500. For the Dl/Cact model, while
Newton step seems to assist in the converging behavior that
leads to a tighter final distribution. (Fig. 2F), both methods
are required to also obtain a better final distribution (Fig. 2I).
Thus, for the Dl/Cact model, Newton step-only strategy per-
forms best, while Linstep-only and both Linstep and Newton
step still outperform ISRES even though they have a wider
distribution of inverse fitness. Note that the Dl/Cact model is
defined as a constrained optimization problem and the con-
straint handling strategy of stochastic ranking is retained
within ISRESþ as well. The plots shown are only over indi-
viduals that satisfy all the constraints. In summary, for the Dl/
Cact model, Newton step-only mode results in a tighter distri-
bution (Fig. 2B, E, and H) whereas both Linstep and Newton
step active mode results in a higher number of fittest individu-
als with a lower inverse fitness (Fig. 2C, F, and I).

For the Smad signaling model (see Supplementary Material
for additional details on the Smad model), we found that the
model had at least two local minima, one around inverse fit-
ness � 0.5 and the other around inverse fitness � 6. From
Fig. 3A, C, and E, we find that both algorithms mostly con-
verge to either one of the two minima fairly quickly (by
G < 100). In Fig. 3B, D, and F, the histograms of the final
distribution of error values normalized by probability are
plotted. In the Linstep-only mode, ISRESþ finds a better solu-
tion more often than ISRES, such that 76% of all ISRESþ
runs converge to the lower minima as opposed to �60% for
ISRES. In the Newton step-only mode, ISRESþ performs
slightly better than the Linstep-only mode and finds the lower
minima in 78% of the runs. When both Linstep and Newton
step are active, ISRESþ outperforms ISRES by converging to
the lower minima in 88% of the runs. For the Smad signaling
model, both strategies, Linstep and Newton step, perform
well individually, but together they perform even better.

The three strategies discussed above: Linstep-only, Newton
step-only, and both Linstep and Newton step active through-
out perform well for the Dl/Cact and Smad signaling model,
but for the gap gene circuit model (see Supplementary Section
S2 for additional details on the gap gene circuit model), they
yield comparable results for ISRES and ISRESþ (see
Supplementary Section S4). So, we varied the generation at
which Linstep and Newton step are switched on or off
(Fig. 3). Note that in all configurations of hyperparameters,

nlin ¼ 2 and nnewt ¼ 1. In Fig. 4A and B, Linstep is active
from G ¼ 1� 1000, while Newton step is active from
G ¼ 1001� 3000. Since the model is relatively more com-
plex, the idea was to provide the evolutionary part of the al-
gorithm enough power in the search. Linstep contributions
are expected to dominate earlier in the search strategy when
the population is more randomly distributed, while Newton
step is expected to perform better later since the population
may be expected to be closer to a minimum. For the configu-
ration in Fig. 4A and B, we find only a small improvement
over ISRES. Since Linstep does not have a defined step size
like Newton step (see Algorithm section), we varied the step
size (by varying blin) to tune the algorithm even further. Note
that blin is the Linstep parameter that controls the magnitude
of the gradient-descent step with respect to the diameter of
the cluster bubble formed by the individuals used to determine
the gradient. A value of this parameter > 1 indicates that the
magnitude of the gradient descent step is larger than the diam-
eter of the cluster bubble. While theoretically, any value of
blin � 1 would work, practically, a value not too much higher
than one would be most appropriate to protect the solution
from deviating too far away from the bubble into uncharted
terrain. When blin ¼ 2, the same configuration performs much
better as shown in Fig. 4C and D. In Fig. 4E and F, when blin

¼ 2 and when both Linstep and Newton step are active dur-
ing the entire duration of evolution, ISRESþ performs signifi-
cantly better than ISRES. However, for other values of blin

that we tested, the performance of ISRESþ was in most cases
comparable to ISRES (see Supplementary Section S5).

In summary, Newton step performs better than Linstep for
the Dl/Cact model. Both Linstep and Newton step have a
comparable performance for the Smad signaling model, but
having both Linstep and Newton step active throughout
yields a better performance. The three strategies that work
well for Dl/Cact and Smad signaling model underperform for
the gap gene model while switching Linstep off early and
switching Newton step on late and having a blin ¼ 2 performs
the best.

In general, Linstep and Newton step help ISRESþ perform
better than ISRES. The configuration of hyperparameters for
the three models discussed here are just recommendations
based on extensive tests performed on a trial-and-error basis.
The complexity of the models in systems biology precludes us
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Figure 3. ISRESþ v/s ISRES comparison for the Smad signaling model. (A) ISRESþ was run with only Linstep active throughout. The histogram plot of

the inverse fitness from all independent runs shows that ISRESþ found the lower minima in �76% runs compared with ISRES which found it in �60%
runs. (B) ISRESþ was run with only Newton step active throughout. The histogram plot of the inverse fitness from all independent runs shows that

ISRESþ found the lower minima in �78% runs compared with ISRES which found it in �60% runs. (C) ISRESþ was run with both Linstep and Newton

step active throughout. The histogram plot of the inverse fitness from all independent runs shows that ISRESþ found the lower minima in �88% runs

compared with ISRES which found it in �60% runs.
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from generalizing a set of hyperparameters that would help
ISRESþ always perform better than ISRES.

Overall, we find that adding a few contributions from lin-
ear least square fit-based methods into the population leads to
obtaining a more fit individual across all the biological mod-
els tested. Also, we find that the probability of obtaining a
more fit individual over several independent runs is higher.
This is generally true for a wide range of hyperparameter val-
ues and requires both Linstep and Newton step to obtain the
best results.

5 Discussion and conclusions

Evolutionary algorithms like ISRES are widely applied in sys-
tems biology to estimate model parameters (Ashyraliyev et al.
2009b, Jostins and Jaeger 2010, Crombach et al. 2012,
Kozlov et al. 2012, Spirov and Holloway 2013, Lobo and
Levin 2015, O’Connell and Reeves 2015, Liu et al. 2016,
Filkova et al. 2019, Maeda et al. 2019). ISRES uses randomly
generated parameter sets, or “individuals,” to evaluate the ob-
jective function and binary constraints to select fitter individu-
als and generate offspring through recombination and
mutation, finally evolving through recombination and muta-
tion into the fittest individual. ISRES creates a large popula-
tion of individuals, thus generating a large amount of
information, but only a small amount of it is utilized. In re-
combination, the fittest individual shares information in a
pair-wise fashion with the next top l�1 individuals, while in
mutation, no information is shared at all. Thus, in these

conventional evolutionary strategies, information is partially
shared within a generation to create fitter individuals, but
they fail to utilize the abundance of information that is gener-
ated about the fitness landscape across generations.

Our modified algorithm, ISRESþ, seeks to take advantage
of this information by understanding the features of the fit-
ness landscape by sharing information, potentially, between
all individuals explored up until that point in evolution. To
do this, ISRESþ employs two gradient-based strategies:
Linstep and Newton step, to understand the features of the
fitness landscape by sharing information between individuals
in all the previous generations to generate new offspring.
These individuals are chosen based on their proximity to the
fittest individual and not generation or lineage, allowing
ISRESþ to share information between a lot more individuals,
which helps probe the fitness landscape around the fittest
individual.

The first strategy, Linstep, is a first-order linear least
squares fit method which generates offspring by approximat-
ing the structure of the fitness landscape by fitting a hyper-
plane through OðnÞ individuals. In Linstep, a gradient descent
step is performed on a small number of individuals (1� 3) us-
ing the direction obtained from a cluster of individuals in the
immediate vicinity of the fittest individual, which is analogous
to a first-order Taylor series expansion. The magnitude of the
step is chosen as a fraction of the diameter of the cluster.
Linstep is expected to work better in the earlier generations
when the best parameter set may be far from a minimum, in
which case only a general direction of descent is needed. On
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Figure 4. ISRESþ v/s ISRES comparisons for the gap gene circuit model. (A) The three plot lines represent 75th, 50th, and 25th percentile of all the

independent simulations (N> 50). The plot indicates the inverse fitness across generations. (B) Histogram plot of the inverse fitness of the fittest

individual over all generations from all independent simulations. (A and B) ISRESþ was run with Linstep active for the first 1000 generations and Newton

step active from 1000th to 3000th generations. There is a marginal improvement in the 25th and the 50th. The histogram indicates that ISRESþ found

solutions that fit the model slightly better than ISRES. (C and D) ISRESþ has the same hyperparameters as (A and B) except blin, which is 2 in this case.

This allows the ISRESþ to perform significantly better than ISRES at all three plot lines and the histogram also indicates that ISRESþ found better fits to

the model compared with ISRES. (E and F) ISRESþ was run with Linstep and Newton step active throughout with a blin ¼ 2. ISRESþ has a lower 25th,

50th, and 75th percentile than ISRES although the distribution is wider. The histogram shows that ISRESþ found more solutions that were better than

ISRES more often (p-value was calculated using a modified t-test).
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the other hand, in later generations, when the population may
be closer to a minimum, Linstep could potentially overshoot a
minimum basin in a phenomenon known as gradient hemi-
stitching. In fact, Linstep is likely more prone to this issue
than traditional gradient descent methods, as the parameter
sets that are used to generate the hyperplane approximation
may lie on either side of a minimum basin, which would result
in a highly inaccurate gradient approximation.

The second strategy, the Newton step is a second-order lin-
ear least squares fit method which generates new offspring by
approximating the structure of the fitness landscape around
the Oðn2Þ individuals around the fittest individual in every
generation by a quadric hypersurface. In Newton step, a sin-
gle iteration of Newton’s method of function optimization is
performed by fitting a cluster of individuals to a quadric hy-
persurface paraboloid in n dimensions. The polynomial coef-
ficients of the paraboloid are then used to construct an
approximate Hessian and a new value of the gradient for
each individual, which is analogous to a second-order Taylor
series expansion. Newton’s step is executed on a handful of
individuals (1–3) that were used in the fitting procedure. It is
important to note that performing a full Newton’s step
(bnewt ¼ 1 in Equation 10) takes all individuals considered in
the Hessian calculation to the same point in search space.
Therefore, this method could either contribute a single indi-
vidual from a full Newton step or several with varying step
sizes. In all of our simulations, we ensured that Newton’s
method contributed one individual to the population every
generation, Newton’s step is expected to work better in later
generations when the algorithm is close to convergence and
Newton step could more precisely direct the search to a
minimum.

These intelligent search strategies enable ISRESþ to probe
the fitness landscape using gradient-based optimization tech-
niques while retaining the advantages of evolutionary
strategies.

Since the fitness landscape of complex models in systems bi-
ology is expected to be convoluted, we do not expect Linstep
and Newton step to make significant contributions in every
generation. During the search process, if the evolutionary
methods appear to get “stuck,” it will lead to the creation of
several individuals within a bubble of small diameter in the n-
dimensional parameter space. In such a case, Linstep and
Newton step are silenced until a new best-fit individual is
found by the stochastic evolutionary methods. Since the land-
scape is not known beforehand, we perform Linstep and
Newton step in every generation, rather than deciding arbi-
trarily on what criterion of distance qualifies as approximate
enough to activate these methods. It is important to note that
there is no additional overhead of calculating the gradient or
the Hessian, which would require OðnÞ and Oðn2Þ functional
computations, respectively, to construct the approximation.
Instead, the fitness landscape that has already been explored
is used to get approximate values of the gradient and the
Hessian. Thus, the only additional overhead involved is in
performing the matrix back-substitution to calculate the
parameters characterizing the linear and quadratic equations.
The benefit becomes more apparent in complex systems, like
that of a systems biology model, wherein the cost of comput-
ing the function is significantly higher than the cost of the ma-
trix back-substitution.

In all three systems biology models, we find that small con-
tributions from Linstep and Newton step to the population

bias the search in a way that it converges to a more fit region
of parameter space faster and more often. Also, the final dis-
tribution of the fittest individuals obtained across multiple in-
dependent runs is much tighter compared with ISRES. While
one might generally expect that once enough individuals are
created (within a handful of generations with our population
size, k ¼ 150), Newton step might outperform Linstep since it
is a second-order method. However, we found that, across all
three models, having both methods turned on had the highest
probability of obtaining the best solutions consistently over
several independent runs. This may be attributed to the fact
that the fitness landscape of the multiparameter systems biol-
ogy models is complex and the region around the fittest indi-
vidual may be best approximated by a hyperplane or by a
quadric hypersurface. Most of the initial gains may be attrib-
uted to Linstep, while Newton step seems to be responsible
for ensuring that the algorithm converges to the same region
in function space over multiple runs. Models in systems biol-
ogy are complex, making it difficult to generalize a combina-
tion of hyperparameters that help improve the performance
of ISRESþ, but generally, small contributions of the two
methods to the population in every generation lead to better
overall performance. With our suggested settings of hyper-
parameters: nlin ¼ 2, nnewt ¼ 1, and blin ¼ 2, ISRESþ gener-
ally outperforms ISRES. Even when this is not the case
ISRESþ rarely performs worse, and given the wall clock times
are indistinguishable, ISRESþ only improves upon ISRES.
This may be attributed to the fact that Linstep and Newton
step attempt to direct the strategy to search around the fittest
individual found so far, even if the ES methods have shifted
focus to exploring other regions that might neither have lower
penalty values nor lower objective function values. Since the
methods focus on the landscape local to the fittest individual
in all generations, there is mixing of information not only
from within the population but also between generations. The
relative success of these methods may be attributed to the fact
that the entire evolutionary history is used to develop a better
understanding of the functional landscape around the fittest
individual found so far and optimal search directions are
obtained in a deterministic manner.
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