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Biological recording is in essence a very simple concept in which a record is the report of a species at a physical
location at a certain time. The collation of these records into a dataset is a powerful approach to addressing
large-scale questions about biodiversity change. Records are collected by volunteers at times and places that suit
them, leading to a variety of biases: uneven sampling over space and time, uneven sampling effort per visit and
uneven detectability. These need to be controlled for in statistical analyses that use biological records. In particular,
the data are ‘presence-only’, and lack information on the sampling protocol or intensity. Submitting ‘complete lists’
of all the species seen is one potential solution because the data can be treated as ‘presence–absence’ and
detectability of each species can be statistically modelled. The corollary of bias is that records vary in their
‘information content’. The information content is a measure of how much an individual record, or collection of
records, contributes to reducing uncertainty in a parameter of interest. The information content of biological
records varies, depending on the question to which the data are being applied. We consider a set of hypothetical
‘syndromes’ of recording behaviour, each of which is characterized by different information content. We demonstrate
how these concepts can be used to support the growth of a particular type of recording behaviour. Approaches to
recording are rapidly changing, especially with the growth of mass participation citizen science. We discuss how
these developments present a range of challenges and opportunities for biological recording in the future. © 2015
The Linnean Society of London, Biological Journal of the Linnean Society, 2015,
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INTRODUCTION

A biological record consists of four main pieces of
information: the What, Where, When and Who of
what was recorded. What refers to the identity of the
species; Where is the spatial location; When is the
date or, occasionally, the range of dates over which
the record was collected; Who is the person who made
the record. Individual records can provide evidence
about the persistence of rare species, or the spread of
invasive species, but most records contain very little
information on their own. However, when collated
into large databases, the information encoded in bio-
logical records is enormous (Hochachka et al., 2011).

Biological records come from a wide range of
sources, including systematic population monitoring,
professional surveys and mass participation projects

(August et al., 2015; Pocock et al., 2015). In the UK,
the term is most closely associated with activities of
volunteers supported by the National Recording
Schemes and Societies. These data are characterized
by having neither a consistent structure nor a fixed
sampling protocol. They constitute a mixture of both
opportunistic records and focused surveys by expert
volunteers (e.g. filling gaps in distributions or target-
ing under-recorded regions). We focus on the proper-
ties of these data, and the issues around their use in
scientific applications.

The enormous value of biological records for scien-
tific applications is well known (Pocock et al., 2015;
Powney & Isaac, 2015; http://onlinelibrary.wiley.com/
doi/10.1111/bij.12517/abstract). However, statements
about this value are often qualified with references to
the biases and limitations inherent in opportunistic
volunteer-collected data (Bird et al., 2014). Records
are made only for species that were observed (they
are often called ‘presence-only’ data), thus greatly*Corresponding author. E-mail: njbi@ceh.ac.uk
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limiting the inferences that may be drawn from them
(Tingley & Beissinger, 2009). A deeper problem is that
volunteer recorders are highly motivated by encoun-
ters with interesting wildlife. This means that the
spatial and temporal patterns of recording, and hence
records, are very different from the kind of stratified
random sampling protocol that a professional ecolo-
gist might design (Tulloch et al., 2012).

This ‘recorder effort problem’ (Prendergast et al.,
1993; Hill, 2012) has limited the scope of scientific
applications of biological records, as researchers
sought ways to draw robust conclusions in the face of
biased data. One common approach was to aggregate
the data to some spatio-temporal scale at which the
biases in space and time might be argued to be
averaged out, such as counting the number of occu-
pied grid cells across the whole country within atlas
periods (e.g. Telfer, Preston & Rothery, 2002; Thomas
et al., 2004). An alternative approach has been to
identify and select subsets of records perceived to be
free of bias, based on thresholds for data quality
(Maes et al., 2012; Roy et al., 2012). Both approaches
throw away most of the information contained in the
records, and thresholds for data quality are necessar-
ily subjective. Recently, a suite of statistical tech-
niques has emerged that, rather than removing the
bias, models the data collection process (MacKenzie,
2006; Szabo et al., 2010; Hill, 2012; van Strien, van
Swaay & Termaat, 2013). A feature of many such
methods is the grouping of records into sets that
share a common time and place (e.g. the site visit),
such that observations of some species can be used to
infer a failure to report others. Adoption of these
methods has been accompanied by a much greater

sophistication in the range of scientific questions
being addressed using biological records (Powney &
Isaac, 2015).

Against the backdrop of these developments, we
take a fresh look at the recorder effort problem. We
introduce the concept of the information content of
records data, and discuss some of the ways in which
an information theoretic approach to biological
records data could be useful. We speculate on how
small changes in the way biological records are col-
lected and stored would have large benefits in terms
of the insights that could be gained from the data.

BIASES IN BIOLOGICAL RECORDS

The fact that biological records data are biased is well
known (Prendergast et al., 1993), but these biases
have rarely been defined and quantified. Isaac et al.
(2014) identified four major biases in records data: (1)
uneven recording intensity over time, (2) uneven
spatial coverage, (3) uneven sampling effort per visit
and (4) uneven detectability across space and time. In
this section we explore the nature of these biases,
with some examples from recording schemes in Great
Britain.

Uneven sampling over time is the best-known form
of bias. The number of records being generated has
increased markedly in recent years, and for many
groups the growth is approximately exponential (i.e.
linear on a logarithmic scale; Fig. 1). As recording
intensity increases, the number of grid cells that
appear to be occupied is likely to increase, even for
species with stable distributions (Telfer et al., 2002).
However, the growth of recording has not been
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Figure 1. Number of records per year for 11 taxonomic groups in Great Britain, 1970–2010.
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smooth, but punctuated by bursts of activity associ-
ated with the production of distribution atlases.

Uneven spatial coverage occurs because most
recorders tend to submit records within a well-defined
geographical area, e.g. close to where they live or
places they enjoy visiting. In addition, recording in
the British Isles traditionally operates at a regional
level, often within ‘Watsonian vice-counties’ (regions
defined in 1852 to help standardize recording: Dandy,
1969). This often serves to homogenize recording
effort within a vice-county (e.g. as associated with the
production of local atlases for specific taxa) but can
accentuate this apparently arbitrary variation in
recording effort between vice-counties (Fig. 2). When
records are aggregated into large datasets, the spatial
intensity of recording effort varies markedly, reflect-
ing the spatial distribution of where recorders visit
(Fig. 3). Patterns of variation in species richness may
therefore be accentuated because people choose to
visit places which are especially diverse for their
taxon of interest (Prendergast et al., 1993). Moreover,
because recorders are active at different times, the
spatial intensity of recording is uneven over time.

Sampling effort per visit refers to the degree to
which any one set of records is an accurate reflection
of the organisms that were actually present. Very few
visits (i.e. a set of records from one site collected on
the same day) produce a list of all the species that are
present and active (i.e. ‘recordable’) on a site, because
detection is less than perfect (Kéry et al., 2009; Chen

et al., 2013). The sampling effort of a visit has two
components: the intensity of the search effort, and the
set of species that were surveyed. The first of these
reflects the standard concept of a species accumula-
tion curve: the more time you spend searching, the
more species you find. The second component is best
illustrated by the concept of the ‘complete list’: a
complete list of bees means that a record was made
for every bee species that was observed on a particu-
lar visit. Note that a complete list does not indicate
that all species that were present and able to be
observed were actually observed, but merely that all
the species observed were reported. Incomplete lists
occur because many biological records are not visit
lists (i.e. there is no ‘survey’), but rather ‘incidental
records’ (e.g. just the ‘interesting’ species).

For complete lists, we would expect the identity of
species on the list to be some function of their local
population density (Royle & Nichols, 2003) and visual
apparency. The length of the list is then an indication
of the duration and intensity of the survey (Szabo
et al., 2010). Short lists in real datasets reflect both
complete lists from brief surveys, complete lists where
few species are recordable (e.g. in sites with low
diversity, or at the beginning or end of activity periods
for invertebrates) and collections of incidental
records: real datasets contain an unknown mixture of
these three broadly defined data types. There is no
direct information on this phenomenon, but the high
proportion of short lists among British recording
schemes and societies (Fig. 4) implies that incidental
recording is more common than complete listing.

As noted above, detection is less than perfect in
most situations, and some species are easier to spot
than others. The statistical basis for handling imper-
fect detection is well developed (MacKenzie, 2006),
but problems can arise when detection varies sub-
stantially in space or time. For example, detectability
may be strongly influenced by vegetation structure or
successional change (Isaac et al., 2011). Like the
biases described above, detectability also reflects the
behaviour of individual recorders and the tools avail-
able to them. The publication of a new field guide can
facilitate the identification of species that were pre-
viously hard to separate. New survey methods can
also contribute to changing recording effort. For
example, moths such as the small ranunculus
Hecatera dysodea (Lepidoptera: Noctuidae) and but-
terflies such as the brown hairstreak Thecla betulae
(Lepidoptera: Lycaenidae) are much more easily
recorded as larvae than as adults. As this kind of
knowledge spreads, so does the number of records for
these species. Similarly, the use of bat detectors by
entomologists provides a substantial increase in the
detectability of orthopterans that stridulate at ultra-
sonic frequencies (Benton, 2012).

Figure 2. Distribution of moth Chrysoteuchia culmella
(Lepidoptera: Crambidae), illustrating strong variation in
recording intensity between vice-counties. Data from the
National Biodiversity Network Gateway.
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The four biases of Isaac et al. (2014) are clearly not
exhaustive. It is well known that appearances of rare
and unusual species (especially migrants) attract
‘twitchers’ and producing large numbers of records in
a short space of time, often producing multiple
records of the same individual. Another potential bias
comes from ‘annual listing’, in which only one
(usually the first) record of a species is recorded for a
site in any year. It is unknown how prevalent these
kinds of recording practices are, or what their effects
on statistical inference might be.

INFORMATION CONTENT

The adoption of sophisticated methods for analysing
biological records has focused attention on the process
by which records are collected. The word ‘bias’ has
negative connotations, so this section explores the
opposite concept: the amount of ‘information’ con-
tained in the records (Munson et al., 2010). Here, we
are referring to the mathematical definition of ‘infor-
mation’ (as in the discipline of information theory).
One way of describing the information content of a

record is its contribution to the accurate and precise
estimation of any underlying parameter of interest,
for example distribution size, trends in distribution or
position of range margins. Because the data are het-
erogeneous, and because the biases reflect the way in
which individual recorders behave when making
observations about wildlife, it makes sense to think
about the information content of an individual
recorder, as well as that of the collated dataset.

For most scientific applications, the information
content of a dataset is measured by the sample size
(i.e. the number of records). Biological records data
are different because information content can be
expressed in at least three dimensions, each of which
has several sub-dimensions or components. The key
components of information content are related to the
biases discussed above: the temporal footprint, the
spatial footprint and the field sampling method. This
multi-dimensionality means that the information
content of any one set of records is not a fixed quan-
tity, but is dependent on the question to which the
data are being applied. For example, incidental
records are sufficient to characterize unusual phe-

Figure 3. Map of the recording intensity of dragonflies and damselflies since 2000, as determined by the number of visits,
i.e. unique combinations of place and date. Data from the British Dragonfly Society.
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nomena, such as first sightings or the spread of poten-
tially harmful invasive species, but are much less
useful to assess trends in species’ status over time
(van Strien et al., 2010).

The temporal footprint has several components, the
simplest of which is the time span covered by the
records. Whole datasets span many years, but with
low recording intensity prior to 1980 (Fig. 1). For an
individual recorder, the time span is simply the years
over which a recorder is active. The second component
is the rate at which records are produced each year.
The time span and the recording rate determine the
total output (number of visits and/or number of
records) of a recorder. For nearly all recording
schemes, output is highly skewed, and the informa-
tion in the dataset is dominated by contributions of
just a few individuals. This inequitable distribution of
contribution (known as the Pareto distribution) is
characterized as the 90:10 principle, and is exempli-
fied by recording birds in the USA in which 90% of
recorded visits are by 10% of observers (Wood et al.,
2011). The situation for biological recording in the UK
is often more extreme than this. For example, 14% of
the total visits between 1970 and 2010 were made by
the four most prolific Orthoptera recorders (of which
there are over 2000), and half the visits were from
just 38 recorders. Among ants, bees, wasps, centi-
pedes and millipedes, the number of recorders con-
tributing half the visits since 1970 is ten or fewer. The
third temporal component is the phenological foot-

print (cf. Bishop et al., 2013), i.e. is the recorder active
all year, or only during specific times (e.g. summer
holidays)?

The spatial footprint simply measures the geo-
graphical spread of records: some recorders travel
widely but most record in places close to where they
live (Fig. 5). Some public-facing citizen science pro-
jects, such as the RSPB Big Garden BirdWatch,
encourage contributors to sample wildlife from a very
restricted area (i.e. their own gardens), so the spatial
footprint of each participant is very small.

The field sampling method refers to the process of
recording on individual site visits: whether the
records come from systematic searches (information-
rich) or whether they are mostly incidental records of
rare and charismatic species (information-poor). Of
particular interest is the notion of a ‘complete list’,
which is used by the BirdTrack database to indicate
that a particular set of records constitutes all the
species that were observed (Baillie et al., 2006). As
noted above, ‘complete’ refers to the lack of deliberate
omissions. These different field sampling methods can
be placed within a pyramid of increasing information:
the pyramidal shape reflects a suspicion that
information-poor strategies contribute a far greater
proportion of biological records than do information-
rich ones (Fig. 6). Complete lists are an improvement
on incidental records, because they contain informa-
tion about non-detections. The systematic surveys are
complete lists derived from some kind of search
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protocol: this could be as simple as a minimum time
spent searching, or the use of a particular method.
The notion of a fixed site means that records gathered
at different points in time are directly comparable
with one another. Repeated visits within years (on
fixed sites) deliver the highest form of information,
because they allow detectability to be estimated
directly (MacKenzie, 2006).

A further attribute of information content reflects
variation in taxonomic expertise and field skills.
Common and easy-to-identify species are likely to be
over-represented in the records submitted by less-
experienced recorders. These factors mean that the
less-experienced recorders are likely to have lower
list lengths from a thorough search, and so contrib-
ute less information. Experienced recorders know
what they are looking for and where to look: many
rare invertebrates have specific microclimatic
requirements, and this kind of natural history knowl-

edge is the difference between easily detectable and
impossible to find (S. P. M. Roberts, pers. comm.).
Search image is especially important for very small
organisms, or those with characteristic flight behav-
iour. Taxonomic identification of some organisms
takes years to master. For some invertebrates iden-
tification is only possible by microscopy of genitalia,
which requires killing voucher specimens, access to a
microscope and skill in specimen preparation. For
field-based recorders these species will either be
recorded as an aggregate group or simply ignored.
These factors mean that the recorders differ greatly
in the potential list length that might result from a
thorough search.

Of course, we have assumed that information in the
records (the What, Where and When) is correct. Mis-
identifications provide mis-information and so reduce
information content. Data verification is therefore an
essential step in the collation of these datasets. Vol-
unteer experts and organisers of national recording
schemes have a vital, and often under-appreciated,
role in verifying records (Pocock et al., 2015), which
supports excellent quality science.

Different research applications place different
demands on the data. When mapping species rich-
ness, we should be primarily concerned about the
spatial footprint of the data. For estimating trends in
species’ status, we should be mindful of the temporal
pattern of recording. We might also wish to use bio-
logical records to measure turnover in community
composition, in which case the sampling strategy is
likely to be a key concern (Barwell et al., 2015).

Information theory posits that the amount of infor-
mation contained in a dataset is not merely an arbi-
trary concept, but rather an estimable quantity.
Shannon’s entropy is widely used as a measure of
alpha diversity (Jost, 2006), and it could useful for
measuring aspects of the information content in bio-
logical recording datasets. For example, it could be
used to quantify the cross-taxon variation seen in our
Figures 1 and 4. We could further quantify the spatial

Figure 5. Recording footprints of four moderately prolific wasp recorders in Great Britain, 1970–2010. Red colours
indicate grid cells with the highest number of visits; blue colours indicate a single visit.

Figure 6. A conceptual representation of the quality
(information content) and quantity of records under dif-
ferent sampling strategies.
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and temporal footprints of individual recorders using
the standard deviations in latitude, longitude and
date. Other statistics could be derived to measure
other properties of interest, such as the characteristic
phenology, list length and predilection for rare or
common species. Developing statistics of this nature
would make it possible to formally compare the infor-
mation content of different datasets (cf. Munson et al.,
2010) for a range of different scientific and policy-
relevant applications.

CHARACTERISING AND
MOTIVATING RECORDERS

Increasing the information content in biological
records data requires an investment of time and
money to motivate and train volunteer recorders. By
identifying the motivations of recorders and the traits
of information-rich data, schemes and societies can
more effectively allocate resources for training to
address their goals. For example, would it be more
effective to provide taxonomic skills to large numbers
of novice recorders, or train mid-level recorders
(already committed and proficient) in concepts around
sampling effort and repeatability? In other words, is
it better to broaden the base of the information
pyramid, or to encourage existing participants to
move up within the pyramid? If the aim is to produce
data that are minimally biased and maximally
informative, it may be necessary to supplement the
records by paying recorders (or professional survey-
ors) to visit under-recorded parts of the country.

As we have seen, recorders differ greatly in the
information contained within their records. In part
this reflects the fact that records come into schemes
from a variety of sources including regional surveys,
targeted surveys (including ecological consultancies
surveying for rare species), incidental observations
and, increasingly, citizen science programmes (Pocock
et al., 2015). We believe that much of the variation in
information content can be explained by the motiva-
tions and characteristic behaviours of individual
recorders, as well as their taxonomic expertise.

It could be possible to use the characteristic traits
of the recording process to categorize different types
(or ‘syndromes’) of recorder based on their pattern of
recording. From this it would be possible to assess
how much information each type of recorder provides
to the overall dataset for any particular potential use
of the dataset (Munson et al. 2010). Table 1 defines
the traits of seven hypothetical syndromes in terms of
their motivations, behaviours and the information
profile of their records.

The degree to which these syndromes reflect reality
is likely to vary from one recording scheme to another.
For example, we suspect that datasets for taxonomic
groups with small numbers of recorders (e.g.
Auchenorrhyncha) consist of an unusually high pro-
portion of Taxon Specialists. Conversely, we expect
that charismatic groups such as butterflies and birds
contain large quantities of data from Casual Record-
ers. This contrast highlights the fact that simply
counting the number of records in a dataset provides
a poor indication of whether a dataset is suitable for
addressing any given research question.

Table 1. Traits of recorders that could be influential in describing different recorder ‘profiles’ or ‘syndromes’; a range of
potential profiles have been identified

Trait
Relevance to information
content

Hypothetical recorder profiles (‘syndromes’)

Taxon
specialist

Patch/county
specialist

General
naturalist

Casual
recorder Pan-lister

Complete lists? An indication of the typical
effort per survey

Yes Yes Varies No No

Coverage of ‘rare’ species Predilection for reporting
unusual sightings

Varies Varies Low Low High

Coverage of difficult species Taxonomic expertise High High Low Low Varies
Length of activity of

reporting
Temporal footprint High High High Varies Varies

Frequency of recording Productivity and consistency High High Varies Low High
Spatial variation in

recording
Spatial footprint of the data High Low Varies Varies High

Variation in recording
across taxa

Consistency of recording
across taxa (taxonomic
specialist versus
jack-of-all-trades)

Low Low High High High
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This concept of participant ‘syndromes’ is receiving
increasing interest in citizen science (Furtado et al.,
2013; Ponciano et al., 2014), particularly around
increasing rates of participation and data flow for
online citizen science (in which participation can be
accurately assessed). It has some similarities to the
recording pyramid (Fig. 6), but provides a more multi-
dimensional view of these data. A key goal in these
types of projects is to consider how participants can
be motivated to participate in a way that is typical of
another syndrome in order to increase the informa-
tion content of the whole dataset (Furtado et al.,
2013). In the context of biological recording, this
might be persuading Casual Recorders to start
recording complete lists (Baillie et al., 2006; Wood
et al., 2011). Patch Watchers are likely to be moti-
vated by a sense of place and local pride, and they
could be persuaded to undertake some recording of
under-recorded taxa in that location. County or
Taxon-specialists may be more likely to be motivated
to consistently record in apparently under-recorded
grid cells than other syndromes, even if, in some
instances, they are simply recording common species
in places that are relatively poor in biodiversity. Some
recorders might be motivated to collect more and
better data by introducing a competitive or game-
based element to recording (Greenhill et al., 2014;
Nov, Arazy & Anderson, 2014), although this strategy
requires caution because others would be repelled by
this idea.

The principle of identifying recorder syndromes is
fairly straightforward, but the practice will be chal-
lenging, especially if classification is fuzzy (because
no one will perfectly fit a single ‘syndrome’) or
because recorders’ syndromes change over time. A
major limitation is that the way records are currently
collected, collated and curated makes it impossible to
unambiguously identify unique recorders. The use of
unique usernames presents an obvious solution for
data submitted to online systems (e.g. iRecord, iSpot
or eBird), but using this information has a number
of issues regarding privacy (Bowser, Wiggins &
Stevenson, 2013) that have not yet been fully
resolved. Further complexities arise when records are
attributed to multiple individuals (e.g. when on a
society’s field trip or during a ‘bioblitz’), although the
proportion of such records is likely to be small in most
datasets.

MODELLING ASSUMPTIONS
AND METADATA

Until recently, the ‘presence-only’ nature of biological
records presented serious problems for scientific appli-
cations of biological records: it would be naïve to

assume that failure to record a species indicated its
absence (Tingley & Beissinger, 2009). Modern analyti-
cal techniques treat these pseudoabsences as data,
by employing a conceptual or statistical model of
the recording process. This feature is most clearly
expressed in occupancy-detection modelling (van
Strien et al., 2013; Isaac et al., 2014). Failure to detect
is inferred from records of other species, which in turn
assumes that species are recorded as an assemblage.
In effect, the assumption is that recorders are ticking
species off a pre-defined list of all potentially record-
able species in the assemblage. As discussed, differ-
ences in recorder motivation, skill and behaviour
mean that the list of potentially recordable species
varies markedly between recorders and visits. The
extent of this variation in space and time is therefore
a critical issue for the robustness of scientific infer-
ences from biological records (Isaac et al., 2014).

As discussed above, recorders differ in the degree to
which they record rare, common and difficult-to-
identify species, as well as in their propensity to
report complete lists (Table 1). Thus, biological
records data are extremely heterogeneous, consisting
of numerous sub-datasets each with a different but
unknown check-lists from which the records are
drawn. For example, a list of hoverfly species could be
drawn from the whole fauna, the flower-visiting
species, or the subset that is easy to identify? What
hope, then, that sophisticated statistical analyses will
deliver substantive and robust insights from biologi-
cal records data? Whilst the heterogeneity in human
behaviour is baffling, it may be possible to model it
statistically. The heterogeneous behaviour of human
recorders is analogous to a situation commonly
encountered in mark–recapture studies, where some
animals are much more (or much less) prone to recap-
ture than others, leading to biased population size
estimates (Otis et al., 1978). The solution was to
assume that assume that animals are drawn from
two (or more) populations each with a characteristic
capture probability (Pledger, 2000). These ‘mixture
models’ effectively solved the heterogeneity problem
at the cost of just a few parameters: in the case of
recorders, these parameters would express the prob-
ability that an individual recorder (or visit) is a com-
plete or incomplete list.

The assumption that species are recorded as an
assemblage is essentially an attempt to reverse-
engineer the data collection process. As implied
above, that data collection process is often known,
and could itself be recorded as metadata. The sim-
plest example is the ‘complete list’ checkbox employed
by BirdTrack (Baillie et al., 2006). For a citizen
science project or targeted survey, the species on the
checklist are often known, but this information is not
retained when records are collated into recording
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schemes, the National Biodiversity Network Gateway
and Global Biodiversity Information Facility. Small
amounts of metadata about survey methods and scope
would add structure to biological records data, and
would contribute greatly to the scientific inferences
that could be drawn from them, for example through
the application of hierarchical models which explicitly
take account of the recording process (Pagel et al.,
2014). Smartphone apps and other technology have
enormous potential to harvest metadata at the point
of data collection with little or no effort from recorders
(August et al., 2015).

CONCLUDING REMARKS

Biological recording is changing fast. The modelling
techniques are becoming more sophisticated, as are
the range of scientific and policy-relevant applications
(Powney & Isaac, 2015). In parallel, new technologies
are changing the way that records are collected
and stored (August et al., 2015; Pocock et al., 2015).
The enormous potential of biological records data is
increasingly valued by agencies with statutory
responsibilities to conserve and report on the status of
biodiversity both in the UK (Thomas et al., 2015;
Natural England, Joint Nature Conservation Com-
mittee, Scottish Natural Heritage, etc.) and interna-
tionally (Danielsen et al., 2014; Maes et al., 2015).
These agencies and funding bodies see enormous
potential in engaging the enthusiasm of volunteers; it
is a cost-efficient method for gathering data in the
face of limited budgets. For this reason new schemes,
such as the nascent National Plant Monitoring
Scheme (Pescott et al., 2015), are likely to involve
contributions from volunteers in some shape or form.
The growth of smartphone apps for recording wildlife
and the growth of public-facing citizen science pro-
grammes mean that data collected in the future are
likely to have different biases and different ‘informa-
tion content’ than records from the recent past. By
understanding the various sources of bias and the
characteristics of information-rich data, we will be
able to make better use of biological records in policy,
conservation and science.
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