Abstract

Typically, females and males are expected to have characteristic sexual strategies and patterns of size dimorphism, but these generalizations are subject to exceptions. The occurrence of atypical cases has been related to species or populations from environments under strong physical, ecological and/or social constraints. Allocosa marindia and Allocosa senex are two coastal spiders (Lycosidae: Allocosinae) with reversal in sex roles and sexual size dimorphism. Males are larger than females, and females are the mobile sex that initiates courtship. It is unclear whether the occurrence of non-typical sexual traits in Allocosinae spiders is correlated with coastal habitats. Our aim was to study sexual size dimorphism and surface mobility in Allocosinae spiders from different habitats throughout South America. We revised specimens from scientific collections and performed 3-day samplings to collect individuals and determine nocturnal surface mobility. We analysed a total of 1071 Allocosinae adult individuals from 18 species and/or morphotypes. Our results revealed new species inhabiting coastal habitats with reversal in sexual size dimorphism and higher nocturnal surface activity in females; however, not all coastal species shared those characteristics. Future studies will focus on studying other ecological, physiological and/or phylogenetic factors that could be shaping the origin and maintenance of sex role reversal in Allocosinae.

INTRODUCTION

The energetic investment of each sex in reproduction is the outcome of costs associated with production and maintenance of gametes, courtship and mating effort, delivery of nuptial gifts and/or other resources related to reproduction, the occurrence of mate guarding and parental effort, among other social and environmental factors (Trivers, 1972; Parker, 1984; Gwynne, 1991; Bonduriansky, 2001; Fritzsche et al., 2021). Classically, owing to their higher investment in gametes and parental care, females are assumed to be the selective sex, whereas males compete among themselves and court potential sexual partners (Darwin, 1871; Parker, 1984; Andersson, 1994; Fritzsche et al., 2021). However, during recent decades several studies have shown that this general rule has numerous exceptions (Gwynne, 1991; Eens & Pinxten, 2000; Bonduriansky, 2001). Furthermore, the concepts of fixed female and male ‘sex roles’ are currently under debate and could be related to traditional views about gender stereotypes (Ah-King & Ahnesjö, 2013; Pollo & Kasumovic, 2022).

There are multiple examples within the animal kingdom of species in which males show similar or higher reproductive investment than females and in which sexual patterns differ markedly from those typically expected (Gwynne, 1991; Andersson, 1994; Bonduriansky, 2001; Aisenberg, 2014). In these cases, females search for potential sexual partners and initiate courtship, whereas males are selective when taking mating decisions (Gwynne, 1991; Fritzsche et al., 2021). Although these examples have been reported in taxa as diverse as birds, amphibians, fish, crustaceans, insects and spiders (Gwynne, 1991; Eens & Pinxten, 2000; Bonduriansky, 2001; Aisenberg, 2014; Fritzsche et al., 2021), there are few exhaustive studies on this topic. Several of these reports come from species or populations inhabiting environments that suffer variable and/or extreme climatic conditions and/or unpredictability in access to refuges and prey availability, among other factors (Gwynne, 1991; Karlsson et al., 1997; Queller, 1997; Lorch, 2002). These factors could shape the intensity of sexual selection on each sex, as has been shown in Mormon crickets by Gwynne (1993), Gwynne & Simmons (1990) and Hare et al. (2022) and reviewed in different animal groups by Gwynne (1991) and Eens & Pinxten (2000). Individuals adapted to these environmental conditions could require high reproductive investment to be viable, not only from the female but also from the male, in terms of mate search, courtship and mating effort, nest-site selection and construction and/or parental care, driving the reversal of behavioural patterns expected for that animal group.

Sexual dimorphism is the evolutionary response in each sex to the effects of natural and sexual selection under genetic, phylogenetic, physiological, behavioural and ecological restrictions (Shine, 1989; Blanckenhorn, 2005; Fairbairn et al., 2007; McLean et al., 2018). Sex role reversal can include the occurrence of non-expected sexual dimorphism patterns between females and males, including sexual differences in size, ornamentation, coloration or other morphological traits (Gwynne, 1991; Eens & Pinxten, 2000). Although body size differences between the sexes are well documented in vertebrates, information about invertebrates is scarce, particularly within arachnids (Abouheif & Fairbairn, 1997; McLean et al., 2018). In spiders, in general females are larger than males, in some cases reaching extreme sexual size dimorphism (Vollrath & Parker, 1992; Hormiga et al., 2000; Foellmer & Moya-Laraño, 2007; De Mas et al., 2009; McLean et al., 2018). The occurrence of sexual size dimorphism in spiders has been discussed in terms of fecundity and foraging advantages in females. In spiders, there is evidence that female body size is positively correlated with the number of eggs, hence females with larger body sizes and better body condition would have higher reproductive success (Prenter et al., 1999; Hormiga et al., 2000; Walker & Rypstra, 2002; Foellmer & Fairbairn, 2005). In males, a smaller size could provide advantages when looking for females, for avoiding predators and/or climbing female webs during the reproductive period (Vollrath & Parker, 1992; Coddington et al., 1997; Hormiga et al., 2000; Moya-Laraño et al., 2002; Foellmer & Fairbairn, 2005). Wolf spiders, in which both sexes are usually wanderers, typically show moderate sexual dimorphism, with males being ~10–20% smaller than females but with longer legs (Head, 1995; Walker & Rypstra, 2002; Framenau & Hebets, 2007; Aisenberg et al., 2010; Logunov, 2011). Studies testing the evolutionary pathways of sexual size dimorphism in spiders suggest that there have been diverse factors shaping its origin and maintenance according to the group, making it difficult to formulate global explanations (Hormiga et al., 2000; Kuntner & Elgar, 2014; McLean et al., 2018).

The wolf spider subfamily Allocosinae was proposed by Dondale (1986) and comprises 27 species (Dondale & Redner, 1983; Brescovit & Alvares, 2011; Brescovit & Taucare-Rios, 2013; Simó et al., 2017; Piacentini & Ramírez, 2019; Gonnet et al., 2021a; Laborda et al., 2022). Dondale & Redner (1983) revised the genus Allocosa from the Neartic and Central America and described several species, but our knowledge of South American representatives is scarce. In recent phylogenetic studies, the subfamily Allocosinae was recovered as a monophyletic group that comprises five genera, of which Allocosa is the most species rich, including a clade with South American coastal species (Simó et al., 2017; Piacentini & Ramírez, 2019; Gonnet et al., 2021a; Laborda et al., 2022; Laborda, 2023).

Allocosa marindia Simó et al., 2017 and Allocosa senex (Mello-Leitão, 1945) (Allocosinae, Lycosidae) are two nocturnal spiders that inhabit the sandy coasts of rivers, lakes and the seashore of the Atlantic Ocean in Southern South America (Capocasale, 1990; Simó et al., 2017). Both species show reversal of typical sex roles and sexual size dimorphism (Aisenberg et al., 2007; Aisenberg & Costa, 2008; Aisenberg, 2014). Males are larger than females (Aisenberg et al., 2007; Aisenberg & Costa, 2008), and they construct long, silk-lined burrows in the sand, where they stay for long periods waiting for female visits. Conversely, females construct small silk capsules, where they stay during the day (Aisenberg et al., 2007). They are the mobile sex, and during summer nights they search for male burrows and initiate courtship (Aisenberg et al., 2007; Aisenberg & Costa, 2008). Mating occurs inside male burrows, and both sexes are selective during sexual interactions: females on male burrow length, and males on female reproductive status and body condition (Aisenberg et al., 2007; Aisenberg & González, 2011). Only in A. senex, it was observed that rejected females could be attacked and cannibalized (Aisenberg et al., 2009; Bollatti et al., 2022). After mating, males leave their own burrows, whereas females stay inside and will oviposit there, emerging when it is time for spiderling dispersal (Postiglioni et al., 2008; Aisenberg, 2014).

Although the coastal spiders A. senex and A. marindia have been studied, little is known about size dimorphism and mobility patterns of each sex among other South American Allocosinae species. South American sandy beaches are subject to drastic changes of physical factors, such as temperature, gradients of salinity (i.e. estuarine and oceanic beaches), humidity, winds, tides and the possibility of floods, and other factors, such as reduction of their area, fragmentation, and variations in prey availability and potential refuges for animal species (Albín et al., 2017; McLachlan & Defeo, 2018; Lopes Costa et al., 2022). As mentioned above, environments with these characteristics could be associated with the origin and maintenance of sex role reversal.

Our aim was to study sexual size dimorphism and surface mobility in Allocosinae spiders from different habitats of South America. For that purpose, we compared sexual size dimorphism of South American species with information from scientific collections of other Allocosinae species from Central and North America. Based on the reports of sex role reversal dependent on environmental conditions of the habitat in a variety of species (Gwynne, 1991; Karlsson et al., 1997; Queller, 1997; Lorch, 2002), we predicted that only Allocosinae spiders inhabiting coastal habitats would show non-typical sexual traits, with larger body size in males and higher surface mobility in females. In addition, we evaluated the effects of habitat on variation in sexual dimorphism at the intraspecific level in A. senex, a species that inhabits two types of coastal habitats (fluvial coast and oceanic estuarine coast).

MATERIAL AND METHODS

Field samplings

We conducted nocturnal samplings in Uruguay (Melilla and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo; Área Protegida Montes del Queguay, Paysandú), Argentina (Parque Provincial Ischigualasto, San Juan; Parque Nacional Lanín, Neuquén; Parque Nacional El Palmar, Entre Ríos), Chile (Parque Nacional Río Clarillo, Santiago Región Metropolitana) and Brazil (RPPN Pró-Mata-PUCRS, Rio Grande do Sul; Parque das Dunas Salvador, Bahia) between 2018, 2019 and 2020 (Table 1). We selected these locations based on preliminary observations by the authors (AA, AL, LBB, LNP) and on distribution and habitat data of American Allocosinae available from natural history collections. We included Allocosinae species and morphotypes from different habitats, such as fluvial and oceanic–estuarine coasts, volcanic sandy coasts, sandy valleys, sandy mountain coasts, grasslands and gardens (Table 1; Fig. 1). We categorized the habitats based on observations at each site of substrate characteristics, topography and revision of landscape maps, according to the classification of global ecosystems by Keith et al. (2022).

Table 1.

Field sampling localities of Allocosinae species from South America

SpeciesLocalityCoordinatesHabitat
BiomeFunctional group
LatitudeLongitude
Allocosa senexParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ32.128″S
58°12ʹ31.76″W
Oceanic–estuarine–fluvial coast
Savannas and grasslands
Temperate woodlands
Área Protegida Montes del Queguay, Paysandú, Uruguay32°10ʹ43.4″S57°14ʹ12.2″WOceanic–estuarine–fluvial coastSavannas and grasslandsTemperate woodlands
Allocosa cf. senexParque das Dunas, Bahia, Brazil12°55ʹ26.52″S38°19ʹ46.98″WOceanic–estuarine–fluvial coastTropical–subtropical forestsTropical/subtropical lowland rainforests
Allocosinae sp. 1 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 2 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 4 ‘Lanín’Parque Nacional Lanín, Neuquén, Argentina39°45ʹ10.4″S71°30ʹ1.84″WVolcanic sandy coastDesert and semi-desertsCool deserts and semi-deserts
Allocosinae sp. 5 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Allocosinae sp. 7 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Paratrochosina amicaParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ3.47″S


58°12ʹ33.78″W


Grassland, garden
Savannas and grasslands
Temperate woodlands
Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay34°53ʹ15.6″S56°08ʹ34.8″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Melilla, Montevideo, Uruguay34°43ʹ53″S56°19ʹ23.4″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Reserva Particular do Patrimonio
Natural Pró-Mata-PUCRS, Rio Grande do Sul, Brazil
29°28ʹ51.21″S50°10ʹ26.92″WGrassland, gardenTropical–subtropical
forests
Tropical/subtropical
lowland rainforests
SpeciesLocalityCoordinatesHabitat
BiomeFunctional group
LatitudeLongitude
Allocosa senexParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ32.128″S
58°12ʹ31.76″W
Oceanic–estuarine–fluvial coast
Savannas and grasslands
Temperate woodlands
Área Protegida Montes del Queguay, Paysandú, Uruguay32°10ʹ43.4″S57°14ʹ12.2″WOceanic–estuarine–fluvial coastSavannas and grasslandsTemperate woodlands
Allocosa cf. senexParque das Dunas, Bahia, Brazil12°55ʹ26.52″S38°19ʹ46.98″WOceanic–estuarine–fluvial coastTropical–subtropical forestsTropical/subtropical lowland rainforests
Allocosinae sp. 1 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 2 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 4 ‘Lanín’Parque Nacional Lanín, Neuquén, Argentina39°45ʹ10.4″S71°30ʹ1.84″WVolcanic sandy coastDesert and semi-desertsCool deserts and semi-deserts
Allocosinae sp. 5 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Allocosinae sp. 7 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Paratrochosina amicaParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ3.47″S


58°12ʹ33.78″W


Grassland, garden
Savannas and grasslands
Temperate woodlands
Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay34°53ʹ15.6″S56°08ʹ34.8″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Melilla, Montevideo, Uruguay34°43ʹ53″S56°19ʹ23.4″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Reserva Particular do Patrimonio
Natural Pró-Mata-PUCRS, Rio Grande do Sul, Brazil
29°28ʹ51.21″S50°10ʹ26.92″WGrassland, gardenTropical–subtropical
forests
Tropical/subtropical
lowland rainforests
Table 1.

Field sampling localities of Allocosinae species from South America

SpeciesLocalityCoordinatesHabitat
BiomeFunctional group
LatitudeLongitude
Allocosa senexParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ32.128″S
58°12ʹ31.76″W
Oceanic–estuarine–fluvial coast
Savannas and grasslands
Temperate woodlands
Área Protegida Montes del Queguay, Paysandú, Uruguay32°10ʹ43.4″S57°14ʹ12.2″WOceanic–estuarine–fluvial coastSavannas and grasslandsTemperate woodlands
Allocosa cf. senexParque das Dunas, Bahia, Brazil12°55ʹ26.52″S38°19ʹ46.98″WOceanic–estuarine–fluvial coastTropical–subtropical forestsTropical/subtropical lowland rainforests
Allocosinae sp. 1 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 2 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 4 ‘Lanín’Parque Nacional Lanín, Neuquén, Argentina39°45ʹ10.4″S71°30ʹ1.84″WVolcanic sandy coastDesert and semi-desertsCool deserts and semi-deserts
Allocosinae sp. 5 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Allocosinae sp. 7 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Paratrochosina amicaParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ3.47″S


58°12ʹ33.78″W


Grassland, garden
Savannas and grasslands
Temperate woodlands
Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay34°53ʹ15.6″S56°08ʹ34.8″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Melilla, Montevideo, Uruguay34°43ʹ53″S56°19ʹ23.4″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Reserva Particular do Patrimonio
Natural Pró-Mata-PUCRS, Rio Grande do Sul, Brazil
29°28ʹ51.21″S50°10ʹ26.92″WGrassland, gardenTropical–subtropical
forests
Tropical/subtropical
lowland rainforests
SpeciesLocalityCoordinatesHabitat
BiomeFunctional group
LatitudeLongitude
Allocosa senexParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ32.128″S
58°12ʹ31.76″W
Oceanic–estuarine–fluvial coast
Savannas and grasslands
Temperate woodlands
Área Protegida Montes del Queguay, Paysandú, Uruguay32°10ʹ43.4″S57°14ʹ12.2″WOceanic–estuarine–fluvial coastSavannas and grasslandsTemperate woodlands
Allocosa cf. senexParque das Dunas, Bahia, Brazil12°55ʹ26.52″S38°19ʹ46.98″WOceanic–estuarine–fluvial coastTropical–subtropical forestsTropical/subtropical lowland rainforests
Allocosinae sp. 1 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 2 ‘Ischigualasto’Parque Provincial Ischigualasto, San Juan, Argentina30°10ʹ55.6″S67°54ʹ03.7″WDry riverbed, sandy valleyDesert and semi-desertsSemi-deserts steppe
Allocosinae sp. 4 ‘Lanín’Parque Nacional Lanín, Neuquén, Argentina39°45ʹ10.4″S71°30ʹ1.84″WVolcanic sandy coastDesert and semi-desertsCool deserts and semi-deserts
Allocosinae sp. 5 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Allocosinae sp. 7 ‘Río Clarillo’Parque Nacional Río Clarillo, Santiago Región Metropolitana, Chile33°43ʹ47.3″S70°28ʹ05.9″WSandy mountain coastTemperate–boreal forests and woodlandsWarm temperate laurophyll forests
Paratrochosina amicaParque Nacional El Palmar, Entre Ríos, Argentina
31°52ʹ3.47″S


58°12ʹ33.78″W


Grassland, garden
Savannas and grasslands
Temperate woodlands
Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay34°53ʹ15.6″S56°08ʹ34.8″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Melilla, Montevideo, Uruguay34°43ʹ53″S56°19ʹ23.4″WGrassland, gardenSavannas and
grasslands
Temperate subhumid
grasslands
Reserva Particular do Patrimonio
Natural Pró-Mata-PUCRS, Rio Grande do Sul, Brazil
29°28ʹ51.21″S50°10ʹ26.92″WGrassland, gardenTropical–subtropical
forests
Tropical/subtropical
lowland rainforests
A, female of Allocosa senex (photograph: Marcelo Casacuberta). B, typical habitat of A. senex, Atlántica Beach, Rocha, Uruguay (photograph: Marcelo Casacuberta). C, male of Allocosinae sp. 4 ‘Lanin’ (photograph: Anita Aisenberg). D, Typical habitat of Allocosinae sp. 4 ‘Lanin’, Parque Nacional Lanín, Neuquén, Argentina (photograph: Anita Aisenberg). E, female of Paratrochosina amica (photograph: Marcelo Casacuberta). F, typical habitat of P. amica, Salto, Uruguay (photograph: Marcelo Casacuberta).
Figure 1.

A, female of Allocosa senex (photograph: Marcelo Casacuberta). B, typical habitat of A. senex, Atlántica Beach, Rocha, Uruguay (photograph: Marcelo Casacuberta). C, male of Allocosinae sp. 4 ‘Lanin’ (photograph: Anita Aisenberg). D, Typical habitat of Allocosinae sp. 4 ‘Lanin’, Parque Nacional Lanín, Neuquén, Argentina (photograph: Anita Aisenberg). E, female of Paratrochosina amica (photograph: Marcelo Casacuberta). F, typical habitat of P. amica, Salto, Uruguay (photograph: Marcelo Casacuberta).

We sampled during late spring, summer and early autumn of the Southern Hemisphere (i.e. from November to May), the months of highest surface mobility for adults of Allocosa (Costa, 1995; Costa et al., 2006; Bidegaray-Batista et al., 2017). We started the fieldwork 1 h after sunset, according to the hours of activity reported for A. senex and A. marindia (Costa et al., 2006; Aisenberg, 2014). On three consecutive nights and for 2 h, three researchers using headlamps collected manually all adult Allocosinae spiders found walking or leaning out from burrow entrances (hereafter referred as ‘active individuals’). We sexed the adult individuals by observing the external genitalia with a portable dissecting microscope and recorded the proportion of active individuals of each sex. All the specimens were fixed in 95% ethanol. We deposited representatives of each Allocosinae species and morphotypes in the scientific collections of Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN; Argentina), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (LABRE-Ar; Córdoba, Argentina), Facultad de Ciencias, Universidad de la República (FCE; Uruguay) and Museu de Ciências e Tecnologia da Pontifícia Universidade Católica do Rio Grande do Sul (MCTP; Brazil).

Identification of species and morphotypes

We examined the Allocosinae specimens collected during the fieldwork and those in the arachnological collections of California Academy of Sciences (USA), Museo Argentino de Ciencias Naturales (Argentina), Facultad de Ciencias (Uruguay) and Institute Butantan (Brazil) (Table 2). We used stereomicroscopy (FCE: Nikon D3000 attached to a microscope Nikon YS100 and Nikon SMZ 10 stereomicroscope; IIBCE: Olympus SZ61 stereomicroscope; MACN: Leica 165 and Leica A205 stereomicroscopes) and scanning electron microscopy (FCE: Jeol JSM-5900; MACN: FEI XL 30 TMP) for examination of the individuals. The categorization of habitats of specimens was based on observations obtained during our field samplings (Table 1) or on identification labels from collections when available. Old specimens from collections frequently did not include geolocation records. In cases in which data labels from collections did not include this information, we based the characterization on descriptions by Dondale & Redner (1983).

Table 2.

Allocosinae specimens from scientific collections, with details of localities provided in the identification labels

SpeciesScientific collectionLocalitiesHabitat
Allocosa brasiliensisInstituto Butantan, São Paulo, BrazilBRAZIL: São PauloOceanic–estuarine–fluvial coast
Allocosa funereaCalifornia Academy of Sciences, CA, USAUSA: Arkansas, Colorado, Kansas, Massachusetts, Missouri, New Hampshire, Oklahoma, TexasGrassland, garden
Allocosa furtivaCalifornia Academy of Sciences, CA, USAUSA: MassachusettsOceanic–estuarine–fluvial coast
Allocosa marindiaFacultad de Ciencias, Montevideo, UruguayURUGUAY: CanelonesOceanic–estuarine–fluvial coast
Allocosa noctuabundaCalifornia Academy of Sciences, CA, USAUSA: Arizona, Arkansas, Colorado, MissouriFluvial coast
Allocosa panamenaCalifornia Academy of Sciences, CA, USACOSTA RICA: Cartago, Heredia, TarrialbaRainforest
Allocosa parvaCalifornia Academy of Sciences, CA, USAUSA: California, Colorado,Grassland, garden
Allocosa senexMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Instituto Butantan, São Paulo, Brazil; California Academy of Sciences, CA, USAARGENTINA: Neuquén; Río Negro; Entre Ríos
URUGUAY: Colonia; Paysandú; Maldonado; Rocha
BRAZIL: Rio Grande do Sul; Paraná; Bahía; São Paulo; Río de Janeiro; Espírito Santo; Santa Catarina
Oceanic–estuarine–fluvial coast
Allocosinae sp. 3 ‘Coquimbo’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaCHILE: Región de Coquimbo: CanelaOceanic–estuarine–fluvial coast
Allocosinae sp. 4 ‘Lanín’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: NeuquénVolcanic sandy coast
Allocosinae sp. 6 ‘Bahia’Instituto Butantan, São Paulo, BrazilBRAZIL: Alagoas; BahíaOceanic–estuarine–fluvial coast
Gnatholycosa spinipalpisMuseo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: San JuanSandy mountain coast
Paratrochosina amicaMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Facultad de Ciencias, Montevideo, UruguayARGENTINA: Buenos Aires; Ciudad Autónoma de Buenos Aires; Entre Ríos
URUGUAY: Montevideo; Paysandú; BRAZIL: Río Grande do Sul
Grassland, garden
Allocosa cf. senexInstituto Butantan, São Paulo, BrazilBRAZIL:BahíaOceanic–estuarine–fluvial coast
SpeciesScientific collectionLocalitiesHabitat
Allocosa brasiliensisInstituto Butantan, São Paulo, BrazilBRAZIL: São PauloOceanic–estuarine–fluvial coast
Allocosa funereaCalifornia Academy of Sciences, CA, USAUSA: Arkansas, Colorado, Kansas, Massachusetts, Missouri, New Hampshire, Oklahoma, TexasGrassland, garden
Allocosa furtivaCalifornia Academy of Sciences, CA, USAUSA: MassachusettsOceanic–estuarine–fluvial coast
Allocosa marindiaFacultad de Ciencias, Montevideo, UruguayURUGUAY: CanelonesOceanic–estuarine–fluvial coast
Allocosa noctuabundaCalifornia Academy of Sciences, CA, USAUSA: Arizona, Arkansas, Colorado, MissouriFluvial coast
Allocosa panamenaCalifornia Academy of Sciences, CA, USACOSTA RICA: Cartago, Heredia, TarrialbaRainforest
Allocosa parvaCalifornia Academy of Sciences, CA, USAUSA: California, Colorado,Grassland, garden
Allocosa senexMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Instituto Butantan, São Paulo, Brazil; California Academy of Sciences, CA, USAARGENTINA: Neuquén; Río Negro; Entre Ríos
URUGUAY: Colonia; Paysandú; Maldonado; Rocha
BRAZIL: Rio Grande do Sul; Paraná; Bahía; São Paulo; Río de Janeiro; Espírito Santo; Santa Catarina
Oceanic–estuarine–fluvial coast
Allocosinae sp. 3 ‘Coquimbo’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaCHILE: Región de Coquimbo: CanelaOceanic–estuarine–fluvial coast
Allocosinae sp. 4 ‘Lanín’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: NeuquénVolcanic sandy coast
Allocosinae sp. 6 ‘Bahia’Instituto Butantan, São Paulo, BrazilBRAZIL: Alagoas; BahíaOceanic–estuarine–fluvial coast
Gnatholycosa spinipalpisMuseo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: San JuanSandy mountain coast
Paratrochosina amicaMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Facultad de Ciencias, Montevideo, UruguayARGENTINA: Buenos Aires; Ciudad Autónoma de Buenos Aires; Entre Ríos
URUGUAY: Montevideo; Paysandú; BRAZIL: Río Grande do Sul
Grassland, garden
Allocosa cf. senexInstituto Butantan, São Paulo, BrazilBRAZIL:BahíaOceanic–estuarine–fluvial coast

The information about habitat corresponds to all the places where the species can be found. Collection codes are provided in the Supporting Information (Table S1).

Table 2.

Allocosinae specimens from scientific collections, with details of localities provided in the identification labels

SpeciesScientific collectionLocalitiesHabitat
Allocosa brasiliensisInstituto Butantan, São Paulo, BrazilBRAZIL: São PauloOceanic–estuarine–fluvial coast
Allocosa funereaCalifornia Academy of Sciences, CA, USAUSA: Arkansas, Colorado, Kansas, Massachusetts, Missouri, New Hampshire, Oklahoma, TexasGrassland, garden
Allocosa furtivaCalifornia Academy of Sciences, CA, USAUSA: MassachusettsOceanic–estuarine–fluvial coast
Allocosa marindiaFacultad de Ciencias, Montevideo, UruguayURUGUAY: CanelonesOceanic–estuarine–fluvial coast
Allocosa noctuabundaCalifornia Academy of Sciences, CA, USAUSA: Arizona, Arkansas, Colorado, MissouriFluvial coast
Allocosa panamenaCalifornia Academy of Sciences, CA, USACOSTA RICA: Cartago, Heredia, TarrialbaRainforest
Allocosa parvaCalifornia Academy of Sciences, CA, USAUSA: California, Colorado,Grassland, garden
Allocosa senexMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Instituto Butantan, São Paulo, Brazil; California Academy of Sciences, CA, USAARGENTINA: Neuquén; Río Negro; Entre Ríos
URUGUAY: Colonia; Paysandú; Maldonado; Rocha
BRAZIL: Rio Grande do Sul; Paraná; Bahía; São Paulo; Río de Janeiro; Espírito Santo; Santa Catarina
Oceanic–estuarine–fluvial coast
Allocosinae sp. 3 ‘Coquimbo’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaCHILE: Región de Coquimbo: CanelaOceanic–estuarine–fluvial coast
Allocosinae sp. 4 ‘Lanín’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: NeuquénVolcanic sandy coast
Allocosinae sp. 6 ‘Bahia’Instituto Butantan, São Paulo, BrazilBRAZIL: Alagoas; BahíaOceanic–estuarine–fluvial coast
Gnatholycosa spinipalpisMuseo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: San JuanSandy mountain coast
Paratrochosina amicaMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Facultad de Ciencias, Montevideo, UruguayARGENTINA: Buenos Aires; Ciudad Autónoma de Buenos Aires; Entre Ríos
URUGUAY: Montevideo; Paysandú; BRAZIL: Río Grande do Sul
Grassland, garden
Allocosa cf. senexInstituto Butantan, São Paulo, BrazilBRAZIL:BahíaOceanic–estuarine–fluvial coast
SpeciesScientific collectionLocalitiesHabitat
Allocosa brasiliensisInstituto Butantan, São Paulo, BrazilBRAZIL: São PauloOceanic–estuarine–fluvial coast
Allocosa funereaCalifornia Academy of Sciences, CA, USAUSA: Arkansas, Colorado, Kansas, Massachusetts, Missouri, New Hampshire, Oklahoma, TexasGrassland, garden
Allocosa furtivaCalifornia Academy of Sciences, CA, USAUSA: MassachusettsOceanic–estuarine–fluvial coast
Allocosa marindiaFacultad de Ciencias, Montevideo, UruguayURUGUAY: CanelonesOceanic–estuarine–fluvial coast
Allocosa noctuabundaCalifornia Academy of Sciences, CA, USAUSA: Arizona, Arkansas, Colorado, MissouriFluvial coast
Allocosa panamenaCalifornia Academy of Sciences, CA, USACOSTA RICA: Cartago, Heredia, TarrialbaRainforest
Allocosa parvaCalifornia Academy of Sciences, CA, USAUSA: California, Colorado,Grassland, garden
Allocosa senexMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Instituto Butantan, São Paulo, Brazil; California Academy of Sciences, CA, USAARGENTINA: Neuquén; Río Negro; Entre Ríos
URUGUAY: Colonia; Paysandú; Maldonado; Rocha
BRAZIL: Rio Grande do Sul; Paraná; Bahía; São Paulo; Río de Janeiro; Espírito Santo; Santa Catarina
Oceanic–estuarine–fluvial coast
Allocosinae sp. 3 ‘Coquimbo’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaCHILE: Región de Coquimbo: CanelaOceanic–estuarine–fluvial coast
Allocosinae sp. 4 ‘Lanín’Museo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: NeuquénVolcanic sandy coast
Allocosinae sp. 6 ‘Bahia’Instituto Butantan, São Paulo, BrazilBRAZIL: Alagoas; BahíaOceanic–estuarine–fluvial coast
Gnatholycosa spinipalpisMuseo Argentino de Ciencias Naturales, Buenos Aires, ArgentinaARGENTINA: San JuanSandy mountain coast
Paratrochosina amicaMuseo Argentino de Ciencias Naturales, Buenos Aires, Argentina; Facultad de Ciencias, Montevideo, UruguayARGENTINA: Buenos Aires; Ciudad Autónoma de Buenos Aires; Entre Ríos
URUGUAY: Montevideo; Paysandú; BRAZIL: Río Grande do Sul
Grassland, garden
Allocosa cf. senexInstituto Butantan, São Paulo, BrazilBRAZIL:BahíaOceanic–estuarine–fluvial coast

The information about habitat corresponds to all the places where the species can be found. Collection codes are provided in the Supporting Information (Table S1).

Measurement of morphological characters

We measured the carapace width of all Allocosinae adults collected during fieldwork and available from scientific collections. Carapace width is a measure of body size in spiders (Eberhard et al., 1998; Moya-Laraño & Cabeza, 2003; Foellmer & Moya-Laraño, 2007). We did not include the measurements of Allocosinae sp. 5 (Río Clarillo, Chile) because we had only one male.

Sexual dimorphism index

We calculated sexual size dimorphism as the ratio between the average carapace width of the male and the average carapace width of the female for each species. We estimated the sexual dimorphism index (SDI) as the sexual size dimorphism minus one, for comparative analyses (Lovich & Gibbons, 1992; Foellmer & Moya-Laraño, 2007; Kuntner & Cheng, 2016). Positive SDIs indicate a larger carapace in males than in females (reversed sexual size dimorphism), whereas negative values show a larger carapace in females (‘typical’ sexual size dimorphism expected in spiders) (Lovich & Gibbons, 1992). We compared the SDIs between species and habitats qualitatively according to the following criteria: 0, no dimorphism; 0–0.5, slight male-biased dimorphism; 0.5–1, strong male-biased dimorphism; 0 to −0.5, slight female-biased dimorphism; and −0.5 to −1, strong female-biased dimorphism. We followed the comparative methodology for SDIs according to Prenter et al. (1999), Cheng & Kuntner (2014), Turk et al. (2018) and Walker & Holwell (2022).

Statistical analyses

We explored the variability in sexual size dimorphism among species and its relationship to the habitat by means of generalized linear models. We set the carapace width of each individual as the response variable, with the sex, species and interaction between them as fixed effects. In a separate model, we ran the same response variable, but considering the habitat of the species as a fixed effect. Additionally, for A. senex we compared the same variables between individuals from fluvial and oceanic–estuarine coasts.

We compared the surface mobility (probability of finding active individuals on the surface) of the sexes by coding as a binomial response variable the occurrence in the field of active females as one and of active males as zero. These models included the species and habitat as predictor variables in separate models. These analyses were carried out considering only the individuals collected during the fieldwork of this study (Table 1; Supporting Information, Table S1).

All statistical analyses were conducted in the R environment v.4.1.2 (R Core Team, 2021). In all models, normality and homogeneity of variances were assessed graphically using the ‘fitdist’ function and the Cullen and Frey graph of the fitdistrplus package (Delignette-Muller & Dutang, 2015) and using goodness-of-fit statistics of the same package. The variable carapace width was modelled with a gamma family distribution, using the ‘log’ link function for interspecific comparison, and modelled with a normal distribution, using the ‘identity’ link function for intraspecific comparison in A. senex. The variable probability of finding active individuals on the surface was modelled with a binomial family distribution, using the ‘logit’ link function.

The variables were modelled with the ‘glm’ functions of the stats package. Model residuals were checked for assumptions of normality and homoscedasticity. The statistical significance of the generalized linear models was calculated with the ‘Anova’ function of the car package (Fox et al., 2012). We considered the statistical significance with a level of α = 0.05. We used the function ‘cld’ of the multcomp package (Hothorn et al., 2016) for a posteriori testing. For the creation of graphics, we used the ggplot2 package (Wickham et al., 2016).

RESULTS

Carapace width variation between species and habitat

We analysed 1071 individuals from 18 species or morphotypes. We found a significant interaction between sex and species regarding carapace width (χ2 = 164.00; P < 0.005; d.f. = 16), indicating sexual size dimorphism in some Allocosinae species (Fig. 2). Allocosa noctuabunda (Montgomery, 1904) (SDI = −0.19), Allocosa parva (Banks, 1894) (SDI = −0.17) and Allocosinae sp. 6 ‘Bahia’ (SDI = −0.09) showed sexual size dimorphism biased to females; whereas males were larger than females in A. senex (SDI = 0.24), A. marindia (SDI = 0.13), Allocosinae sp. 3 ‘Coquimbo’ (SDI = 0.2) and Allocosinae sp. 4 ‘Lanín’ (SDI = 0.27).

Carapace width (mean ± SD, in millimetres) in females and males of Allocosinae species collected during our field samplings and from scientific collections, distinguished with different colours according to their habitat. Significant differences between the sexes in each species are highlighted with an asterisk (*).
Figure 2.

Carapace width (mean ± SD, in millimetres) in females and males of Allocosinae species collected during our field samplings and from scientific collections, distinguished with different colours according to their habitat. Significant differences between the sexes in each species are highlighted with an asterisk (*).

We found an effect of the habitat on the carapace width in Allocosiane species (χ2 = 1335.90; P < 0.005; d.f. = 6; Fig. 3). Smaller individuals were found in the rainforest, grasslands and gardens, whereas larger ones were found in volcanic sandy coast, oceanic–estuarine–fluvial coast and dry riverbed–sandy valley (Fig. 3; Supporting Information, Table S1). Individuals from volcanic sandy coasts and oceanic–estuarine–fluvial coasts exhibited positive and higher SDI, indicating a strong bias towards males in sizes (SDI = 0.27 and SDI = 0.18, respectively). Individuals from fluvial coast (SDI = −0.19) showed negative SDI, suggesting female-biased sexual size dimorphism. Within A. senex, the carapace width exhibited a stronger bias for males in individuals from fluvial coast compared with those from oceanic–estuarine coast (F = 17.233; P < 0.005; d.f. = 1; Fig. 4; Supporting Information, Table S2).

Average carapace width (mean ± SD, in millimetres) of Allocosinae adults of each habitat. Letters denote significant differences between habitat categories.
Figure 3.

Average carapace width (mean ± SD, in millimetres) of Allocosinae adults of each habitat. Letters denote significant differences between habitat categories.

Comparisons between carapace width (mean ± SD, in millimetres) of Allocosa senex females and males found in fluvial (A) and oceanic–estuarine coasts (B), and between females (C) and males (D) from both habitats. Letters denote significant differences between the categories.
Figure 4.

Comparisons between carapace width (mean ± SD, in millimetres) of Allocosa senex females and males found in fluvial (A) and oceanic–estuarine coasts (B), and between females (C) and males (D) from both habitats. Letters denote significant differences between the categories.

Nocturnal surface mobility

We found interspecific differences in surface mobility among Allocosinae species (χ2 = 67.94; P < 0.005; d.f. = 11; Fig. 5). Allocosinae sp. 4 ‘Lanín’ (the only species living in volcanic sandy coast habitat) presented the lowest probability of finding females on the surface (P = 0.04), whereas Allocosa cf. senex showed a remarkably high value (P = 0.9). Allocosa senex also exhibited high variation according to the location. The probability of finding walking females of A. senex was higher in ‘Montes del Queguay’ (Uruguay) (P = 0.94), whereas in ‘El Palmar’ (Argentina) this proportion was lower (P = 0.62). In the global analysis, we found significant differences between the sexes in surface mobility according to the habitat (χ2 = 50.75; P < 0.005; d.f. = 4). The volcanic sandy coast (including Allocosinae sp. 4 ‘Lanin’) showed the lowest probability of finding walking females (P = 0.04), whereas the oceanic–estuarine–fluvial coast (including A. senex and A. cf. senex) showed the highest probability (P = 0.78) (Fig. 5).

Probability of finding active females walking or leaning out from burrow entrances during the field samplings of this study, distinguished with different colours according to their habitat. Letters denote significant differences between habitat categories.
Figure 5.

Probability of finding active females walking or leaning out from burrow entrances during the field samplings of this study, distinguished with different colours according to their habitat. Letters denote significant differences between habitat categories.

DISCUSSION

Our results reveal differences in sexual size dimorphism and surface mobility in adults of Allocosinae spiders living in different habitats throughout South America. We found new reports of species (or morphotypes) inhabiting coastal habitats with reversal in the expected sexual size dimorphism and with higher nocturnal surface mobility in females, similar to those reported for A. senex and A. marindia (Aisenberg et al., 2007; Aisenberg & Costa, 2008). However, as discussed below, not all Allocosinae species from those habitats showed non-typical sexual patterns. Our findings suggest that coastal habitats could be related to the occurrence of non-expected sexual traits in Allocosinae spiders. Nevertheless, other unexplored factors (i.e. phylogenetic, ecological, physiological and behavioural constraints, among others) could also be involved, paving the ground for investigating their impact on sexual role reversal in future research. Furthermore, in this study we report cases of South American spiders (A. cf. senex, Allocosinae sp. 3 ‘Coquimbo’ and Allocosinae sp. 4 ‘Lanin’) showing non-typical sexual traits in size dimorphism and/or mobility patterns, suggesting them as good candidates to test sex role reversal hypotheses.

As previously stated, sexual size dimorphism in wolf spiders has been reported to be moderate or absent (Head, 1995; Walker & Rypstra, 2002; Framenau & Hebets, 2007; Aisenberg et al., 2010; Logunov, 2011); again, the findings of this study controvert the widespread patterns for this group. We found that Allocosinae sp. 3 ‘Coquimbo’ from sandy fluvial coasts and Allocosinae sp. 4 ‘Lanin’ from volcanic lake coasts presented reversal in sexual size dimorphism, with males being noticeably larger than females. Additionally, preliminary data from records of sexual behaviour suggested that Allocosinae sp. 4 ‘Lanin’ presented characteristics (mobile females that initiate courtship) that match those expected in spiders with non-typical sexual roles (A. Aisenberg, pers. obs.). In this study, we confirmed that A. senex showed the reversed pattern of sexual size dimorphism at all the sampled localities, as in former reports from localities in Uruguay and Argentina (Aisenberg et al., 2007; Aisenberg & Costa, 2008; Bollatti et al., 2017). In agreement with this result, these three Allocosinae coastal species and A. marindia showed the highest positive sexual SDI values, suggesting body size biased to males.

Two other species (A. cf. senex and Allocosinae sp. 7 ‘Clarillo’) that inhabit South American sandy coasts showed positive SDI values, but without statistically significant support, when we compared carapace width between sexes. Surprisingly, Allocosinae sp. 6 ‘Bahia’ sampled in habitats similar to those of A. cf. senex showed sexual size dimorphism biased to females and negative SDI values. This pattern was also found in the North American species A. noctuabunda from fluvial coasts and A. parva from grasslands and gardens. Although not all the wolf spiders inhabiting coastal habitats showed a reversal in sexual size dimorphism, it is noteworthy that we did not find any species with males larger than females in other habitats, such as grasslands, gardens or rainforests. For example, the recently redescribed species Paratrochosina amica (Mello-Leitão, 1941) (Gonnet et al., 2021a) from South American grasslands and gardens did not show significant differences in carapace width between sexes, and values of SDI were close to zero.

The results of the present study suggest that the habitat, although not exclusively, could be shaping non-typical sexual size dimorphism in South American Allocosinae spiders. In this sense, it is worth noting the case of Allocosa alticeps (Mello-Leitão, 1944), which inhabits the sandy coastal dunes of Southern Buenos Aires Province, Argentina (Simó et al., 2017). This species is an exception to the rule, because Guerra et al. (2022) reported that although A. alticeps does not exhibit reversal in sexual size dimorphism, it exhibits behavioural characteristics that match those of sex role reversal (mobile females that initiate courtship). This study alerts us that other factors could be also acting in shaping these striking sexual traits. Also, trait correlation should be investigated in a phylogenetic context, to control for the relatedness of species. Unfortunately, at present a phylogeny including all the Allocosinae species reported in this study is not available. Preliminary phylogenetic results of the subfamily suggest that A. alticeps, A. senex, A. cf. senex, A. marindia, Allocosinae sp. 3 ‘Coquimbo’ and Allocosinae sp. 4 ‘Lanin’, all of which are coastal species, form a monophyletic group (Laborda et al., 2020; Laborda, 2021, 2023). These coastal species showed reversal in sexual size dimorphism, SDI values biased towards males and/or behavioural traits expected for sex role reversal (Aisenberg et al., 2007; Aisenberg & Costa, 2008; Guerra et al., 2022). The sister clade of this group includes P. amica (Gonnet et al., 2021a) from South American grasslands and gardens, in which sexual size dimorphism was not detected, and according to preliminary data, this species would not show reversal in sex roles (Gonnet et al., 2021b). An explicit phylogenetic comparative analysis including all the species analysed in the present study and most of the North and South American species from different habitats will be necessary to reconstruct the evolution of sexual traits and to understand fully the origins and drivers of diversification in South American Allocosinae.

Our results suggest that body size in this subfamily can vary according to the habitat (Fig. 3). Larger Allocosinae adults were found on volcanic coasts, followed by those from oceanic–estuarine–fluvial coasts and dry riverbed valleys, whereas smaller adults occurred in rainforests, grasslands and gardens. These differences are in agreement with studies by Henschel (1997) in Namib desert spiders. Henschel (1997) found that psammophilous species exhibit adaptations to avoid desiccation through larger body size, which reduces the surface-to-volume ratio. In A. senex, we found that adults from fluvial coasts presented larger carapace width than those from oceanic–estuarine coasts and that sexual size dimorphism biased toward males was stronger in individuals from fluvial coasts (Fig. 4). Differences in body size among individuals from locations with different ecological dynamics have already been reported in A. senex (Postiglioni, 2015; Bollatti et al., 2017), A. marindia (Cavassa et al., 2022) and in other wolf spiders (Bonte et al., 2006) and arthropods, such as amphipods and decapods (Contreras et al., 2003; Defeo & Gómez, 2005). Factors such as coastal morphodynamics or salinity could be driving these differences as has been cited for other coastal arthropods (Witteveen & Joosse, 1987; Ehlinger & Tankersley, 2004; Pétillon et al., 2011; Foucreau et al., 2012). Nevertheless, other factors, such as flooding adaptations, prey abundances and sexual selection, could also be acting (Blanckenhorn, 2000; Bollatti et al., 2017; Albín et al., 2021; Mardiné et al., 2022).

In general, there was a higher probability of finding females than males in all the sampled coastal Allocosinae species. Conversely, Allocosinae sp. 4 ‘Lanin’ from volcanic coasts showed the lowest probability of finding females at the surface (22 males and one female). This was an unexpected result, because Allocosinae sp. 4 ‘Lanin’ also lives in a coastal habitat, the volcanic sandy shores of the Huechulafquen Lake in Parque Nacional Lanín (Argentina). As mentioned above, this morphotype presents reversal in sexual size dimorphism, the females initiate courtship and they mate inside the male burrow (A. Aisenberg, unpublished data). Perhaps, the sandy volcanic habitat of the Huechulafquen Lake, near Volcán Lanin, surrounded by glaciers and characterized by snowy periods from May to October and by extreme daily variations in temperatures in summer, could constrain female sexual activity to other periods of the year. These hypotheses require further testing in the future.

Our study is the first to analyse sexual size dimorphism from a comparative approach in Allocosinae species from North, Central and South America, in addition to nocturnal surface mobility of South American species. The results unveil new cases of South American spiders that exhibit reversal in typical body size (i.e. Allocosinae sp. 3 ‘Coquimbo’ and Allocosinae sp. 4 ‘Lanin’) and high mobility in females (i.e. A. cf. senex). Future research should aim to record sexual behaviour and other life-history traits of the Allocosinae spiders of this study. Additionally, inferring a thoroughly sampled, well-resolved phylogeny of Allocosinae including these species is an unavoidable step towards testing hypotheses regarding the number of times that sex role reversal has evolved in this subfamily and how it could be related to colonization and survival in coastal environments.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article on the publisher's website.

Table S1. Allocosinae specimens from scientific collections, with details on sex, identity code, habitat, locality and carapace width (in millimetres).

Table S2.Allocosa senex specimens from scientific collections, with details on sex, identity code, habitat (fluvial coast or oceanic–estuarine coast), locality and carapace width (in millimetres).

ACKNOWLEDGEMENTS

We are grateful to T. Casacuberta, D. Hagopián, N. Kacevas, C. Mattoni, P. Pintos and M. Trillo for their help during field samplings. We acknowledge Charles Griswold for providing specimens from the arachnological collection of California Academy of Sciences (USA). We also thank National Park Administration El Palmar (Argentina), National Park Lanin (Argentina), National Park Río Clarillo (Chile), San Juan Authorities of Ischigualasto Provincial Park (Argentina), Authorities of Parque das Dunas (Brazil), Reserva PUCRS Pró-Mata (Brazil) and Protected Area Montes del Queguay (Uruguay) through Sebastián Horta (DSNAP, MVOTMA, Uruguay) for the authorizations for samplings. This study was supported financially by the projects FCE_1_2017_1_136269 (Fondo Clemente Estable, ANII) and NATGEO WW204R-17 (National Geographic Society). A.A., L.B.B., M.S., R.P., V.G. and A.L. acknowledge financial support by Programa Desarrollo de Ciencias Básicas (PEDECIBA, Uruguay) and Sistema Nacional de Investigadores (SNI, ANII, Uruguay). A.D.B. acknowledges a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, no. 303903/2019-8). F.B., M.I. and M.O.D. acknowledge financial support by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). R.P. is grateful for POS_NAC_2017_1_140432 (ANII, Uruguay), V.G. for POS_NAC_M_2020_1_164074 and A.L. for POS_FCE_2018_1_1007751. We are grateful to anonymous reviewers and the Editor, Professor John A. Allen, for their comments and suggestions, which improved the final version of the manuscript. The authors do not have any conflict of interest to declare.

DATA AVAILABILITY

Data underlying this study are available online at the Biological Journal of the Linnean Society.

REFERENCES

Abouheif
E
,
Fairbairn
DJ.
1997
.
A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule
.
The American Naturalist
149
:
540
562
. https://doi.org/10.1086/286004

Ah-King
M
,
Ahnesjö
I.
2013
.
The ‘sex role’ concept: an overview and evaluation
.
Evolutionary Biology
40
:
461
470
. https://doi.org/10.1007/s11692-013-9226-7

Aisenberg
A.
2014
.
Adventurous females and demanding males: sex role reversal in a neotropical spider
. In:
Macedo
RH
,
Machado
G
, eds.
Sexual selection: perspectives and models from the Neotropics
.
California
:
Academic Press
,
163
182
.

Aisenberg
A
,
Costa
FG.
2008
.
Reproductive isolation and sex-role reversal in two sympatric sand-dwelling wolf spiders of the genus Allocosa
.
Canadian Journal of Zoology
86
:
648
658
. https://doi.org/10.1139/z08-040

Aisenberg
A
,
Costa
FG
,
González
M
,
Postiglioni
R
,
Pérez-Miles
F.
2010
.
Sexual dimorphism in chelicerae, forelegs and palpal traits in two burrowing wolf spiders (Araneae: Lycosidae) with sex-role reversal
.
Journal of Natural History
44
:
1189
1202
. https://doi.org/10.1080/00222931003632716

Aisenberg
A
,
González
M.
2011
.
Male mate choice in Allocosa alticeps (Araneae: Lycosidae), a sand-dwelling spider with sex role reversal
.
Journal of Arachnology
39
:
444
448
. https://doi.org/10.1636/hi11-23.1

Aisenberg
A
,
González
M
,
Laborda
A
,
Postiglioni
R
,
Simó
M.
2009
.
Reversed cannibalism, foraging, and surface activities of Allocosa alticeps and Allocosa brasiliensis: two wolf spiders from coastal sand dunes
.
Journal of Arachnology
37
:
135
138
. https://doi.org/10.1636/t08-52.1

Aisenberg
A
,
Viera
C
,
Costa
FG.
2007
.
Daring females, devoted males, and reversed sexual size dimorphism in the sand-dwelling spider Allocosa brasiliensis (Araneae, Lycosidae)
.
Behavioral Ecology and Sociobiology
62
:
29
35
. https://doi.org/10.1007/s00265-007-0435-x

Albín
A
,
Carballo
M
,
Stanley
E
,
Aisenberg
A
,
Simó
M.
2017
.
Nocturnal surface activity and behavioural responses to floods in Allocosa senex (Araneae: Lycosidae)
.
Arachnology
17
:
238
244
. https://doi.org/10.13156/arac.2017.17.5.238

Albín
A
,
González
M
,
Simó
M
,
Kossyrczyk
EW
,
Bidegaray‐Batista
L
,
Aisenberg
A.
2021
.
Eight‐legged swimmers: behavioral responses to floods in two South American spiders
.
Ethology
128
:
41
48
. https://doi.org/10.1111/eth.13235

Andersson
MB.
1994
.
Sexual selection
.
New York
:
Princeton University Press
.

Bidegaray-Batista
L
,
Arnedo
MA
,
Carlozzi
A
,
Jorge
C
,
Pliscoff
P
,
Postiglioni
R
,
Simó
M
,
Aisenberg
A.
2017
.
Dispersal strategies, genetic diversity and distribution of two wolf spiders (Araneae, Lycosidae), potential bio-indicators of ecosystem health of coastal dune habitats of South America
. In:
Viera
C
,
Gonzaga
MO
, eds.
Behavior and ecology of Neotropical spiders – contributions of studies from the Neotropical region
.
Cham, Switzerland
:
Springer
,
109
135
.

Blanckenhorn
WU.
2000
.
The evolution of body size: what keeps organisms small
?
The Quarterly Review of Biology
75
:
385
407
. https://doi.org/10.1086/393620

Blanckenhorn
WU.
2005
.
Behavioral causes and consequences of sexual size dimorphism
.
Ethology
111
:
977
1016
. https://doi.org/10.1111/j.1439-0310.2005.01147.x

Bollatti
F
,
Diaz
VG
,
Peretti
AV
,
Aisenberg
A.
2017
.
Geographical variation in sexual behavior and body traits in a sex role reversed wolf spider
.
The Science of Nature
104
:
40
.

Bollatti
F
,
Simian
C
,
Peretti
AV
,
Aisenberg
A.
2022
.
Challenging monogamy in a spider with nontraditional sexual behavior
.
Scientific Reports
12
:
5948
.

Bonduriansky
R.
2001
.
The evolution of male mate choice in insects: a synthesis of ideas and evidence
.
Biological Reviews
76
:
305
339
.

Bonte
D
,
Lens
L
,
Maelfait
J-P.
2006
.
Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders
.
Journal of Applied Ecology
43
:
735
747
. https://doi.org/10.1111/j.1365-2664.2006.01175.x

Brescovit
AD
,
Alvares
ES.
2011
.
The wolf spider species from Peru and Bolivia described by Embrik Strand in 1908 (Araneae: Lycosidae: Lycosinae, Sosippinae, Allocosinae)
.
Zootaxa
3037
:
51
61
.

Brescovit
AD
,
Taucare-Rios
A.
2013
.
Description of the female of Allocosa yurae (Strand, 1908) (Araneae: Lycosidae, Allocosinae)
.
Zootaxa
3647
:
495
498
. https://doi.org/10.11646/zootaxa.3647.3.7

Capocasale
RM.
1990
.
Las especies de la subfamilia Hippasinae de America del Sur (Araneae, Lycosidae)
.
Journal of Arachnology
18
:
131
141
.

Cavassa
D
,
Postiglioni
R
,
Aisenberg
A
,
Defeo
O.
2022
.
Relationship between beach morphodynamics and body traits in a sand-dwelling wolf spider
.
Acta Oecologica
114
:
103808
. https://doi.org/10.1016/j.actao.2021.103808

Cheng
RC
,
Kuntner
M.
2014
.
Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders
.
Evolution
68
:
2861
2872
. https://doi.org/10.1111/evo.12504

Coddington
J
,
Hormiga
G
,
Scharff
N.
1997
.
Giant female or dwarf male spiders
.
Nature
385
:
687
688
.

Contreras
H
,
Jaramillo
E
,
Duarte
C
,
McLachlan
A.
2003
.
Population abundances, growth and natural mortality of the crustacean macroinfauna at two sand beach morphodynamic types in southern Chile
.
Revista Chilena de Historia Natural
76
:
543
561
.

Costa
FG.
1995
.
Ecología y actividad diaria de las arañas de la arena Allocosa spp. (Araneae, Lycosidae) en Marindia, localidad costera del sur del Uruguay
.
Revista Brasilera de Biología
55
:
457
466
.

Costa
FG
,
Simó
M
,
Aisenberg
A.
2006
.
Composición y ecología de la fauna epígea de Marindia (Canelones, Uruguay) con especial énfasis en las arañas: un estudio de dos años con trampas de intercepción
. In:
Menafra
R
,
Rodríguez-Gallego
L
,
Scarabino
F
,
Conde
D
, eds.
Bases para la conservación y el manejo de la costa uruguaya
.
Montevideo
:
Vida Silvestre Uruguay
,
427
436
.

Darwin
C.
1871
.
The descent of man, and selection in relation to sex
.
Princeton
:
Princeton University Press
.

Defeo
O
,
Gómez
J.
2005
.
Morphodynamics and habitat safety in sandy beaches: life-history adaptations in a supralittoral amphipod
.
Marine Ecology Progress Series
293
:
143
153
. https://doi.org/10.3354/meps293143

Delignette-Muller
ML
,
Dutang
C.
2015
.
fitdistrplus: an R package for fitting distributions
.
Journal of Statistical Software
64
:
1
34
.

De Mas
E
,
Ribera
C
,
Moya-Laraño
J.
2009
.
Resurrecting the differential mortality model of sexual size dimorphism
.
Journal of Evolutionary Biology
22
:
1739
1749
. https://doi.org/10.1111/j.1420-9101.2009.01786.x

Dondale
CD.
1986
.
The subfamilies of wolf spiders (Araneae, Lycosidae)
. In:
Barrientos
JA
, ed.,
X Congreso Internacional de Aracnología
.
Jaca
:
Imprenta Juvenil
,
327
332
.

Dondale
CD
,
Redner
JH.
1983
.
The wolf spider genus Allocosa in North and Central America (Araneae: Lycosidae)
.
The Canadian Entomologist
115
:
933
964
. https://doi.org/10.4039/ent115933-8

Eberhard
WG
,
Huber
BA
,
Rodrigues S
RL
,
Briceño
RD
,
Salas
I
,
Rodriguez
V.
1998
.
One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders
.
Evolution
52
:
415
431
. https://doi.org/10.1111/j.1558-5646.1998.tb01642.x

Eens
M
,
Pinxten
R.
2000
.
Sex-role reversal in vertebrates: behavioural and endocrinological accounts
.
Behavioural Processes
51
:
135
147
. https://doi.org/10.1016/s0376-6357(00)00124-8

Ehlinger
GS
,
Tankersley
RA.
2004
.
Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions
.
The Biological Bulletin
206
:
87
94
. https://doi.org/10.2307/1543539

Fairbairn
DJ
,
Blanckenhorn
WU
,
Székely
T
. eds.
2007
.
Sex, size and gender roles: evolutionary studies of sexual size dimorphism
.
Oxford
:
Oxford University Press
.

Foellmer
MW
,
Fairbairn
DJ.
2005
.
Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider
.
Oecologia
142
:
653
662
. https://doi.org/10.1007/s00442-004-1756-3

Foellmer
MW
,
Moya-Laraño
J.
2007
.
Sexual size dimorphism in spiders: patterns and processes
. In:
Fairbairn
DJ
,
Blanckenhorn
WU
,
Székely
T
, eds.
Sex, size and gender roles: evolutionary studies of sexual size dimorphism
.
Oxford
:
Oxford University Press
,
71
81
.

Foucreau
N
,
Renault
D
,
Hidalgo
K
,
Lugan
R
,
Pétillon
J.
2012
.
Effects of diet and salinity on the survival, egg laying and metabolic fingerprints of the ground-dwelling spider Arctosa fulvolineata (Araneae, Lycosidae)
.
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
163
:
388
395
. https://doi.org/10.1016/j.cbpa.2012.07.001

Fox
J
,
Weisberg
S
,
Adler
D
,
Bates
D
,
Baud-Bovy
G
,
Ellison
S
,
Firth
D
,
Friendly
M
,
Gorjanc
G
,
Graves
S.
2012
.
Package ‘car’
.
Vienna
:
R Foundation for Statistical Computing
.

Framenau
VW
,
Hebets
EA.
2007
.
A review of leg ornamentation in male wolf spiders, with the description of a new species from Australia, Artoria schizocoides (Araneae, Lycosidae)
.
The Journal of Arachnology
35
:
89
101
. https://doi.org/10.1636/st06-15.1

Fritzsche
K
,
Henshaw
JM
,
Johnson
BD
,
Jones
AG.
2021
.
The 150th anniversary of The Descent of Man: Darwin and the impact of sex-role reversal on sexual selection research
.
Biological Journal of the Linnean Society
134
:
525
540
. https://doi.org/10.1093/biolinnean/blab091

Gonnet
V
,
Bidegaray-Batista
L
,
Aisenberg
A
,
Laborda
A
,
Hagopián
D
,
Izquierdo
MA
,
Piacentini
LN
,
Simó
M.
2021a
.
A wolf spider from South American grasslands: phylogenetic placement and redescription of Paratrochosina amica (Mello-Leitão 1941)
.
Zoologischer Anzeiger
295
:
1
11
. https://doi.org/10.1016/j.jcz.2021.08.009

Gonnet
V
,
Bidegaray-Batista
L
,
Simó
M
,
Aisenberg
A.
2021b
.
Comportamiento sexual y dimorfismo en Paratrochosina amica (Mello-Leitão, 1941), una araña lobo de los pastizales
. Proceedings of VI Congreso Uruguayo de Zoología y III Encuentro Internacional de Ecología Conservación ‘60 Aniversario de la SZU’.
Uruguay
:
Montevideo
,
55
.

Guerra
CB
,
Ferretti
N
,
Aisenberg
A.
2022
.
Testing sexual size dimorphism and nocturnal surface activity in the coastal wolf spider Allocosa alticeps
.
Arachnology
19
:
537
542
.

Gwynne
DT.
1991
.
Sexual competition among females: what causes courtship-role reversal
?
Trends in Ecology & Evolution
6
:
118
121
. https://doi.org/10.1016/0169-5347(91)90089-G

Gwynne
DT.
1993
.
Food quality controls sexual selection in Mormon crickets by altering male mating investment
.
Ecology
74
:
1406
1413
. https://doi.org/10.2307/1940070

Gwynne
DT
,
Simmons
LW.
1990
.
Experimental reversal of courtship roles in an insect
.
Nature
346
:
172
174
. https://doi.org/10.1038/346172a0

Hare
RM
,
Kennington
WJ
,
Simmons
LW.
2022
.
Evolutionary divergence via sexual selection acting on females in a species with sex role reversal
.
Functional Ecology
36
:
2742
2755
. https://doi.org/10.1111/1365-2435.14174

Head
G.
1995
.
Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (class Araneae)
.
Evolution
49
:
776
781
. https://doi.org/10.1111/j.1558-5646.1995.tb02313.x

Henschel
JR.
1997
.
Psammophily in Namib desert spiders
.
Journal of Arid Environments
37
:
695
707
. https://doi.org/10.1006/jare.1997.0316

Hormiga
G
,
Scharff
N
,
Coddington
JA.
2000
.
The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae)
.
Systematic Biology
49
:
435
462
. https://doi.org/10.1080/10635159950127330

Hothorn
T
,
Bretz
F
,
Westfall
P
,
Heiberger
RM
,
Schuetzenmeister
A
,
Scheibe
S
,
Hothorn
MT.
2016
.
Package ‘multcomp’
.
Simultaneous inference in general parametric models
.
Vienna, Austria
:
Project for Statistical Computing
.

Karlsson
B
,
Leimar
O
,
Wiklund
C.
1997
.
Unpredictable environments, nuptial gifts and the evolution of sexual size dimorphism in insects: an experiment
.
Proceedings of the Royal Society B: Biological Sciences
264
:
475
479
.

Keith
DA
,
Ferrer-Paris
JR
,
Nicholson
E
,
Bishop
MJ
,
Polidoro
BA
,
Ramirez-Llodra
E
,
Tozer
MG
,
Nel
JL
,
Mac Nally
R
,
Gregr
EJ
,
Watermeyer
KE
,
Essl
F
,
Faber-Langendoen
D
,
Franklin
J
,
Lehmann
CER
,
Etter
A
,
Roux
DJ
,
Stark
JS
,
Rowland
JA
,
Brummitt
NA
,
Fernandez-Arcaya Ulla
C
,
Suthers
IM
,
Wiser
SK
,
Donohue
I
,
Jackson
LJ
,
Pennington
RT
,
Iliffe
TM
,
Gerovasileiou
V
,
Giller
P
,
Robson
BJ
,
Pettorelli
N
,
Andrade
A
,
Lindgaard
A
,
Tahvanainen
T
,
Terauds
A
,
Chadwick
MA
,
Murray
NJ
,
Moat
J
,
Pliscoff
P
,
Zager
I
,
Kingsford
RT.
2022
.
A function-based typology for Earth’s ecosystems
.
Nature
610
:
513
518
. https://doi.org/10.1038/s41586-022-05318-4

Kuntner
M
,
Cheng
R-C.
2016
.
Evolutionary pathways maintaining extreme female-biased sexual size dimorphism: convergent spider cases defy common patterns
. In:
Pontarotti
P
, ed.
Evolutionary biology
.
Cham
:
Springer
,
121
133
.

Kuntner
M
,
Elgar
MA.
2014
.
Evolution and maintenance of sexual size dimorphism: aligning phylogenetic and experimental evidence
.
Frontiers in Ecology and Evolution
2
:
1
8
. https://www.frontiersin.org/articles/10.3389/fevo.2014.00026

Laborda
Á.
2021
.
Filogenia molecular de la subfamilia Allocosinae en Sudamérica (Araneae: Lycosidae)
. Proceedings of VI Congreso Uruguayo de Zoología y III Encuentro Internacional de Ecología Conservación ‘60 Aniversario de la SZU’. Uruguay: Montevideo,
163
.

Laborda
Á.
2023
.
Taxonomía y sistematica de la Subfamilia Allocosinae (Araneae: Lycosidae) en Sudamérica
. Unpublished PhD dissertation,
Universidad de la República
.

Laborda
A
,
Bidegaray-Batista
L
,
Simó
M
,
Brescovit
AD
,
Beloso
C
,
Piacentini
LN.
2022
.
Abaycosa a new genus of South American wolf spiders (Lycosidae: Allocosinae)
.
Arthropod Systematics & Phylogeny
80
:
59
74
.

Laborda
Á
,
Simó
M
,
Piacentini
L
,
Brescovit
AD
,
Aisenberg
A
,
Arnedo
MA
,
Ramírez
MJ
,
Bidegaray-Batista
L.
2020
.
Sistemática de la subfamilia Allocosinae en Sudamérica (Araneae: Lycosidae)
. Proceedings of VI Congreso Latinoamericano de Aracnología. Argentina: Buenos Aires,
75
76
.

Logunov
DV.
2011
.
Sexual size dimorphism in burrowing wolf spiders (Araneae: Lycosidae)
.
Proceedings of the Zoological Institute of the Russian Academy of Sciences
315
:
274
288
. https://doi.org/10.31610/trudyzin/2011.315.3.274

Lopes Costa
L
,
Fanini
L
,
Zalmon
IR
,
Defeo
O
,
McLachlan
A.
2022
.
Cumulative stressors impact macrofauna differentially according to sandy beach type: a meta-analysis
.
Journal of Environmental Management
307
:
114594
.

Lorch
PD.
2002
.
Understanding reversals in the relative strength of sexual selection on males and females: a role for sperm competition
?
The American Naturalist
159
:
645
657
. https://doi.org/10.1086/339992

Lovich
JE
,
Gibbons
JW.
1992
.
A review of techniques for quantifying sexual size dimorphism
.
Growth, Development, and Aging
56
:
269
281
.

Mardiné
E
,
Peretti
A
,
Albín
A
,
Oviedo-Diego
M
,
Aisenberg
A.
2022
.
Size matters: antagonistic effects of body size on courtship and digging in a wolf spider with non-traditional sex roles
.
Behavioural Processes
194
:
104547
. https://doi.org/10.1016/j.beproc.2021.104547

McLachlan
A
,
Defeo
O.
2018
.
The ecology of sandy shores
, 3rd edn.
London
:
Academic Press
.

McLean
CJ
,
Garwood
RJ
,
Brassey
CA.
2018
.
Sexual dimorphism in the arachnid orders
.
PeerJ
6
:
e5751
. https://doi.org/10.7717/peerj.5751

Moya-Laraño
J
,
Cabeza
M.
2003
.
Bimodality in the body size distribution of Mediterranean tarantula juveniles: Humphreys’ Russian roulette revisited
.
Revista ibérica de Aracnología
7
:
211
219
.

Moya-Laraño
J
,
Halaj
J
,
Wise
DH.
2002
.
Climbing to reach females: Romeo should be small
.
Evolution
56
:
420
425
. https://doi.org/10.1111/j.0014-3820.2002.tb01351.x

Parker
G.
1984
.
Sperm competition and the evolution of mating strategies
. In:
Smith
RL
, ed.
Sperm competition and the evolution of animal mating systems
.
London
:
Academic Press
,
1
60
.

Pétillon
J
,
Lambeets
K
,
Ract‐Madoux
B
,
Vernon
P
,
Renault
D
.
2011
.
Saline stress tolerance partly matches with habitat preference in ground‐living wolf spiders
.
Physiological Entomology
36
:
165
172
.

Piacentini
LN
,
Ramírez
MJ.
2019
.
Hunting the wolf: a molecular phylogeny of the wolf spiders (Araneae, Lycosidae)
.
Molecular Phylogenetics and Evolution
136
:
227
240
. https://doi.org/10.1016/j.ympev.2019.04.004

Pollo
P
,
Kasumovic
MM.
2022
.
Let’s talk about sex roles: what affects perceptions of sex differences in animal behaviour
?
Animal Behaviour
183
:
1
12
. https://doi.org/10.1016/j.anbehav.2021.10.016

Postiglioni
R.
2015
.
Estructuración genética y variación morfológica en ambientes fluviales y oceánico-estuarinos en la araña Allocosa brasiliensis (Lycosidae) del sur de Uruguay
. Unpublished M.Sc. dissertation,
Universidad de la República
.

Postiglioni
R
,
González
M
,
Aisenberg
A.
2008
.
Permanencia en la cueva masculina y producción de ootecas en dos arañas lobo de los arenales costeros
.
Actas IX Jornadas de Zoología del Uruguay
.
Uruguay
:
Montevideo
,
145
.

Prenter
J
,
Elwood
RW
,
Montgomery
WI.
1999
.
Sexual size dimorphism and reproductive investment by female spiders: a comparative analysis
.
Evolution
53
:
1987
1994
. https://doi.org/10.1111/j.1558-5646.1999.tb04580.x

Queller
DC.
1997
.
Why do females care more than males
?
Proceedings of the Royal Society B: Biological Sciences
264
:
1555
1557
.

R Core Team.
2021
.
R: a language and environment for statistical computing
.
Vienna
:
R Foundation for Statistical Computing
.

Shine
R.
1989
.
Ecological causes for the evolution of sexual dimorphism: a review of the evidence
.
The Quarterly Review of Biology
64
:
419
461
. https://doi.org/10.1086/416458

Simó
M
,
Lise
AA
,
Pompozzi
G
,
Laborda
A.
2017
.
On the taxonomy of southern South American species of the wolf spider genus Allocosa (Araneae: Lycosidae: Allocosinae)
.
Zootaxa
3
:
261
278
.

Trivers
R.
1972
.
Parental investment and sexual selection
. In:
Cambel
B
, ed.
Sexual selection and the descent of man
.
Chicago
:
Aldine
,
136
179
.

Turk
E
,
Kuntner
M
,
Kralj-Fišer
S.
2018
.
Cross-sex genetic correlation does not extend to sexual size dimorphism in spiders
.
The Science of Nature
105
:
1
.

Vollrath
F
,
Parker
GA.
1992
.
Sexual dimorphism and distorted sex ratios in spiders
.
Nature
360
:
156
159
. https://doi.org/10.1038/360156a0

Walker
LA
,
Holwell
GI.
2022
.
Static allometries do not reflect evolutionary allometry in exaggerated weaponry of male New Zealand sheetweb spiders (Cambridgea spp.)
.
Journal of Evolutionary Biology
35
:
1524
1536
. https://doi.org/10.1111/jeb.14100

Walker
SE
,
Rypstra
AL.
2002
.
Sexual dimorphism in trophic morphology and feeding behavior of wolf spiders (Araneae: Lycosidae) as a result of differences in reproductive roles
.
Canadian Journal of Zoology
80
:
679
688
. https://doi.org/10.1139/z02-037

Wickham
H
,
Chang
W
,
Henry
L
,
Pedersen
TL
,
Takahashi
K
,
Wilke
C
,
Woo
K
,
Yutani
H
,
Dunnington
D.
2016
.
ggplot2: create elegant data visualisations using the grammar of graphics
.
R package version 2
.

Witteveen
J
,
Joosse
E.
1987
.
Growth, reproduction and mortality in marine littoral Collembola at different salinities
.
Ecological Entomology
12
:
459
469
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)