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ABSTRACT

Prostaglandins (PGs), especially PGE2 and PGF2,,, are consid-
ered important for blastocyst spacing, implantation, and decid-
ualization in the rodent uterus. However, information regarding
uterine sites of PG actions in these processes is lacking. PGE2
or PGF2,, interacts with specific G protein-coupled membrane
receptors. PGE, receptors are classified into four subtypes, EP,,
EP2, EP,, and EP4. While EP, is coupled to Ca2+ mobilization,
activation of EP2 and EP4 triggers stimulation of adenylyl cyclase.
In contrast, activation of EP3 inhibits adenylyl cyclase. PGF2,
receptor (FP) is coupled to stimulation of phospholipase C-ino-
sitol trisphosphate (IP3) pathway and Ca2+ mobilization. This in-
vestigation demonstrates that PGE2 and PGF2,, receptor genes
are expressed in a temporal and cell-specific manner in the peri-
implantatiorn mouse uterus. In the mouse, the attachment re-
action occurs in the evening (2200-2300 h) of Day 4 of preg-
nancy and is preceded by embryo spacing, uterine edema, and
luminal closure resulting in an intimate apposition of the blas-
tocyst with the uterine luminal epithelium. Expression of EP3 and
FP primarily in the circular muscle of the myometrium on Days
3-5 of pregnancy suggests that the circular muscle, not the lon-
gitudinal muscle, is the primary target for PG-mediated uterine
contractions required for embryo transport, spacing, and/or ac-
commodation in the uterus. In contrast, expression of EP3 in a
subpopulation of cells in the stromal bed at the mesometrial
side, and of EP4 in the epithelium and stroma on these days,
suggests that PGE2 effects on uterine preparation for implanta-
tion (such as epithelial cell differentiation, stromal cell prolif-
eration, uterine edema, luminal closure, and increased localized
endometrial vascular permeability at the sites of blastocyst at-
tachment) are mediated by these receptor subtypes. Similar ex-
pression patterns of EP3 and EP4 in the Day 4 pseudopregnant
mouse uterus or in the ovariectomized uterus under combined
treatment with estrogen and progesterone suggest that these
genes are regulated by ovarian steroids rather than by the em-
bryo during the preimplantation period (Days 1-4). In contrast,
the expression of these genes during the postimplantation period
(Days 5-8) is associated with the onset of decidualization.

INTRODUCTION

Cyclooxygenase (COX) is a rate-limiting enzyme that
produces prostaglandins (PGs) from arachidonic acid. COX
exists in two isoforms: COX-1, a constitutive enzyme, and
COX-2, an enzyme induced by a variety of stimuli [1]. The
most extensively studied members of this family are PGE2,
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PGF 2 , and PGI 2. However, the physiological significance
of PGD2 and PGJ2 has recently been addressed [2-4]. In
general, PGs are implicated in the regulation of growth,
differentiation, and/or homeostasis [1]. In the rodent, major
preimplantation events leading to successful implantation
are fertilization of eggs in the oviduct, development of em-
bryos into blastocysts, their spacing in the uterus, escape
of blastocysts from their zona pellucidae, and a "two-way"
interaction between the blastocyst and the receptive uterus.
One of the earliest prerequisite events in the process of
implantation is an increased endometrial vascular perme-
ability at the sites of blastocyst apposition. This event co-
incides with the attachment reaction [5, 6]. Thus, PGs could
be involved in uterine contractions to facilitate sperm trans-
port after mating or blastocyst spacing prior to implanta-
tion. These mediators are also considered to be involved in
embryo development and blastocyst zona dissolution, im-
plantation, and decidualization. The involvement of PGs in
implantation is indicated by their higher levels at the im-
plantation sites, interference with implantation by PG syn-
thesis inhibitors, and reversal of this inhibition by coad-
ministration of PGs [7-11]. Further, increases in uterine PG
and COX-1 levels prior to implantation in the rodent sug-
gest that these mediators could be involved in uterine ede-
ma and luminal closure important for the attachment reac-
tion [8, 12, 13]. PGs are also implicated in decidual cell
reaction [14, 15]. Recognition of the importance of PGs in
blastocyst development and hatching is derived from the
observation that PG synthesis inhibitors or antagonists in-
terfere with these processes in vitro [16, 17].

In spite of considerable evidence regarding the possible
functions of PGs in the process of implantation, little is
known about the sites of PG actions in the uterus and/or
embryo during the periimplantation period. PGE2 or PGF2.
interacts with specific G protein-coupled receptors to mod-
ulate the levels of second messengers such as cAMP, Ca2 +,
and inositol trisphosphate (IP3). PGE 2 receptors are classi-
fied into four subtypes, EP 1, EP2, EP 3, and EP 4 [18-23].
EP 1 is coupled to Ca2 + mobilization. On the basis of phar-
macological analysis, the receptor subtype that was cloned
as EP 2 is now considered EP 4 [19, 21]. However, an EP 2
receptor subtype has also been cloned [22]. Both EP 2 and
EP4 receptor subtypes are coupled to stimulation of ade-
nylyl cyclase, while EP 3 is coupled to inhibition of adenylyl
cyclase. PGF 2 receptor (FP) is functionally coupled to the
stimulation of phospholipase C that produces IP3 and Ca 2+

mobilization [24]. Receptors for PGD 2, PGI 2, or PGJ 2 have
also been identified [3, 4, 25]. Since most of the known
effects of PGs in uterine biology and embryo-uterine inter-
actions center around PGE 2 and PGF 2 , the present study
examined the temporal and cell type-specific expression of
PGE 2 and PGF 2, receptors in the periimplantation mouse
uterus. Uterine events during the periimplantation period
are regulated primarily by the coordinated and cell-specific
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PG RECEPTORS IN THE PERIIMPLANTATION MOUSE UTERUS

effects of estrogen and progesterone (P4 ). Therefore, we
also examined the regulation of the PG receptor genes in
the ovariectomized adult mouse uterus under the stimula-
tion of these ovarian steroids.

MATERIALS AND METHODS

Animals and Tissue Preparation

Under the approval of NIH and institutional guidelines,
CD-1 mice (Charles River Laboratory, Raleigh, NC) were
housed in the animal care facility at the University of Kan-
sas Medical Center. They were maintained on a 14L:10OD
schedule with lights-on at 0600 h. Adult female mice (20-
25 g, 48-60 days old) were mated with fertile males of the
same strain. The morning a vaginal plug was found was
designated Day 1 of pregnancy. Mice were killed between
0830 and 0900 h on Days 1-8 of pregnancy. To collect
uteri at the onset of the attachment reaction, mice were
killed between 2200 and 2300 h on Day 4 of pregnancy.
Whole uteri were collected on Days 1-7 of pregnancy,
while the deciduum from Day 8 uteri was separated by
surgical procedure. No attempt was made to separate the
embryos from the decidua. Early implantation sites on Day
4 (2200-2300 h) and Day 5 (0830-0900 h) were visualized
by i.v. injections (0.1 ml/mouse) of a Chicago Blue B dye
solution (1% in saline). Mice were killed 5 min later [5,13].
Uteri were processed for Northern blotting and in situ hy-
bridization. Mice in which pseudopregnancy was produced
by mating with vasectomized males were also killed at
these times to examine whether embryonic influences are
important for expression of PG receptors in the uterus dur-
ing early pregnancy. Uteri from 10-15 mice were pooled
for each day of pregnancy and used for RNA isolation. For
in situ hybridization, uteri were cut into small pieces and
stored at -80 0C until used.

To determine the effects of estrogen and P4, mice were
ovariectomized without regard to the stage of the estrous
cycle and rested for 2 wk. They were then treated with an
injection of estradiol-17P3 (E2, 100 ng/mouse; Sigma Chem-
ical Co., St. Louis, MO), P4 (1 mg/mouse; Sigma), or a
combination of the same doses of P4 and E2. All steroids
were dissolved in sesame oil and injected s.c. Controls re-
ceived the vehicle only (0.1 ml/mouse). Mice were killed
at various times after hormone injections, and their uteri
were collected for RNA extraction and in situ hybridization.

Hybridization Probes

Mouse-specific cDNAs to EP 1, EP3, EP4, and FP were
used for the present investigation. These cDNAs were sub-
cloned in appropriate vectors for synthesis of both sense
and antisense cRNA probes [18, 19, 21, 23, 24]. For North-
ern hybridization, antisense 3 2 P-labeled cRNA probes were
generated, while for in situ hybridization, sense and anti-
sense 35S-labeled cRNA probes were generated using the
appropriate polymerases. A cDNA clone of human fibro-
blast cytoplasmic 3-actin [26] was subcloned into a pGEM
vector containing a promotor for SP6 polymerase and used
as a template for synthesis of a 3 2 P-labeled antisense cRNA
probe [27]. Probes had specific activities of about 2 x 109
dpm/,ag.

Northern Blot Hybridization

Total RNAs were extracted from whole uteri by a mod-
ified guanidine thiocyanate procedure [28]. Poly(A) + RNAs
were isolated from total RNAs by oligo(dT)-cellulose col-

umn chromatography [29]. Total (6 jig) or poly(A)+ (2 Ig)
RNAs were denatured, separated by formaldehyde-agarose
gel electrophoresis, and transferred to nylon membranes.
RNAs were cross-linked to the membranes by UV irradi-
ation (Spectrolinker, XL-1500; Spectronics Corp., West-
bury, NY). The blots were prehybridized, hybridized, and
washed as described previously [30]. After hybridization,
the blots were washed under stringent conditions, and the
hybrids were detected by autoradiography. The blots were
stripped and rehybridized with a 13-actin probe as described
previously [31]. Total RNA blots were sequentially hybrid-
ized with the EP 3 and EP4 probes, while poly(A) + RNA
blots were similarly hybridized with the EP 1 and FP probes.
For total RNA analysis, duplicate gels were run and stained
with acridine orange to confirm the integrity of RNA sam-
ples. Autoradiograms were subjected to densitometric scan-
ning (Personal Densitometer SI; Molecular Dynamics, Sun-
nyvale, CA) for quantitation of PG receptor mRNA levels
relative to 3-actin mRNA levels.

In Situ Hybridization

In situ hybridization was performed as described previ-
ously [32]. Uteri were cut into 4- to 6-mm pieces and flash
frozen in freon. Frozen sections (10 Ijm) from Days 1-4
or Days 5-8 of pregnancy were mounted onto poly-L-ly-
sine-coated slides and fixed in cold 4% paraformaldehyde
solution in PBS. Sections were then acetylated, prehybrid-
ized, and hybridized at 45°C for 4 h in hybridization buffer
containing 3 5S-labeled antisense or sense cRNA probes. Af-
ter hybridization and washing, the slides were incubated
with RNase A (20 pig/ml) at 370C for 15 min. RNase A-re-
sistant hybrids were detected by autoradiography using Ko-
dak NTB-2 (Eastman Kodak, Rochester, NY) liquid emul-
sion. Sections from the same uterus were hybridized with
the antisense or corresponding sense probes. Sections were
poststained with hematoxylin and eosin.

RESULTS

Northern Blot Analysis of PG Receptor mRNAs in the
Periimplantation Uterus

As reported previously [18, 24], a 2.4-kilobase (kb) tran-
script for EP1 and two transcripts (6.0 kb and 2.3 kb) for
FP were detected only in poly(A) + uterine RNAs. The use
of poly(A)+ for detecting these transcripts suggests their
low abundance in the periimplantation uterus. The steady-
state uterine levels of EP 1 mRNA showed only modest in-
creases on Days 4-7 of pregnancy (Fig. 1). In contrast, the
levels of FP transcripts were relatively higher on Days 1-
3 of pregnancy, but declined thereafter (Fig. 1). As reported
previously [19, 22, 23], 2.3-kb and 3.9-kb transcripts for
EP3 and EP 4 mRNAs, respectively, were detected in total
RNA samples, suggesting their relatively higher abundance
in the periimplantation uterus. The levels of these mRNAs
were higher on Days 3 and 4 of pregnancy (Fig. 2). Because
of the high sequence similarity between R-actin and a-actin,
the 3-actin probe hybridizes with both the uterine 3-actin
and a-actin mRNAs [33]. The presence of the smaller tran-
script in whole uterine RNA samples reflects the abundance
of a-actin mRNA in the myometrium [33]. This transcript
was not detected in decidual RNA. The results are shown
as the average of two separate experiments with about 10%
variation between the duplicate experiments.
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FIG. 1. Northern blot analysis of EP, and
FP mRNAs in the mouse uterus during the
periimplantation period. Left) Steady-state
levels of uterine EP, and FP mRNAs were
detected in whole uterine poly(A)+ RNA
samples obtained on Days 1-7 or in the
separated deciduum (d) and uterus minus
the deciduum (u-d) on Day 8 of pregnan-
cy. Poly(A)* RNAs (2 I'g) were separated
by formaldehyde-agarose gel electrophore-
sis, transferred to nylon membranes, UV
cross-linked, and hybridized to 32P-labeled
cRNA probes specific for mouse EP, and
FP mRNAs. The same blot was stripped
and rehybridized to a 3-actin probe. The
autoradiographic exposures were 15 h, 48
h, and 0.5 h for EP1, FP, and -actin, re-
spectively. Right) Quantitation of receptor
mRNA levels relative to those of the -ac-
tin mRNA. The presence of the smaller
transcript in whole uterine RNA samples
reflects the abundance of ea-actin mRNA
in the myometrium [33]. This transcript
was not detected in decidual RNA. The re-
sults are an average of two separate exper-
iments.

In Situ Hybridization of PG Receptor mRNAs in the
Periimplantation Uterus

The results of Northern blot hybridization of whole uter-
ine RNA samples suggested that PG receptor genes are ex-
pressed in the uterus during the preimplantation period.
However, if PG receptors are important for periimplantation
events, it should be through cell-specific expression in the
uterus in a temporal manner. Thus, the distribution of PG
receptor mRNAs in the periimplantation uterus was ex-
amined by in situ hybridization. On Days 1-5 of pregnancy,
only low levels of signals for EP1 mRNA were present in
all major uterine cell types without any distinct cell-specific
accumulation. However, from Day 6 onward, localized EP,
mRNA accumulation was evident in a subpopulation of
cells in the decidual bed at the mesometrial pole. Autora-

diographic signals in representative Day 1 and 8 pregnant
uterine sections are shown (Fig. 3). With respect to EP3
mRNA (Fig. 4), no specific localized signals were observed
on Days 1 and 2 of pregnancy. However, this mRNA was
clearly localized in the circular muscle of the myometrium
and in a subpopulation of cells in the stromal bed at the
mesometrial pole on Days 3 and 4 of pregnancy. This pat-
tern persisted with the onset of the attachment reaction at
2300 h on Day 4 and the progression of implantation on
Day 5. A similar expression pattern was also observed in
the Day 4 pseudopregnant uterus. While low levels of sig-
nals persisted in the circular muscles on Day 6 of pregnan-
cy, EP3 mRNA was primarily detected in the secondary
decidual zone on Day 7. On Day 8 of pregnancy, no spe-
cific signals were present in any uterine cell types. Auto-

FIG. 2. Northern blot analysis of EP, and
EP4 mRNAs in the mouse uterus during the
periimplantation period. Left) Steady-state
levels of uterine EP, and EP4 mRNAs were
detected in whole uterine total RNA sam-
ples obtained on Days 1-7 or in the sepa-
rated deciduum (d) and uterus minus the
deciduum (u-d) on Day 8 of pregnancy.
Total RNAs (6 Ig) were separated by form-
aldehyde-agarose gel electrophoresis,
transferred to nylon membranes, UV cross-
linked, and hybridized to 32P-labeled
cRNA probes specific for mouse EP, and
EP, mRNAs. The same blot was stripped
and rehybridized to a -actin probe. RNA
samples in duplicate gels were stained
with acridine orange to ensure integrity of
RNA. The mobilities of 28S and 18S
rRNAs are indicated. The autoradiographic
exposures were 5 h, 3 h, and 0.5 h for
EP3, EP4,, and -actin, respectively. Right)
Quantitation of receptor mRNAs relative to
[-actin mRNA. The presence of the small-
er transcript in whole uterine RNA sam-
ples reflects the abundance of ar-actin
mRNA in the myometrium [331. This tran-
script was not detected in decidual RNA.
The results are an average of two experi-
ments.
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radiographic signals for Days 4, 5, and 7 of pregnancy as
well as for Day 4 of pseudopregnancy are shown in Figure
4. With respect to EP4 mRNA (Fig. 5), low levels of ac-
cumulation were evident primarily in the luminal epitheli-
um on Days 1 and 2 of pregnancy, while distinct signals
were detected in both the luminal epithelial and stromal
cells on Days 3 and 4. Some signals were also noted in the
glandular epithelium. A similar pattern of expression was
also noted in the Day 4 pseudopregnant uterus. With the
initiation of the attachment reaction on Day 4 (2300 h), EP4
mRNA accumulation was still maintained in these cells. On
Day 5 of pregnancy, this mRNA was localized in the lu-
minal epithelium and decidualizing stroma around the im-
planting blastocyst. In the Day 5 pseudopregnant uterus,
EP4 mRNA was detected only in stromal cells. On Days
6-8 of pregnancy, signals were present in both the primary
and secondary decidual cells and in undifferentiated stroma
below the myometrium. Embryonic cells also exhibited ac-
cumulation of this mRNA on Day 8. Autoradiographic sig-
nals for Days 1, 4, and 5 of pregnancy and Day 4 of pseu-
dopregnancy are shown in Figure 5.

In situ localization of FP mRNA also exhibited an in-
teresting expression pattern. Low levels of signals were de-
tected in some stromal cells and in the circular muscle layer
on Day 1 of pregnancy. The stromal cell signals were not
detected on Day 2, while myometrial signals showed a
gradual increase reaching peak levels on Days 3 and 4. On
Day 5, the accumulation in the circular muscle declined,
and the decline was followed by undetected levels on Days
6-8. However, on Day 6, FP mRNA accumulation became
highly localized to a subpopulation of cells in the decidual
bed at the mesometrial pole and in undifferentiated stromal
cells underneath the myometrium. On Days 7-8, cells ac-
cumulating this mRNA at the mesometrial pole became
more polarized toward the lumen, and accumulation in the
undifferentiated stromal cells markedly declined. Autora-
diographic signals for Days 1, 4, and 6-8 of pregnancy are
shown in Figure 6.

Sections hybridized with the corresponding sense probes
exhibited only background nonspecific signals on any day
of pregnancy examined. Background levels of autoradio-
graphic signals of EP1 (Day 8), EP3 (Day 4), EP4 (Day 4),
and FP (Day 6) are shown in Figure 7. Further, different
probes exhibiting signals at different cellular locations on
sections from the same uterus served as internal controls.
For example, serial sections of a Day 4 pregnant uterus
hybridized with the EP3 (Fig. 4, A and B) or EP4 (Fig. 5,
C and D) showed different localization of the respective
mRNAs. The results shown are representative of data gen-
erated from at least 4 different mice for each day of preg-
nancy examined.

FIG. 3. In situ hybridization of EP, mRNA in the periimplantation mouse
uterus using sections hybridized with a 35S-labeled EP, antisense cRNA
probe; sections from Days 1-4 or Days 5-8 of pregnancy were mounted
onto the same slide. RNase A-resistant hybrids were detected after 10-
15 days of autoradiography using Kodak NTB-2 liquid emulsion. EP,
mRNA distribution in representative Day 1 (A, brightfield and B, darkfield;
x100) and Day 8 (C, darkfield; x40) is shown. le, luminal epithelium;
ge, glandular epithelium; s, stroma; cm, circular muscle; Im, longitudinal
muscle; em, embryo; m, mesometrial pole; am, antimesometrial pole.

Regulation of the PGE2 Receptor Genes in the
Uterus by Ovarian Steroids

Since ovarian steroids regulate uterine functions in a
cell-specific manner, in situ hybridization was performed
to localize EP3 and EP4 mRNAs in the adult ovariectom-
ized mice after E2 and/or P4 treatments. With respect to
EP3, no specific accumulation of this mRNA could be
detected in the ovariectomized uterus treated with the ve-
hicle alone (Fig. 8, a and b). While an injection of P4
clearly induced the EP3 mRNA accumulation in the cir-
cular muscle (Fig. 8, e and f), an injection of E2 produced
a similar response in both the circular and longitudinal
muscle layers (Fig. 8, c and d). Treatment with the com-
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FIG. 4. In situ hybridization of EP3
mRNA in the periimplantation mouse uter-
us. Uterine sections from Days 1-4 or
Days 5-8 of pregnancy were mounted
onto the same slide. Sections were hybrid-
ized with a "S-labeled EP3 antisense
cRNA probe. RNase A-resistant hybrids
were detected by autoradiography after 5-
7 days of exposure. Uterine EP3 mRNA
distribution on Days 4 (A, B), 5 (E, F), and
7 (G, H) of pregnancy or on Day 4 (C, D)
of pseudopregnancy is shown in bright-
field (left column) and darkfield (right col-
umn) photomicrographs at x40. bl, blasto-
cyst; pdz, primary decidual zone; sdz, sec-
ondary decidual zone; other abbreviations
as for Figure 3. D
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FIG. 5. In situ hybridization of EP4
mRNA in the periimplantation mouse uter-
us. Uterine sections from Days 1-4 or
Days 5-8 of pregnancy were mounted
onto the same slide. Sections were hybrid-
ized with a "S-labeled EP4 antisense
cRNA probe. RNase A-resistant hybrids
were detected by autoradiography after 5-
7 days of exposure. Uterine EP4 mRNA
distribution on Days 1 (A, B), 4 (C, D), and
5 (G, H) of pregnancy or on Day 4 (E, F)
of pseudopregnancy is shown in bright-
field (left column) and darkfield (right col-
umn) photomicrographs at x40. bl, blasto-
cyst; pdz, primary decidual zone; other
abbreviations as for Figure 3.

bination of these steroids induced this gene in the circular
muscle as well as in a subpopulation of stromal cells at
the mesometrial pole (Fig. 8, g and h), similar to what
was observed in the Day 4 pregnant or pseudopregnant
uterus. With respect to EP4 , low levels of this mRNA
were detected in the luminal epithelium, stroma, and cir-
cular muscle of ovariectomized mice treated with the ve-
hicle (oil) alone (Fig. 8, i and j). An injection of E2 con-

siderably up-regulated the accumulation of EP4 mRNA
in the luminal epithelium (Fig. 8, k and 1), whereas an
injection of P4 alone did so in the stroma and luminal
epithelium (Fig. 8, m and n). A co-injection of E2 with
P4 did not change the expression pattern as observed after
P4 treatment alone (data not shown). The results shown
are representative of data derived from 3-4 mice for each
treatment group.
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FIG. 6. In situ hybridization of FP mRNA
in the periimplantation mouse uterus.
Uterine sections from Days 1-4 or Days
5-8 of pregnancy were mounted onto the
same slide. Sections were hybridized with
a 3S-labeled FP antisense cRNA probe.
RNase A-resistant hybrids were detected
by autoradiography after 10 days of expo-
sure. Uterine FP mRNA distribution on
Days 1 (A, B), 4 (C, D), and 6 (E, F) of
pregnancy is shown in brightfield (left col-
umn) and darkfield (right column) photo-
micrographs, while the distribution on Day
7 (G) and Day 8 (H) is shown in darkfield
photomicrographs at x40. Abbreviations
are the same as for Figure 3.

DISCUSSION

Although PGs influence a wide range of events in the
uterus during pregnancy, the mechanisms by which PGs
influence specific effects and the sites of these effects in
the uterus are not known. Thus, we examined the spatio-

temporal expression and regulation of PGE2 and PGF, re-
ceptors in the periimplantation mouse uterus in order to
better understand the roles of these mediators during early
pregnancy. This study constitutes the first evidence for the
potential sites of actions of PGE2 and PGF 2. in the mouse
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FIG. 7. Negative controls (sense probes)
of EP1, EP3, EP4, and FP mRNAs in the
uterus. Uterine sections from Days 1-4 or
Days 5-8 of pregnancy were mounted
onto the same slide. Sections were hybrid-
ized with a SS-labeled sense cRNA
probes. RNase A-resistant hybrids were de-
tected by autoradiography after similar
days of exposure corresponding to the an-
tisense probes. Uterine mRNA distributions
for EP, on Day 8 (A, B), EP3 on Day 4 (C,
D), EP4 on Day 4 (E, F), and FP on Day 6
(G, H) of pregnancy are shown in bright-
field (left column) and darkfield (right col-
umn) photomicrographs at x40. MYO,
myometrium; PDZ, primary decidual zone;
SDZ, secondary decidual zone; other ab-
breviations as for Figure 3. D
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FIG. 8. In situ hybridization of EP3 and
EP4 mRNAs in steroid-treated adult ovari-
ectomized mice. Mice were given an in-
jection of oil (0.1 ml/mouse), E2 (100
ng/mouse), P4 (1 mg/mouse), or a combi-
nation of the same doses of E2+P4 and
killed 24 h later. EP, and EP, mRNA distri-
butions are shown in brightfield (left col-
umn) and darkfield (right column) photo-
micrographs. EP, mRNA: oil (a, b), E, (c,
d), P (e, f), and E2+P, (g, h). EP, mRNA:
oil (i, j), E, (k, I), and P, (m, n). All magni-
fications are shown at x 100, except g, h,
which are shown at x40. Abbreviations
are the same as for Figure 3.

uterus during the periimplantation period and under specific
steroid hormonal stimulations. Furthermore, the results pro-
vide evidence for the diversification of PG actions with
respect to specific developmental stages and uterine cell
types during early pregnancy.

PGE2 is likely to exert multiple effects during the peri-
implantation period depending upon the expression of PGE
receptor subtypes. Since EP1 is coupled to Ca2+ channels
[34], the expression of EPI mRNA primarily in the sec-
ondary decidual zone (SDZ) at the mesometrial pole on
Days 6-8 could be involved in angiogenesis required for

the establishment of the placenta. The role of Ca2+ in an-
giogenesis is well documented [35]. In contrast, increased
levels of cAMP resulting from the activation of EP2 or EP4
may participate in the process of implantation and decid-
ualization. Indeed, previous reports [36-41], as well as the
present observation of luminal epithelial and stromal cell
expression of EP4 on Days 4 and 5, suggest the involve-
ment of PGE 2 and cAMP in these processes. Since cAMP
can exert opposite effects on cell proliferation depending
on the cell types involved [42], differential expression of
EP 3 and EP4 in the decidualizing stroma on Days 5-8 sug-
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FIG. 8. Continued

gests that PGE 2 effects on decidualization (proliferation and
differentiation) should involve these receptor subtypes.
However, the significance of expression of EP 4 and FP in
the undifferentiated stroma underneath the myometrium
during this period is presently not clear.

Although PGs are considered important mediators for
the localized uterine vascular permeability at the sites of
implantation [8], the mechanism by which they mediate this
response is unknown. PGs themselves are poor inducers of
edema, but they can enhance this response induced by other
factors [34]. Vascular endothelial growth factor (VEGF) is
angiogenic and stimulates vascular permeability (reviewed
in [43]). Since PGs are known inducers of VEGF [44, 45],
it is possible that increased endometrial vascular perme-
ability at the sites of implantation is mediated by VEGF
induced by PGE 2 via interaction with EP4 . Indeed, the ex-
pression patterns of VEGF and its receptors in the periim-
plantation mouse uterus are consistent with this assumption
[43].

The mechanism(s) that determines embryo spacing in
the uterus of polytocous species is poorly understood. Myo-
metrial contraction presumably contributes to uterine spac-
ing of blastocysts [46, 47]. Thus, initial uterine spacing of
embryos is considered to be mediated by myometrial con-
tractility, while completion of this process after the attach-
ment/ reaction is perhaps achieved by the elongation and

differential growth of the uterus [48, 49]. Although PGs are
implicated in uterine contraction, their mechanism(s) of ac-
tion is not known. While increases in cytosolic Ca 2+ levels
stimulate smooth muscle contraction, increases in intracel-
lular cAMP levels inhibit it. The present study suggests that
PG-mediated uterine contractions could be regulated via ac-
tivation of EP3 and/or FP in the circular muscle. Since ac-
tivation of EP 3 inhibits adenylyl cyclase [20] and that of
FP stimulates IP3 levels and Ca 2+ mobilization [24], regu-
lated myometrial activity could be achieved by an appro-
priate ratio between the inhibitory and stimulatory factors.
The role of PG-mediated Ca2+ mobilization in uterine con-
tractions has been reported [50-52]. Thus, the expression
of EP3 and FP in the circular muscle on Days 3-5 could
function in a cooperative manner in myometrial contractil-
ity for embryo spacing. In fact, inhibition of uterine PG
synthesis by indomethacin during early pregnancy in the
rat interferes with uterine spacing of embryos [8]. After
embryo spacing and initiation of implantation, the myome-
trium remains in a state of quiescence until the time of
parturition. The down-regulation of the EP3 and FP genes
in the circular muscle on Days 6-8 is compatible with this
event. EP 3 or FP was not expressed in the longitudinal mus-
cle, suggesting that this muscle layer is perhaps not the
target for PGE 2 or PGF 2. to elicit uterine contractions.
However, the possibility that other mediators influence the
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longitudinal muscle for uterine contractions cannot be ex-
cluded.

The significance of the unique expression of EP 3 in a
subpopulation of cells in the stromal bed at the mesometrial
site on Day 4 is not clear. Since PGE2 appears to be in-
volved in Na* and water reabsorption in the kidney [53],
EP3 could be involved in uterine edema and subsequent
luminal closure required for the attachment reaction. Fur-
ther, it is also interesting to note that the location of these
subpopulations of cells at the mesometrial stromal bed is
the presumptive site of angiogenesis and placentation, fa-
voring increased blood flow because of the presence of af-
ferent arterioles of the mesometrial triangle and the efferent
endometrial circumferential venules [54].

In the mouse, uterine preparation to achieve the recep-
tive state for blastocyst implantation on Day 4 is primarily
regulated by rising ovarian P4 plus a small amount of es-
trogen; it is not dependent upon the presence of the embryo
[55]. This is consistent with the observation of a similar
expression pattern of EP 3 or EP4 on Day 4 of pregnancy
or pseudopregnancy. Further, similar uterine expression of
these receptor subtypes under E2 and/or P4 treatment sug-
gests that these uterine genes are primarily regulated by
ovarian steroids during the preimplantation period. In this
respect, high-affinity binding of PGE 2 was detected in rat
and human stromal cell membranes, and this binding in the
rat uterus was P4-dependent [56-58]. In contrast, uterine
PGF2a binding was either undetectable or very low in the
rat and human uterus [58, 59]. However, defining diverse
functions of PGs will require continuing investigation be-
cause of the addition of new members to the PG receptor
gene family [22, 60, 61]. Nonetheless, our present studies
on the temporal and cell-specific expression of certain PG
receptor subtypes and of COX-1 and COX-2 [13] in the
mouse uterus provide evidence for possible sites of synthe-
sis and actions of PGs in the mouse uterus during the peri-
implantation period. Development of specific antagonists to
or mutation of the PG receptor subtypes will be required
to support or refute their proposed roles in uterine biology.
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