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ABSTRACT

The present study investigated the expression of genes and
proteins associated with PGF2alpha biosynthesis, catabolism,
and transport in matched amnion and choriodecidua of human
term placenta. The concentration of PGF2alpha within fetal
membranes depends on the balance between complex enzymat-
ic systems responsible for, respectively, its synthesis—by
prostaglandin-endoperoxide synthase 2 (PTGS2) and members
of the aldo-keto reductase (AKR) family, AKR1C3 and AKR1B1—
and its catabolic inactivation—through hydroxy-prostaglandin-
dehydrogenase (HPGD). We observed that AKR1C3 shows equal
basal expression (MRNA and protein) in choriodecidua and
amnion but that AKR1B1 exhibits preferential expression in the
choriodecidua. Expression of HPGD and solute carrier organic
anion transporter family member 2A1 (SLCO2A1) was found
primarily in the choriodecidua. We also evaluated whether an
inflammatory environment induced by the gram-negative
bacterial endotoxin lipopolysaccharide (LPS) affects expression
of each candidate enzymes. The amnion responded to LPS with a
small but significant decrease of AKRTBT mRNA expression. In
contrast, we found a significant increase in PTGS2 and AKR1C3
mRNA expression in choriodecidua after LPS challenge, but such
regulation was confirmed only at protein levels for PTGS2 and
not for AKR1C3. Our results suggest that the choriodecidua
appears to be the main tissue, which expresses maximally all the
components (synthesis, degradation, and transport) controlling
PGF2alpha levels.

AKR1B1, AKR1C3, aldo-keto reductases, fetal membranes,
human parturition, parturition, placenta, pregnancy,
prostaglandin-f, , prostaglandin transporter, SLCO2A1

INTRODUCTION

Parturition encompasses composite physiological processes
that require synchronization of uterine contractions, cervical
dilatation, and rupture of fetal membranes. The control of onset
of labor in women is as yet unknown because of the
multiplicity of factors involved (hormonal, mechanical,
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genetic, and/or environmental). During the past decade,
growing evidence has demonstrated a link between intrauterine
infection/inflammation and spontaneous preterm labor/delivery
[1-5]. Extensive data from the literature have reported that the
cytokine-mediated inflammatory process is directly involved in
the release of uterotonic agents such as prostaglandin (PG)
leading to the rupture of fetal membranes. The fetal membranes
(amnion and choriodecidua) are major sources of prostaglan-
dins [6-9]. Numerous in vitro studies have shown that
proinflammatory cytokines and bacterial endotoxin stimulate
PG production from human term fetal membranes [10—13]. It is
well established that the net production of PGs within the
placenta and fetal membranes depends on the balance between
complex enzymatic systems responsible, respectively, for their
synthesis by prostaglandin-endoperoxide synthases, the con-
stitutively expressed PTGS1, and the inducible PTGS2 (also
known as cyclooxygenase, COX-1, and COX-2, respectively)
[14] and by various terminal PG synthase (such as PGE and
PGF synthase responsible for the selective production of PGE2
and PGF2o) on the one hand and for their metabolism/
catabolism by the 15-hydroxy prostaglandin dehydrogenase
(HPGD) enzyme on the other [15-19]. Previous studies have
shown that human fetal membranes expressed various
prostaglandin E synthases (PTGESI, also known as micro-
somal PGE synthase-1; PTGES2, also known as microsomal
PGE synthase-2; and PTGES3, also known as cytosolic PGE
synthase-3) [20, 21]. Labor has little if any effect on the
expression of PTGES, but proinflammatory cytokines and
bacterial endotoxin increase the activity of PTGS2 and reduce
the activity of HPGD in the fetal membranes, thereby resulting
in a net increase of PGE2 production [22]. But compelling
evidence also supports a role for PGF2a in human labor.
PGF2o concentration increases in amniotic fluid before the
onset of spontaneous labor at term [23]. Moreover, a significant
rise in PGF2a happens in the amniotic fluid during early labor
[24] as well as in amniotic fluid of women with intra-amniotic
infection associated to preterm labor [12]. This prostaglandin is
known to increase its local concentration at the time of
parturition and to induce myometrial contractions and cervical
dilatation [6]. PGF2a can be mostly produced through
reduction of PGH2 by 9,11-endoperoxide reductase. In
humans, the aldo-keto reductase family 1, member C3
(AKR1C3), plays an important role in biosynthesis of PGs,
catalyzing the formation of PGF2a and 9a-, 11B3-PGF2a from
PGH2, and PGD2, respectively [25]. More recently, a new
enzyme responsible for PGF2a synthesis, the AKR1BS5, has
been described in bovine endometrium [26], and the AKR1B1
(the homolog of AKRIB5 in human) was found to be
expressed and functional in the human endometrium [27, 28].
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TABLE 1. Primer pair sequences and Genbank accession numbers for real-time quantitative RT-PCR study.

Amplicon
Gene name Genbank accession no. (size in base pair) Oligonucleotide primer (5" — 3’)
PTGCS2 NM_000963 101 ATCATAAGCGAGGGCCAGCT
AAGGCGCAGTTTACGCTGTC
AKRI1B1 NM_001628 201 GATCGCAGCCAAGCACAATA
CTCAACAAGGCACAGACCCTC
AKRI1C3 NM_003739 500 GTAAAGCTTTGGAGGTCAC
CACCCATCGTTTGTCTCG
SICO2A1 NM_005630 101 CTTCCACCCGGTCTGTGGAG
TCAGTTGCTTGGAGGTTGCA
HPGD NM_000860 171 AAGCAAAATGGAGGTGAAGGC
TGGCATTCAGTCTCACACCAC
GAPDH NM_002046 380 GGAGAAGGCTGGGGC
GATGGCATGGACTGTGG

According to these new findings, whether human fetal
membranes express such enzyme family remains unknown.

An additional level of regulation of PGs action at the
cellular level involving PG transporters has recently been
demonstrated. Because PGs predominate as charged anions,
they cross cell membranes not by passive diffusion but rather
through specialized carriers such as solute carrier organic anion
transporter family member 2A1 (SLCO2A1) [29]. SLCO2A1
was initially postulated to mediate influx of PGs from the
extracellular milieu for their cellular inactivation and more
recently for transit of newly synthesized PGs to exert their
biological actions in the bovine uterus and fetal membranes
(amnion, chorion, and chorioallantois) [30, 31]. Although
SLCO2A1 has emerged as a functional PG carrier in the human
endometrium throughout the menstrual cycle and in decidual-
ized endometrial stroma cells [30, 32, 33], its characterization
in human fetal membranes and its precise role in parturition are
still poorly understood.

The present study focused on the analysis of the complex
enzymatic systems controlling PGF2a level in matched amnion
and choriodecidua of human term placenta. The objectives
were 1) to determine the cellular localization of PTGS2, AKR
family members (AKR1C3, AKR1B1), HPGD, and SLCO2A1
protein expression in fetal membranes using immunohisto-
chemistry (IHC); 2) to determine PTGS2, AKRIBI, AKRIC3,
HPGD, and SLCO2AlI mRNA expression in amnion and
choriodecidua and to compare them with changes in protein
levels; and 3) to evaluate whether an inflammatory environ-
ment induced by the Gram-negative bacterial endotoxin
lipopolysaccharide (LPS) can affect the expression of each
enzyme candidates.

MATERIALS AND METHODS

Materials

Monoclonal anti-AKR1C3 antibody was purchased from Sigma-Aldrich,
polyclonal anti-HPGD antibody was from Cayman Chemical (Spibio,
Montigny le Bretonneux, France), and polyclonal anti-PTGS2 and anti-
GAPDH antibodies were purchased from Santa Cruz Biotechnology (TEBU-
BIO S.A., Le Perray en Yvelines, France). Monoclonal anti-vimentin (VIM)
and monoclonal anti-cytokeratin 7 (KRT7) were purchased from DAKO
FRANCE (Trappes, France). Polyclonal anti-AKR1B1 and anti-SLCO2A1
antibodies were contributed by M.A. Fortier and characterized previously [32,
33].

Biological Samples

Placentas were collected from eight pregnant women delivered by elective
caesarean section prior to the onset of labor (38th and 40th weeks of pregnancy)
because of a diagnosed cephalo-pelvic disproportion in an apparently normal
singleton pregnancy. This study was approved by the Comité¢ Consultatif de

Protection des Personnes pour la Recherche Biomédicale (Paris-Cochin,
France), and informed consent was obtained from all donors. Fetal membranes
were dissected free of the placenta under sterile conditions and washed with
phosphate-buffered saline (PBS) in order to eliminate blood clots.

The amnion and chorion with adherent decidua were manually separated
and cut into 1-cm? pieces. Explants were pooled and randomly distributed into
24-well plates (two explants per well, two wells per treatment) containing 2 ml
of Dubelco modified Eagle medium supplemented with 10% fetal calf serum,
100 UI/ml of penicillin, and 100 pg/ml of streptomycin (Invitrogen SARL Life
Technologies, Cergy-Pontoise, France). The explants were incubated under 5%
CO, and 95% air at 37°C for 48 h to allow them to stabilize. The explants were
incubated either without (basal) or with 10 pg/ml lipopolysaccharide from
Escherichia coli 127:B8 (LPS) (Sigma-Aldrich, Saint Quentin Fallavier,
France) for the indicated times in serum-free medium as previously described
[34]. At the end of the incubation period, the explants of each well were pooled,
weighed, and immediately frozen in liquid nitrogen before storing at —80°C for
subsequent processing for either total RNA or protein extraction.

Immunohistochemistry

Immediately after the cesarean section, full-thickness fetal membranes from
four term placentas were fixed in 4% formalin for 4 h at room temperature and
then embedded in paraffin. Tissue sections of 5 pm were mounted on slides and
dewaxed in xylene and rehydrated in ethanol/water. Immunostaining was
performed with a universal streptavidin-peroxidase immunostaining kit (DAKO
FRANCE). Nonspecific binding was blocked by incubation of tissue sections
for 5 min in a blocking reagent containing 3% hydrogen peroxide and then in
3% serum albumin bovine in PBS buffer for 30 min. The sections were
incubated with antibodies directed against AKR1B1 (1/100), AKR1C3 (1/100),
PTGS2 (1/500), SLCO2A1 (1/500), HPGD (1/100), VIM (1/200), and KRT7
(1/200) for 30 min at room temperature. Sections were washed in PBS and
incubated with a biotinylated secondary antibody for 15 min. They were then
washed three times in PBS and incubated with streptavidin conjugated to
horseradish peroxidase for 15 min. The sections were washed in PBS, and
staining was detected by incubation for 2 min with the DAB (3, 3'-
diaminobenzidine) chromogen. Controls were performed by incubating the
sections with nonspecific rabbit or mouse purified IgG at the same
concentration as the primary antibody. Preparations were counterstained with
hematoxylin blue and mounted in an aqueous mounting medium (Ultramount
Permanent Mounting Medium, Aqueous, DAKO FRANCE), then examined
and photographed with an Olympus BX60 microscope.

Western Blot Analysis

Whole homogenates were prepared from amnion and choriodecidua
explants treated as indicated. Tissues were homogenized (400 mg/ml) with
an Ultra-Turrax apparatus (IKA-WERKE, VWR, Strasbourg, France) in ice-
cold homogenization buffer containing 100 mM Tris HCI, pH 7.4, 2 mM
MgSO,, 2 mM EDTA, 10% glycerol, and the protease inhibitor cocktail (P-
2714) (Sigma-Aldrich). Protein concentration was determined by the method of
Bradford, using bovine serum albumin as standard. Equal amounts of proteins
were loaded and separated by SDS-PAGE on 10% or 12% gels and transferred
onto a Hybond-P membrane. Nonspecific binding sites were blocked by
incubating the membranes with 5% low-fat dried milk in Tris Buffer Saline
Tween (TBST) (10 mM Tris HCI, pH 7.5, 0.15 M NaCl, 0.1% Tween 20). The
membranes were then incubated overnight at 4°C in TBST/1% milk with the
indicated antibodies at the appropriate concentrations: AKRIB1 (1/3000),

720z 110V €2 U0 15310 Ao 50 SR A E TG AR LG PP B O UG S Wor PapEoTimog




AKR1B1, AKR1C3, AND SLCO2A1 IN FETAL MEMBRANES

AKRIC3 (1/500), PTGS2 (1/1000), SLCO2A1 (1/5000), or HPGD (1/200).
Membranes were washed with TBST and incubated with either donkey anti-
rabbit or anti-mouse secondary antibody conjugated with horseradish
peroxidase. The blots were developed with ECL+ reagents and visualized on
Kodak X-ray films (GE Healthcare Bio-sciences, Orsay, France). Molecular-
weight markers were run in parallel.

For standardization, the membranes were stripped with a buffer containing
62.5 mM Tris (pH 6.2), 2% sodium dodecyl sulfate, and 100 mM pB-
mercaptoethanol at 50°C for 30 min and reprobed with a polyclonal antibody
raised against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1/1000).
Densitometry analysis was performed using a FUJIFILM LAS-1000 Camera
System and analyzed by Advanced Image Data Analysis software (Raytest,
Courbevoie, France).

RNA preparation. Total RNA was extracted from amnion and choriode-
cidua explants using the TRIZOL reagent method (Invitrogen SARL) as
previously described [35]. Briefly, explants were homogenized in TRIZOL
reagent, and total RNA was recovered by phenol/chloroform extraction,
isopropanol precipitation and ethanol washes, according to the manufacturer’s
instructions. Total RNA was quantified by spectrophotometry, and RNA
integrity was verified by nondenaturing agarose gel electrophoresis.

Synthesis of human cDNA for AKR1B1, AKR1C3, SLCO2A1, HPGD,
PTGS2, and GAPDH. Reverse transcription was performed on 1 pg of total

AKR1C3
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FIG. 1. Immunolocalization of PTGS2,
AKR1B1, AKR1C3, SLCO2AT1, and HPGD
in human fetal membranes. Immunohisto-
chemistry was performed on serial sections
of fetal membranes. Tissue-positive controls
were conducted with cytokeratin 7 (KRT7)
and vimentin (VIM) antibodies, and nega-
tive controls were performed with nonim-
mune rabbit or mouse 1gG. AE, amniotic
epithelium; AM, amniotic mesenchymal
layer; CL, chorionic layer; D, decidual cells.
Bar = 100 um.

RNA extracted from placental membranes at 37°C with oligo(dT) primer and
M-MLV reverse transcriptase (Invitrogen). Reaction mixture for polymerase
chain reaction (PCR), including Taq polymerase (QBiogene, MP BIOMED-
ICALS, Ilkirch, France), was prepared as suggested by the manufacturer.
Primers were designed using the Primer Selection program from GCG
(Genetics Computer Group). The identity of all PCR products was confirmed
by DNA sequencing (COGENICS, Meylan, France), and sequence homology
analysis was verified using the Basic Local Alignment Search Tool [36]. These
fragments were used to design real-time PCR primers and to quantify templates
for the real-time PCR standard curves.

Real-Time PCR Analysis

Four independent fetal membranes were analyzed in duplicate. Before
doing real-time PCR, the samples were checked for any DNA contamination by
performing PCR reactions done without reverse transcription of the RNA
extracts. For each transcript to study, real-time PCR was carried out using the
real time Applied 7000 PCR system (Applera France SA, Courtaboeuf, France)
with 5% of the retrotranscribed product (equivalent to 50 ng of RNA) and 300
nM of gene-specific oligonucleotide pairs, in a total volume of 25 pl of reagent
SYBR Green PCR Mastermix (Applera France SA). Primers (Table 1) were
designed using Primer Express software (Applera France SA). Real-time PCR

FIG. 2. Expression of AKR1B1 and
AKR1C3 in matched amnion and chorio-
decidua. Quantification of AKR7BT (A) and
AKR1C3 (B) mRNA was performed by real-
time PCR. Data, expressed as the copy
number, are represented as box plot show-
ing median and 25th and 75th percentiles,
the minimum and the maximum data values
of four samples measured in duplicate.

Protein expression was analyzed by West-
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FIG. 3. Expression of PTGS2, HPGD, and SLCO2AT1 in matched amnion and choriodecidua. Quantification of PTGS2, HPGD, and SLCO2AT mRNA was
performed by real-time PCR (A-C). Data, expressed as the copy number, are represented as box plot showing median and 25th and 75th percentiles, the
minimum and the maximum data values of four samples measured in duplicate. Protein expression was also analyzed by Western blotting (D-F) on
homogenates of three matched amnion and choriodecidua explants and with a homogenate of rat lung used as positive control. The detection of GAPDH
in each sample served as a loading control. Representative experiments are shown with three different matched amnion and choriodecidua membranes.
Densitometric quantification of bands represents median (top of columns), and the highest and lowest values (bars) of three samples were analyzed four
times. There is a statistically significant difference between choriodecidua and amnion both at mRNA and protein levels for HPGD and SLCO2AT1.

conditions were 2 min at 50°C and 15 min at 95°C, followed by 45 cycles of 15
sec at 95°C and 1 min at 60°C. Standard curves were generated in parallel using
serial dilutions of the purified PCR product as a polymerase template. The
presence of a specific and unique PCR product was verified by an ABI prism-
generated melting curve profile. Quantification of targets was calculated from
their respective standard curves and was expressed as number of RNA copies
per 50 ng total retrotranscribed RNA. No significant difference of expression
for GAPDH was detected (analysis of variance [ANOVA], P < 0.05) between
the different tissues (amnion, choriodecidua) and in the presence or absence of
LPS.

Statistical Analysis

For transcript analysis, statistical significance was determined using log
transform data and two-way ANOVA. ANOVA was followed by post hoc tests
using the SYSTAT software (GMBH, Erkrath, Germany). Values at P < 0.05
were considered statistically significant. Data are represented as box-and-
whiskers graphs. The boxes extend from the 25th percentile to the 75th
percentile with a line at the median. The whiskers extend above and below the
box to show the highest and lowest values. For Western blot data regarding

protein expression in amnion and choriodecidua membranes, there were only
three replicates so that values are graphed as the median (top of columns) and
the highest and lowest values (bars). The effect of LPS on protein expression in
explants of fetal membranes was assessed by ANOVA, and the bar graphs
represent the mean = SEM.

RESULTS

Immunolocalization of AKR1C3, AKR1B1, SLCO2AT,
PTGCS2, and HPGD in the Human Fetal Membranes

Chorionic trophoblast and amniotic epithelium were
evidenced using cytokeratin-7 (KRT7), whereas vimentin
(VIM) was used to identify the mesenchymal layer of the
amnion and decidual stromal cells (Fig. 1). Positive immuno-
staining for AKR1B1 and AKRI1C3 was found mainly in
trophoblast cell layer of the chorion leave and in the decidual
stromal cells and faintly in the amniotic epithelium, while a
poor staining was detectable in cells of the mesenchymal layer
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of the amnion. A similar pattern of staining was observed for
immunoreactive SLCO2A1 and HPGD. We observed an
intense staining for PTGS2 mainly in amnion epithelial cells
as well as in chorionic trophoblastic and decidual cells. By
contrast, a moderate immunostaining of PTGS2 was present in
amnion mesenchymal cells. The immunostaining was abol-
ished when nonimmune serum was substituted for the primary
antibody.

Expression of AKR1B1 and AKR1C3 in Amnion
and Choriodecidua

Expression of AKRI1B1 and AKRI1C3 was analyzed by
quantitative RT-PCR and Western blotting in matched amnion
and choriodecidua samples (Fig. 2). In both components of
fetal membranes, we detected a high mRNA copy number of
AKRIBI instead of a low mRNA copy number of AKRIC3.
Contrasting patterns for AKR1B1 expression were observed
between amnion and choriodecidua. The choriodecidua
exhibited significantly more AKRIB1 expression than the
amnion (Fig. 2A). This difference was confirmed at the protein
level as indicated after integration of the immunoreactive band
for AKR1B1 (Fig. 2C). Messenger RNA expression and
protein levels of AKR1C3 in amnion and choriodecidua were
equivalent (Fig. 2, B and D).

Expression of PTGS2, HPGD, and SLCO2A1 in Amnion
and Choriodecidua

As shown in Figure 3, A and D, comparable levels of
expression of PTGS2 (mRNA and protein) were observed in
amnion and choriodecidua. The levels of expression of HPGD
mRNA (Fig. 3B) and SLCO2A] mRNA (Fig. 3C) were
significantly higher in choriodecidua than in amnion. These
differential expressions were confirmed at the protein level by
Western blotting, where the integrated signal for the immuno-
reactive band at 70 kDa corresponding to SLCO2A1 protein
(Fig. 3F) and the immunoreactive band at 28 kDa correspond-
ing to HPGD (Fig. 3E) were significantly more intense in the
homogenates of choriodecidua than in amnion samples.

Effect of LPS on PTGS2, AKR1B1, AKR1C3, SLCO2AT,
and HPGD Expression

The effect of LPS on PTGS2, AKRIBI, AKRICS3,
SLCO2AI, and HPGD mRNA expression is presented in
Figure 4 with LPS for 4 h. In choriodecidua explants, we found
that treatment with LPS increased significantly PTGS2 and
AKRIC3 mRNA expression. LPS treatment had no significant
effect on AKRIBI, SLCO2AI, or HPGD mRNA expression. It
has to be noted that AKR1B1, SLCO2A1, and HPGD are
significantly expressed at a higher level in choriodecidua than
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FIG. 5. Effect of LPS on PTGS2, AKR1BT, PTGS2 [ basal ] AKR1B1 [ basal
AKR1C3, SLCO2AT, and HPGD expression I LPs _T_ I LPs
in amnion and choriodecidua explants. The
effect of LPS treatment (10 pg/ml) was | i
determined on PTGS2, AKR1B1, AKR1C3, = =
SLCO2AT1, and HPGD proteins analyzed by~ § 5
Western blot. Data are expressed as mean P P=0.050 &
+ SEM of the quantified densitometry E | E i
signals. LPS treatment increases PTGS2 2 2
protein in choriodecidua (P = 0.050) but = L
not in amnion (P = 0.754). LPS had no -% -g
effect on other protein in both choriodeci- 5 | 5 |
dua and amnion membranes (AKR1C3 [P = a a
0.376; P = 0.917], AKR1B1 [P = 0.148; P
= 0.108], SLCO2A1 [P = 0.662; P =
0.405], HPGD [P = 0.755; P = 0.712]).
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in amnion. In amnion explants, the only significant change DISCUSSION

after LPS treatment was a decrease in AKRIBI mRNA
expression. Amnion and choriodecidua explants were then
incubated with or without 10 pg/ml LPS for 24 h, and the
protein expression of PTGS2, AKR1B1, AKR1C3, SLCO2AL1,
and HPGD was evaluated (Fig. 5). LPS treatment had no
significant effect on AKRI1B1, AKR1C3, SLCO2AI1, and
HPGD protein expression. LPS increased PTGS2 protein (P =
0.050) only in choriodecidua. As indicated in Figure 4, this
result correlates to the increase of PTGS2 mRNA. By contrast,
the LPS-induced increase of AKR/C3 mRNA did not parallel
an increase of the AKRIC3 protein in the choriodecidua
explants.

In the present study, we examined in amnion and
choriodecidua, the expression of genes and proteins associated
with PGF2a biosynthesis, catabolism, and transport in an
integrated manner, as a first attempt to understand the response
of fetal membranes following LPS exposure to mimic
inflammation. We have confirmed that the human fetal
membranes possess all the committed steps necessary for
autoregulation of PGF2a action. Thus, both PTGS2 and HPGD
are localized in human fetal membranes as previously reported
[10, 15-19]. Our analysis of the relative expression of these
enzymes demonstrates that amnion epithelial cells and
chorionic trophoblastic cells displayed similar PTGS2 expres-
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sion. In contrast, the chorion expressed predominantly HPGD.
This regional distribution within the fetal membranes has
previously been reported [15, 16]. Our present data focus
attention on the role of the AKR family members [37]. PGF2a
biosynthesis involves AKRI1C3 and now AKRIBI, the
homolog of AKRIBS5, which has been previously shown to
be most likely the relevant enzyme for the synthesis of
luteolytic PGF2a in the bovine endometrium [26-28]. The
present report indicates that AKR1B1 was expressed at higher
levels than AKRIC3 in both fetal membranes. AKRI1C3
showed equal expression (mRNA and protein levels) in
choriodecidua and amnion, but the transcripts for AKRIBI
were more abundant in choriodecidua than in amnion. This is
consistent with the AKR1B1 protein expression and with the
IHC localization of AKR1B1, which shows choriodecidual
preference. AKR1BS5, the bovine homolog of AKR1B1, was
shown to have complementary actions in the bovine endome-
trium: generation of PGF2a and inactivation of progesterone
[26]. As PGF2a and progesterone are produced by the chorion
[38], we cannot exclude that AKR1B1 acts as a multifunctional
enzyme in the fetal membranes.

The PG transporter (SLCO2A1) has been identified in
human reproductive tissues [32, 33, 39]. It has been proposed
that SLCO2A1 mediates both the efflux of newly synthesized
PGs to exert their biological action through their cell surface G-
protein coupled receptors and the influx of PGs from the
extracellular milieu for their cellular inactivation. In the present
study, SLCO2A1 is preferentially expressed in choriodecidua
compared to amnion. SLCO2A1 protein expression follows
that of mRNA, and cellular localization shows that SLCO2A1
protein is highly expressed in the choriodecidua. This is a
logical site of expression given the documented role of chorion
for PG inactivation during pregnancy [24]. Interestingly, the
choriodecidua appears to be the main tissue, which expresses
maximally all the components (synthesis, degradation, and
transport) controlling PGF2u levels.

Growing evidence has demonstrated an association between
intrauterine infection/inflammation and preterm birth [4, 5, 40].
Intra-amniotic or intrauterine injection of dead bacteria or
bacterial products, including LPS, is sufficient to promote
preterm labor in mouse, rabbit, and sheep [41]. Because PG
production by fetal membranes is believed to be an important
initiator of term and preterm labor, we expected changes in the
expression of synthesis, metabolism, and transport of PGF2a. in
human choriodecidua and amnion following LPS-induced
inflammatory environment.

A classical concept in humans is that choriodecidua appears
as the first tissue colonized by microbial pathogens during an
ascending intrauterine infection. Experimental evidence indi-
cates that choriodecidua produces 10-fold-higher levels of
proinflammatory cytokines than amnion [34, 42, 43]. The
present study demonstrates that in amnion, inflammatory
conditions have almost no effect on the gene expression of
PTGS2, AKRIC3, HPGD, and SLCO2AI. In contast, in
choriodecidua, we demonstrated that LPS induced expression
of PTGS2 at mRNA and protein levels without altering
expression of AKR1B1. An increase of AKRIC3 mRNA levels
was observed on LPS addition, but such regulation was not
confirmed at the protein levels. The underlying cause of
differential gene expression remains to be determined. It is also
of note that expression level of HPGD is much more elevated
in the choriodecidua compared to amnion, although we have
not observed an inhibitory effect of LPS on this enzyme. The
LPS has been previously reported to inhibit the activity of
HPGD in the fetal membrane [11] and stimulated PGF2o
release from the decidua and the intact fetal membrane [44,

45]. Interestingly, when chorion and decidua are separated, the
chorionic production of prostaglandins always exceeds that of
decidua, suggesting a potential paracrine inhibitory pathway
between the two tissues [46]. Therefore, we cannot exclude that
a similar mechanism may operate in vivo between choriode-
cidua and amnion. As quoted by others [15-17], the
choriodecidua may act as a protective barrier for regulating
the paracrine and the autocrine action of bioactive PGF2a until
the time of spontaneous labor. Our data also support the idea
that the choriodecidua is a major site for local control of
enzymes of PGF2o biosynthesis and is more responsive than
amnion to an inflammatory insult.
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