Abstract:

Background

The potential impacts of drug-induced modulation of mitochondrial function in humans remain unclear despite the high prevalence of “mito-modulatory” medication use among older adults. While these medications, such as statins and metformin, have undergone extensive characterization of their effects on mitochondrial function in vitro, the effects in humans are far more complex and poorly understood.

Methods

This study uses data from the Study of Muscle, Mobility and Aging (SOMMA) to evaluate how mito-modulatory medication use is related to skeletal muscle bioenergetic capacity, measured by ex vivo high-resolution respirometry and in vivo phosphorus magnetic resonance spectroscopy in healthy older adults.

Results

We found that mito-modulatory medication use was related to lower maximal complex I&II supported oxidative phosphorylation (Max OXPHOS), maximal electron transfer system capacity (Max ETS), and maximal ATP production capacity (ATP Max) in men, but not in women. We also found this to be dependent on the number of medications used, in which higher mito-modulatory medication load was associated with lower Max OXPHOS, Max ETS, and ATP Max.

Conclusions

Our results provide greater insight into the potential clinical effects of mito-modulatory medication use and highlight the need to test the impact of these medications on mitochondrial function in randomized trials.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.