Summary

We consider the problem of designing experiments for estimating a target parameter in regression analysis when there is uncertainty about the parametric form of the regression function. A new optimality criterion is proposed that chooses the experimental design to minimize the asymptotic mean squared error of the frequentist model averaging estimate. Necessary conditions for the optimal solution of a locally and Bayesian optimal design problem are established. The results are illustrated in several examples, and it is demonstrated that Bayesian optimal designs can yield a reduction of the mean squared error of the model averaging estimator by up to 45%.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.