-
Views
-
Cite
Cite
Mark A. Beaumont, Jean-Marie Cornuet, Jean-Michel Marin, Christian P. Robert, Adaptive approximate Bayesian computation, Biometrika, Volume 96, Issue 4, December 2009, Pages 983–990, https://doi.org/10.1093/biomet/asp052
Close - Share Icon Share
Abstract
Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.’s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappé et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm.