Corrigenda

(1) *Biometrika* (1961), 48, pp. 419–26

'Computing the distribution of quadratic forms in normal variables.'

By J. P. Imhof

p. 421, lines 1 and 2. Owing to a printer's error made after the final proof stage these two lines have been incorrectly printed at the top instead of the bottom of the page.

(2) *Biometrika* (1961), 48, pp. 452–6

'On the solution of the likelihood equation by iteration processes.' By B. K. Kale

p. 453, third line below equation (4)

\[P[|\theta - \theta_0| \geq \frac{1}{2} \rho] \quad \text{for} \quad P[-\theta_0 | \theta \geq \frac{1}{2} \rho]. \]

p. 456, equation (13)

\[1 + \left(\frac{d^2 \log L}{d \theta^2} \right)_{\theta = \hat{\theta}} \quad \text{for} \quad 1 + \left(\frac{d^2 \log L}{d \theta^2} \right)_{\theta = \hat{\theta}}. \]

(3) *Biometrika* (1961), 48, pp. 359–65

'Linear and non-linear multiple comparisons in logit analysis.'

By Olav Reiersøl

I regret having published a test for the hypothesis (4.1, ijy) based on the inequality (4.5, ijy). When we carry out the minimization of \(G_{ij}(t) \) we get \(T_{ij} \) as a factor. When \(T_{ij} \) is different from 0 we may divide by \(\frac{T_{ij}}{T_{ij}} \) on both sides of the inequality. We then find that (4.5, ijy) is equivalent to an inequality stating that a positive definite quadratic form in \((a_i - a_j)\) and \((b_i - b_j)\) is less than or equal to a constant, so that a test based on this inequality is a test of the hypothesis \(\alpha_i = \alpha_j, \beta_i = \beta_j \) rather than the hypothesis (4.1, ijy).

The preceding result does not represent any argument against using a test for the hypothesis (4.1, ijy) based on (4.4). Instead of minimizing \(G_{ij}(t) \) with respect to \(t \) we may choose a certain value of \(t \), or take an average of the right-hand side of (4.4) for different values of \(t \) in such a way that we make the level of significance of the test as far as possible independent of \(\alpha_i, \alpha_j, \beta_i, \beta_j \) for values of these parameters satisfying (4.1, ijy).