Abstract

A framework is developed for inference concerning the covariance operator of a functional random process, where the covariance operator itself is an object of interest for statistical analysis. Distances for comparing positive-definite covariance matrices are either extended or shown to be inapplicable to functional data. In particular, an infinite-dimensional analogue of the Procrustes size-and-shape distance is developed. Convergence of finite-dimensional approximations to the infinite-dimensional distance metrics is also shown. For inference, a Fréchet estimator of both the covariance operator itself and the average covariance operator is introduced. A permutation procedure to test the equality of the covariance operators between two groups is also considered. Additionally, the use of such distances for extrapolation to make predictions is explored. As an example of the proposed methodology, the use of covariance operators has been suggested in a philological study of cross-linguistic dependence as a way to incorporate quantitative phonetic information. It is shown that distances between languages derived from phonetic covariance functions can provide insight into the relationships between the Romance languages.

References

Arsigny
V.
Fillard
P.
Pennec
X.
Ayache
N.
Log-Euclidean metrics for fast and simple calculus on diffusion tensors
Magn. Resonance Med.
2006
, vol. 
56
 (pg. 
411
-
21
)
Aston
J. A. D.
Chiou
J.-M.
Evans
J. P.
Linguistic pitch analysis using functional principal component mixed effect models
Appl. Statist.
2010
, vol. 
59
 (pg. 
297
-
317
)
Bhattacharya
R.
Patrangenaru
V.
Large sample theory of intrinsic and extrinsic sample means on manifolds. I
Ann. Statist.
2003
, vol. 
31
 (pg. 
1
-
29
)
Bosq
D.
Linear Processes in Function Spaces
2000
New York
Springer
Dryden
I. L.
Koloydenko
A.
Zhou
D.
Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging
Ann. Appl. Statist.
2009
, vol. 
3
 (pg. 
1102
-
23
)
El Karoui
N.
Operator norm consistent estimation of large-dimensional sparse covariance matrices
Ann. Statist.
2008
, vol. 
36
 (pg. 
2717
-
56
)
Ferraty
F.
Vieu
P.
Nonparametric Functional Data Analysis: Theory and Practice
2006
Berlin
Springer
Fréchet
M.
Les éléments aléatoires de nature quelconque dans un espace distancié
Ann. Inst. Henri Poincaré
1948
, vol. 
10
 (pg. 
215
-
310
)
Fremdt
S.
Steinebach
J. G.
Horváth
L.
Kokoszka
P.
Testing the equality of covariance operators in functional samples
Scand. J. Statist.
2013
, vol. 
40
 (pg. 
138
-
52
)
Good
P. I.
Permutation, Parametric and Bootstrap Tests of Hypotheses
2005
3rd edition
New York
Springer
Gower
J. C.
Generalized Procrustes analysis
Psychometrika
1975
, vol. 
40
 (pg. 
33
-
50
)
Hadjipantelis
P. Z.
Aston
J. A. D.
Evans
J. P.
Characterizing fundamental frequency in Mandarin: A functional principal component approach utilizing mixed effect models
J. Acoust. Soc. Am.
2012
, vol. 
131
 (pg. 
4651
-
64
)
Horváth
L.
Kokoszka
P.
Inference for Functional Data with Applications
2012
New York
Springer
Huckemann
S. F.
Intrinsic inference on the mean geodesic of planar shapes and tree discrimination by leaf growth
Ann. Statist.
2011
, vol. 
39
 (pg. 
1098
-
124
)
Kendall
W. S.
Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence
Proc. Lond. Math. Soc.
1990
, vol. 
61
 (pg. 
371
-
406
)
Kent
J. T.
Mardia
K. V.
Shape, Procrustes tangent projections and bilateral symmetry
Biometrika
2001
, vol. 
88
 (pg. 
469
-
85
)
Le
H.
Mean size-and-shapes and mean shapes: A geometric point of view
Adv. Appl. Prob.
1995
, vol. 
27
 (pg. 
44
-
55
)
Le
H.
Locating Fréchet means with application to shape spaces
Adv. Appl. Prob.
2001
, vol. 
33
 (pg. 
324
-
38
)
Panaretos
V. M.
Kraus
D.
Maddocks
J. H.
Second-order comparison of Gaussian random functions and the geometry of DNA minicircles
J. Am. Statist. Assoc.
2010
, vol. 
105
 (pg. 
670
-
82
)
Pennec
X.
Fillard
P.
Ayache
N.
A Riemannian framework for tensor computing
Int. J. Comp. Vis.
2006
, vol. 
6
 (pg. 
41
-
66
)
Ramsay
J. O.
Silverman
B. W.
Functional Data Analysis
2005
2nd edition
New York
Springer
Tang
R.
Müller
H. G.
Pairwise curve synchronization for high-dimensional data
Biometrika
2008
, vol. 
95
 (pg. 
875
-
89
)
Zhu
K.
Operator Theory in Function Spaces
2007
2nd edition
Providence, Rhode Island
American Mathematical Society
Ziezold
H.
On expected figures and a strong law of large numbers for random elements in quasi-metric spaces
Trans. 7th Prague Conf. Info. Theory, Statist. Decis. Functions, Random Proces. 8th Eur. Meeting of Statisticians
1977
Dordrecht
Reidel
(pg. 
591
-
602
vol. A
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data