Abstract

The propensity score collapses the covariates of an observational study into a single measure summarizing their joint association with treatment conditions; prognostic scores summarize covariates' association with potential responses. As with propensity scores, stratification on prognostic scores brings to uncontrolled studies a concrete and desirable form of balance, a balance that is more familiar as an objective of experimental control. Like propensity scores, prognostic scores can reduce the dimension of the covariate, yet causal inferences conditional on them are as valid as are inferences conditional only on the unreduced covariate. As a method of adjustment unto itself, prognostic scoring has limitations not shared with propensity scoring, but it holds promise as a complement to the propensity score, particularly in certain designs for which unassisted propensity adjustment is difficult or infeasible.

References

Barsky
R.
Bound
J.
Charles
K. K.
Lupton
J. P.
Accounting for the black-white wealth gap: a nonparametric approach
J. Am. Statist. Assoc.
 , 
2002
, vol. 
97
 (pg. 
663
-
74
)
Belson
W. A.
A technique for studying the effects of a television broadcast
Appl. Statist.
 , 
1956
, vol. 
5
 (pg. 
195
-
202
)
Berk
R. A.
de Leeuw
J.
An evaluation of California's inmate classification system using a generalized regression discontinuity design
J. Am. Statist. Assoc.
 , 
1999
, vol. 
94
 (pg. 
1045
-
52
)
Campbell
D.
Stanley
J.
Experimental and Quasi-Experimental Designs for Research
 , 
1966
Boston
Houghton Mifflin
Cochran
W. G.
The use of covariance in observational studies
Appl. Statist.
 , 
1969
, vol. 
18
 (pg. 
270
-
5
)
Cox
D. R.
Hinkley
D. V.
Theoretical Statistics
 , 
1974
London
Chapman & Hall
Dehejia
R.
Wahba
S.
Causal effects in nonexperimental studies: reevaluating the evaluation of training programs
J. Am. Statist. Assoc.
 , 
1999
, vol. 
94
 (pg. 
1053
-
62
)
Drake
C.
Effects of misspecification of the propensity score on estimators of treatment effect
Biometrics
 , 
1993
, vol. 
49
 (pg. 
1231
-
6
)
Gastwirth
J.
Greenhouse
S.
Biostatistical concepts and methods in the legal setting
Statist. Med.
 , 
1995
, vol. 
14
 (pg. 
1641
-
53
)
Hahn
J.
Todd
P.
Van der Klaauw
W.
Identification and estimation of treatment effects with a regression-discontinuity design
Econometrica
 , 
2001
, vol. 
69
 (pg. 
201
-
9
)
Heckman
J.
Instrumental variables: a study of implicit behavioral assumptions in one widely used estimator
J. Hum. Resour.
 , 
1997
, vol. 
32
 (pg. 
441
-
62
)
Heckman
J. J.
Ichimura
H.
Todd
P. E.
Matching as an econometric evaluation estimator
Rev. Econ. Studies
 , 
1998
, vol. 
65
 (pg. 
261
-
94
)
Hodges
J. L.
Lehmann
E. L.
Estimates of location based on rank tests
Ann. Math. Statist.
 , 
1963
, vol. 
34
 (pg. 
598
-
611
)
Holland
P. W.
Statistics and causal inference (with Discussion)
J. Am. Statist. Assoc.
 , 
1986
, vol. 
81
 (pg. 
945
-
70
)
Imbens
G. W.
Nonparametric estimation of average treatment effects under exogeneity: a review
Rev. Econ. Statist.
 , 
2004
, vol. 
86
 (pg. 
4
-
29
)
Kurth
T.
Walker
A.
Glynn
R.
Chan
K.
Gaziano
J.
Berger
K.
Robins
J.
Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect
Am. J. Epidemiol.
 , 
2006
, vol. 
163
 (pg. 
262
-
70
)
McCullagh
P.
Nelder
J. A.
Generalized Linear Models
 , 
1989
2nd ed
London
Chapman and Hall
Miettinen
O. S.
Stratification by a multivariate confounder score
Am. J. Epidemiol.
 , 
1976
, vol. 
104
 (pg. 
609
-
20
)
Neyman
J.
Dabrowska
D. M.
Speed
T. P.
On the application of probability theory to agricultural experiments. Essay on principles. Section 9
Statist. Sci.
 , 
1990
, vol. 
5
 (pg. 
463
-
80
Translated by
Pace
L.
Salvan
A.
Principles of Statistical Inference: From a Neo-Fisherian Perspective
 , 
1997
Singapore
World Scientific
Peters
C. C.
A method of matching groups for experiment with no loss of population
J. Educ. Res.
 , 
1941
, vol. 
34
 (pg. 
606
-
12
)
Rosenbaum
P. R.
Rubin
D. B.
The central role of the propensity score in observational studies for causal effects
Biometrika
 , 
1983
, vol. 
70
 (pg. 
41
-
55
)
Rubin
D. B.
Assignment to treatment group on the basis of a covariate
J. Educ. Statist.
 , 
1977
, vol. 
2
 (pg. 
1
-
26
(Correction (1978), 3, 384)
Rubin
D. B.
Rao
P. S.
Sedransk
J.
William G. Cochran's contributions to the design, analysis, and evaluation of observational studies
W. G. Cochran's Impact on Statistics
 , 
1984
New York
Wiley
(pg. 
37
-
69
)
Rubin
D. B.
Stuart
E. A.
Affinely invariant matching methods with discriminant mixtures of proportional ellipsoidally symmetric distributions
Ann. Statist.
 , 
2006
, vol. 
34
 (pg. 
1814
-
26
)
Rubin
D. B.
Thomas
N.
Combining propensity score matching with additional adjustments for prognostic covariates
J. Am. Statist. Assoc.
 , 
2000
, vol. 
95
 (pg. 
573
-
85
)
Silber
J.
Rosenbaum
P.
Trudeau
M.
Even-Shoshan
O.
Chen
W.
Zhang
X.
Mosher
R.
Multivariate matching and bias reduction in the surgical outcomes study
Med. Care
 , 
2001
, vol. 
39
 (pg. 
1048
-
64
)
Zhao
Z.
Using matching to estimate treatment effects: data requirements, matching metrics, and Monte Carlo evidence
Rev. Econ. Statist.
 , 
2004
, vol. 
86
 (pg. 
91
-
107
)