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Summary. We develop maximum likelihood methods for line transect surveys in which animals go undetected at distance
zero, either because they are stochastically unavailable while within view or because they are missed when they are avail-
able. These incorporate a Markov-modulated Poisson process model for animal availability, allowing more clustered avail-
ability events than is possible with Poisson availability models. They include a mark-recapture component arising from the
independent-observer survey, leading to more accurate estimation of detection probability given availability. We develop mod-
els for situations in which (a) multiple detections of the same individual are possible and (b) some or all of the availability
process parameters are estimated from the line transect survey itself, rather than from independent data. We investigate
estimator performance by simulation, and compare the multiple-detection estimators with estimators that use only initial
detections of individuals, and with a single-observer estimator. Simultaneous estimation of detection function parameters and
availability model parameters is shown to be feasible from the line transect survey alone with multiple detections and double-
observer data but not with single-observer data. Recording multiple detections of individuals improves estimator precision
substantially when estimating the availability model parameters from survey data, and we recommend that these data be
gathered. We apply the methods to estimate detection probability from a double-observer survey of North Atlantic minke
whales, and find that double-observer data greatly improve estimator precision here too.
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1. Introduction
Line transect (LT) surveys are one of the most widely used
methods of estimating animal abundance (see Buckland et al.,
2001, 2014, for an overview of LT and related methods). A
persistent problem with LT surveys of marine mammals is
failure of one of the key assumptions of standard LT theory,
namely that animals at perpendicular distance zero are always
detected (Buckland et al., 2001). If this probability is g0 and
true density is D, and if all other LT assumptions are met,
then the expected value of a density estimate obtained using
standard LT methods is g0D (Buckland et al., 2014).

Mark-recapture distance-sampling (MRDS) methods are
widely used for dealing with the problem of g0 < 1: see Burt
et al. (2015) and references therein for an overview. They
involve independent observers acting as “capture occasions”
and rely on “recaptures” (or “duplicates”) to estimate g0.
They are susceptible to bias when there is correlation in de-
tections by the two observers, due to latent variable(s) that
are not in the model (“unmodelled heterogeneity”). Correla-
tion can be induced by individual-level or environmental vari-
ables that affect the detection probabilities of both observers,
and by animals being stochastically available for detection
when animal availability to one observer is correlated with its
availability to the other. We focus on the issue of availabil-
ity in this article but include a brief discussion of unmodelled
heterogeneity due to other latent variables in Section 6.

Stochastic availability can be dealt with by incorporating
a model for the availability process. We refer to such models

as “availability process line transect” (APLT) models. APLT
models were initially developed assuming a Poisson avail-
ability process (Skaug and Schweder, 1999; Okamura, 2003;
Okamura et al., 2003), but more recent work has shown that
an assumption of Poisson availability can result in substan-
tially biased estimates of detection probability if it is violated
(Okamura et al., 2012; Borchers et al., 2013; Langrock et al.,
2013). To accommodate more clustered availability series than
is possible with a Poisson model, Hiby and Lovell (1998) de-
veloped a continuous-time Markov process model, Borchers
et al. (2013) developed a discrete-time hidden Markov model
(HMM) and Langrock et al. (2013) developed a Markov-
modulated Poisson process (MMPP) model for availability.

APLT models consider detection probability as a function
of radial distance, and Langrock et al. (2013) show that when
using a single observer it is sometimes, but not always, pos-
sible to estimate probability of detection at radial distance
zero. A more reliable way of estimating this probability is
to incorporate a mark-recapture (MR) component in APLT
models. This is done by using two independent observers, as
with MRDS methods. Some such methods do exist, but all ei-
ther assume Poisson availability (Schweder et al., 1996; Skaug
and Schweder, 1999) or incorporate the availability process
non-parametrically by resampling from availability time se-
ries data (Schweder et al., 1999; Okamura et al., 2012).

We extend the MMPP model of Langrock et al. (2013)
to accommodate double-observer surveys by introducing an
MR component. We illustrate using the minke whale survey
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considered by Skaug and Schweder (1999), re-analyzing their
data using a model that allows availability events to be more
clustered than under a Poisson process. The latter is a nested
special case of our model. Our model also accommodates mul-
tiple detections of the same animal at different times; these
are informative about the availability process. We investigate
estimator performance by simulation when the availability
process is assumed known, when the rate parameters of the
MMPP availability model are estimated and parameters of
the Markov component are known, and when all the param-
eters of the MMPP are estimated.

2. Model Formulation

2.1. Animal Availability Model

We detail the model for the general case in which animals
can be in any of N states, although in the application be-
low only the two-state case is considered. Animals switch
between N “behavioral” states as determined by an N-state
Markov chain in continuous time, with infinitesimal genera-
tor matrix Q = (

qij

)
i,j=1,...,N

. The duration of a stay in state

k (k = 1, . . . , N) is exponentially distributed with parameter
−qkk. The initial state (which below will be the state the an-
imal is in when entering the detectable range) is determined
by the initial state distribution vector π, whose kth element
is the probability of initially being in state k. Given that the
survey start time is random with respect to animal state, it
is reasonable to assume π to be the stationary distribution
of the process. This distribution gives the probabilities of the
process being in each state at a randomly chosen time. In the
case N = 2, the stationary probability of the process being in
state 1 is π1 = q21/(q12 + q21).

The availability model of Hiby and Lovell (1998) is the
above process with two states. To complete the MMPP, a
Poisson process is superimposed on this model, such that
availability events occur according to a Poisson process with
state-dependent rate λk when the animal is in state k. For
example, in a two-state model, with state 1 corresponding to
the animal resting/breathing at the surface, and state 2 cor-
responding to foraging dives, λ1 will typically be much larger
than λ2; in fact, the latter will often be zero (which would
correspond to animals not surfacing at all while in foraging
state).

2.2. Embedding the MMPP in a Distance-Sampling
Survey

As is the case with most LT models, we assume that animals
do not change their perpendicular distance from the line while
within detectable range. Our model also assumes that if they
move in the forward (along-transect) direction, they all move
at a constant speed (which may be zero). To establish our
notation, consider a whale at perpendicular distance x that
enters the observers’ field of view at forward distance ymax(x)
and is detected at forward distance y, by which time it has
been in view for a distance l = ymax(x) − y (see Figure 1).

Conditional on an animal at x being available at a distance
l from ymax(x), we assume that it is detected with proba-
bility h(l, x). Although it is a probability, we refer to h as
the detection hazard function in order to distinguish it from
conventional detection probability functions on line transect

y 

x 
W 

ymax(x) 

l  =ymax(x)-y 

Observer 

Whale 

Figure 1. Schematic representation of the survey process.
Observers move in the y-direction, animals remain at fixed
perpendicular distances (x), and observers can see no farther
ahead than the curve ymax(x). When an animal at x is detected
at forward distance y, it has been in view for a distance l =
ymax(x) − y.

surveys, which depend only on perpendicular distance and
not on forward distance. We thus assume that the observed
detections are realizations of MMPPs that operate on the for-
ward distance scale after being thinned according to the de-
tection hazard function h(l, x). The MMPP described above
is assumed to generate the actual availability events, and for
an event at (l, x) a Bernoulli distribution with success prob-
ability h(l, x) determines whether that event is detected. We
assume that conditional on availability at (l, x), detections are
independent between observers so that in the case of two ob-
servers, with probabilities of detecting a surfacing (availabil-
ity event) given by h1(l, x) and h2(l, x) respectively for the
two observers, the probability that any observer detects the
surfacing is h(l, x) = 1 − {1 − h1(l, x)}{1 − h2(l, x)}. (We dis-
cuss how violation of this independence assumption might be
dealt with in Section 6.) It follows that the distances (y or l)
at detections are the events of a Markov-modulated nonhomo-
geneous Poisson process with state- and distance-dependent
rate parameters λkh(l, x) (k = 1, . . . , N), and with parameters
of the underlying Markov chain being {qij}, i, j = 1, . . . , N (cf.
Langrock et al., 2013, for more details).

3. Estimation

3.1. Density and Cumulative Distribution of Sightings

As will become clear below, in order to estimate the model
parameters, we need, among other things, the density func-
tion for the forward distances (or distances from ymax(x)) of
detections and the cumulative distribution for the distance
at first detection. Although there are closed-form expressions
for these in the case of homogeneous MMPPs, there are in
general no closed-form expressions available for these in the
case of non-homogeneous MMPPs. However, Langrock et al.
(2013) showed that these can be approximated arbitrarily
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accurately using an h(l, x) that with respect to l is piecewise
constant on the intervals [i0, i1), [i1, i2), . . . , [ip−1, ip] (with
i0 = 0 and ip = ymax(x)). Let h(r)(x) denote the constant value
of h(l, x) on the rth interval, [ir−1, ir). Let �(x)(r) = diag(λ1 ·
h(r)(x), . . . , λN · h(r)(x)). Langrock et al. (2013) showed that

(i) the joint density of detections of an animal (or of a group
of animals) occurring at distances l = (l1 < l2 < . . . < ld),
with iRj

≤ lj ≤ iRj+1 for j = 1, . . . , d, is given by

fl(l|x) = π

d∏
j=1

{
P(lj−1, lj|x)�(x)(Rj+1)

}
P(ld, ymax|x)1t ,

(1)

where l0 = 0, 1 ∈ IRN is a row vector of ones and

P(lj−1, lj|x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp
[{Q − �(x)(Rj+1)}(lj − lj−1)

]
if lj−1 and lj are in the same interval

exp
[{Q − �(x)(Rj−1+1)}(iRj−1+1 − lj−1)

]
·∏Rj−1

r=Rj−1+1
exp

[{Q − �(x)(r+1)}(ir+1 − ir)
]

· exp
[{Q − �(x)(Rj+1)}(lj − iRj

)
]

otherwise

(ii) the cumulative distribution of distance l to first detection
is Fl(l|x) = 1 − πP(0, l|x)1t

We can therefore approximate fl(l|x) and Fl(l|x) arbitrarily
accurately using a function h(l, x) that is a step function with
respect to l by using enough steps.

In addition to generating a vector of observed locations l

for a detected animal at perpendicular distance x, a double-
observer survey also generates a “capture history” for each
detection, i.e., a realization of a random variable ωj for de-
tection j, such that ωj = 1 if seen by observer 1 only, ωj = 2
if seen by observer 2 only, and ωj = 3 if seen by both. Condi-
tional on detection at lj, the probability mass function for ωj

is trinomial, with index 1 and dependence on x as follows:

p(ωj|lj, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h1(lj, x){1 − h2(lj, x)}
h(lj, x)

if ωj = 1;

{1 − h1(lj, x)}h2(lj, x)

h(lj, x)
if ωj = 2;

h1(lj, x)h2(lj, x)

h(lj, x)
if ωj = 3.

Then, if we let ω = (ω1, ω2, . . . , ωd) denote the capture his-
tories associated with the detections of an animal (or of a
group of animals) made at distances l = (l1 < l2 < . . . < ld),
the joint density of l and ω, given x, is

fl,ω(l, ω|x) = π

d∏
j=1

{
P(lj−1, lj|x)�(x)(Rj+1)p(ωj|lj, x)

}
×P(ld, ymax|x)1t (2)

where both h1(l, x) and h2(l, x) are piecewise constant with
respect to l on the intervals [i0, i1), [i1, i2), . . . , [ip−1, ip] (with
i0 = 0 and ip = ymax(x)).

The proof is straightforward, since conditional on l (and x),
and assuming independent detections both between observers
and of the same animal on different occasions, the probabil-
ity for ω is fω|l(ω|l, x) = ∏d

j=1
p(ωj|lj, x) and Equation (2) is

just the product of this conditional probability mass function
and the density function fl(l|x), given in Equation (1). (We
deal with dependence of detections of the same animal on dif-
ferent occasions by allowing the hazard to change after first
detection—see Sections 4 and 6 below.)

Since with this model, each animal generates binary trials
(with “success” being detection of a surfacing event) for each
observer, irrespective of whether the other observer has de-
tected the animal, duplicates need not involve both observers
detecting the same surfacing.

3.2. Likelihood

To obtain the full likelihood, for observed capture histo-
ries and forward and perpendicular distances at which an-
imals were detected, we condition on the fact that the de-
tection was made within maximum perpendicular distance
and within [0, ymax(x)] in the forward distance dimension.
Let π(x) denote the pdf of perpendicular distances x of all
animals within some maximum distance W from the transect
line. For detected animals i, i = 1, . . . , n, let li = (li1, . . . , lidi

)
and ωi = (ωi1, . . . , ωidi

) denote detection distances and cap-
ture histories, respectively, and let xi be the perpendicular
detection distance. Furthermore, let φ be the vector compris-
ing the parameters of the MMPP for availability, let θ be
the vector of parameters of the detection hazards h1(l, x) and
h2(l, x), and let β = (φ, θ). Then, making the dependence of
fl,ω( ) and Fl( ) on β explicit, the likelihood for β, conditional
on detection within perpendicular distance W and forward
distance ymax(xi), is given by

L(β) =
n∏

i=1

fl,ω(l, ω|xi;β)π(xi)∫ W

0
Fl(ymax(z)|z;β)π(z)dz

(3)

This follows from the definition of conditional probability (cf.
Langrock et al., 2013). The denominator can be computed via
numerical integration, and it simplifies if transect lines are
placed randomly, in which case π(x) = 1/W and π(x) cancels.

3.3. Parameter Estimation

Data that allow in situ estimation of availability process
parameters are very rarely gathered on line transect surveys.
Auxiliary data containing information on the surfacing
pattern are most commonly used to model the availability
process (cf. Skaug and Schweder, 1999). A typical source
for such data is GPS tagging. (See Section 3.4 for details
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of how multiple sets of tag data can be incorporated in our
model.) We recommend that data that allows estimation of
the availability process be gathered on the survey itself if this
is possible. This gives the analyst more options: to use these
data alone for availability process estimation, to use them
with some availability parameters estimated from auxiliary
data, or to use only availability parameters estimated from
auxiliary data (when these are available). (See Sections 4
and 5 for more details, and Section 6 for further discussion.)

If we take some or all of the availability process parame-
ters φ = ({qjk}, {λj}), j, k = 1, . . . , N states, to be known, then
Equation (3) is a likelihood for the detection hazard parame-
ter vector θ and whichever (if any) parameters of the availabil-
ity process are not known. We can then obtain maximum like-
lihood estimates of θ and any unknown availability process pa-
rameters by numerically maximizing Equation (3). Confidence
intervals for the parameters can be obtained either based on
the Hessian of the log-likelihood or by bootstrapping. If the
hazard function parameters are obtained conditionally on φ

(obtained from auxiliary data), then a two-stage bootstrap
should be used rather than the Hessian, with the first stage
involving obtaining bootstrap resamples of φ̂ and the second
stage involving bootstrapping the sightings survey data and
re-estimation of θ (nonparametrically, with transects as sam-
pling units, for example), conditional on randomly selected
resamples of φ̂.

Two detection hazard forms suggested by Skaug and
Schweder (1999) (given in terms of forward distance y =
ymax(x) − l) are the exponential power and inverse power
models:

exponential power: h(y, x) = θ1 exp

(
−xθ3 + yθ3

θ
θ3
2

)
0 ≤ θ1 ≤ 1, θ2, θ3 > 0 (4)

inverse power: h(y, x) = θ1

(
θ2√

θ2
2 + x2 + y2

)θ3

0 ≤ θ1 ≤ 1, θ2 > 0, θ3 > 1. (5)

In the case of automated detectors (acoustic detectors, for
example), the assumption of repeated independent detections
of the same animal by the same observer is plausible, but
this within-observer, within-animal independence is unlikely
to hold for human observers. Initial detection is likely to in-
crease the probability of subsequent detections by humans.
This can be dealt with by assuming that for each observer
the hazard function changes after the initial detection, with
a set of parameters θini determining the hazard function until
the initial sighting, and another set of parameters θsub deter-
mining the hazard function subsequent to the initial sighting.
The formulae given above change accordingly.

In order to obtain an abundance estimate from a fitted
nonhomogeneous MMPP using a conditional likelihood ap-
proach (see Borchers and Burnham, 2004, for a discussion of
conditional vs full likelihood), we require the effective strip

half-width, μ = ∫ W

0
Fl(ymax(z), z; θ)dz. The probability of de-

tecting an animal that is within distance W of the transect
line is μ/W (Buckland et al., 2001). For given model param-
eters, the value of μ can easily be computed using numerical
integration. The uncertainty in μ can be quantified through
bootstrapping.

3.4. Marginalizing Over Individual-Level Availability

It is common to have separate estimates of availability process
parameters for a number of different animals. In this case,
individual-level heterogeneity in animal availability patterns
can readily be accommodated by evaluating the likelihood
Equation (3) separately for each set of availability process
parameters and summing the likelihoods. This amounts to
marginalizing the likelihood over the empirical distribution of
individual-level availability model parameters. See Borchers
et al. (2013) and Langrock et al. (2013) for details.

If some availability model parameters (φa, say) are esti-
mated directly from availability time series and others (φb,
say) are estimated by maximizing the likelihood given in
Equation (3) conditional on these, then the above approach to
dealing with individual-level variation in availability param-
eters would need to be modified. One could still marginalize
non-parametrically over φb (as above) but one would need to
model the conditional distribution of φa given φb parametri-
cally and marginalize the likelihood over φa for each individual
φb.

4. Simulation Experiments

4.1. Simulation Design

We conduct two sets of simulations, one with a setup that
results in the density of distances in view, l, at initial detection
of animals on the trackline, i.e., fl(l1|x = 0) = d

dl
Fl(l|x = 0),

having mode roughly in the middle of the interval [0, ymax(x)]
(Scenario I) and the other for which fl(l1|x = 0) is monoton-
ically increasing as l increases, up to a mode that is close to
y = 0 (Scenario II). Whether or not fl(l1|x = 0) has a mode
close to y = 0 depends on the detection process and availabil-
ity process and is not under the control of the surveyor or
analyst. Examples of surveys with modes at y = 0 and y > 0
can be found in Figure 3 of Borchers et al. (2013) and Figure
2 of Rekdal et al. (2014).

The densities for Scenarios I and II are shown in Figure 2.
Note that in Figure 2, we have not conditioned on animals
being detected within detectable range, hence these are not
pdfs (because they do not integrate to unity—their integral is
the probability of being detected by forward distance zero).
Estimation of parameters turns out to be more difficult in
Scenario II, and we included both these scenarios in this study
to emphasize some practical aspects of surveys that need to be
considered when using the suggested approach (see discussion
at the end of this section).

For each of the two scenarios, we consider single-observer
and double-observer estimators, and within each of these we
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Figure 2. Densities of distances in view, l, at initial detection of animals on the trackline, i.e., fl(l1|x = 0) = d

dl
Fl(l|x = 0),

in Scenarios I and II and for both single- and double-observer scenarios.

consider two kinds of data, namely data from the initial sight-
ing of an animal only or data from multiple sightings (“IS”
vs. “MS”), and when multiple sightings data are used, we
either have observers detecting all availability events after
their initial sightings with certainty (“h(·) = 1”) and spec-
ify this in the estimator, or we have h(l, x) increasing after
initial detection (but to values less than 1), and estimate two
sets of hazard function parameters for each observer; one be-
fore first detection, the other after (“h(·) < 1”). Finally, for
each of the above scenarios and cases, three kinds of estima-
tors were considered, corresponding to different amounts of
information on the availability process being available: one in
which the MMPP availability process is fully known to the
estimator (“fully known availability”: “FKA”), one in which
the Poisson rates of the MMPP availability model are esti-
mated and parameters of the state process are known (“par-
tially known availability”: “PKA”), and one in which all the
parameters of the MMPP are estimated (“not known avail-
ability”: “NKA”). The two single-observer estimators with
FKA and MS (those for h(·) = 1 and h(·) < 1) are not inves-
tigated as in these cases the detection of further availability
events subsequent to the initial detection does not add any
information about the effective strip half-width, compared to
the IS case: the performance of the estimator is identical to
that of the single-observer estimator in the FKA/IS case.

We therefore have sixteen cases for each of the two sce-
narios (cf. Tables 1 and 2). The simulations were constructed
for situations similar to those from the minke whale survey
considered by Skaug and Schweder (1999). For each case,
100 simulations were conducted, where in each simulation
run animals passed within perpendicular distance W of ob-
servers until 300 animals were detected. The inverse power
form (5) of the detection hazard h(y, x) was used, and the
shapes of the functions used in the two different scenarios are
shown in Figure 3. (Only the functions associated with the
detection probability at the initial sighting are shown; in sce-
narios with multiple sightings and h(·) < 1, the hazard func-
tions have similar shapes but are slightly higher for surfacings
subsequent to the initial sighting.) We fixed W = 3000 and
ymax(x) = 3000 for all x. The MMPP parameters were speci-
fied as q12 = 0.002, q21 = 0.001, λ1 = 0.01, λ2 = 0 in Scenario I
and as q12 = 0.002, q21 = 0.001, λ1 = 0.002, λ2 = 0 in Scenario
II. In both scenarios, there are hence no surfacings in state 2,
the “diving” state. The expected dive cycle duration in both
scenarios is 1500 units. Furthermore, in both scenarios 2/3 of
the time is spent in state 2, the state in which animals cannot
be detected because they do not come to the surface. In state
1, surfacings occur on average every 100 units in Scenario I
and every 500 units in Scenario II. Animals on the trackline
(x = 0) are detected with probability approximately 0.79 and

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/71/4/1060/7511539 by guest on 24 April 2024



Availability Modeling on Double-Observer Surveys 1065

Table 1
Simulation scenario I: percentage biases and coefficients of

variation (in parentheses) of ESHW estimates for observer 1
(true ESHW: 1618) obtained in different scenarios (100

simulation runs in each scenario); FKA, PKA, and NKA
stand for full/partial/no knowledge of the availability

process, and IS and MS stand for “initial sighting(s) only”
and “multiple sightings”, respectively. In case of multiple
sightings, hs(·) indicates whether or not detections of an
individual’s surfacings following its initial detection were

considered to be certain (hs(·) = 1) or probabilistic but with
changed parameter values of the detection hazard function

(hs(·) < 1).

Single-observer estimator

MS MS
IS hs(·) < 1 hs(·) = 1

FKA −3.32 (0.13) / /
PKA 2.63 (0.16) −4.29 (0.09) −3.69 (0.09)
NKA −39.59 (0.84) −4.48 (0.10) −3.98 (0.09)

Double-observer estimator

MS MS
IS hs(·) < 1 hs(·) = 1

FKA 0.61 (0.03) 0.18 (0.03) 0.07 (0.03)
PKA 1.11 (0.05) 0.59 (0.04) 0.44 (0.03)
NKA 0.71 (0.08) −0.36 (0.05) 0.15 (0.04)

Table 2
Simulation scenario II: percentage biases and coefficients of
variation (in parentheses) of ESHW estimates for observer 1

(true ESHW: 251) obtained in different scenarios (100
simulation runs in each scenario); FKA, PKA, and NKA

stand for full/partial/no knowledge of the availability
process, and IS and MS stand for “initial sighting(s) only”
and “multiple sightings”, respectively. In case of multiple
sightings, hs(·) indicates whether or not detections of an
individual’s surfacings following its initial detection were

considered to be certain (hs(·) = 1) or probabilistic but with
changed parameter values of the detection hazard function

(hs(·) < 1).

Single-observer estimator

MS MS
IS hs(·) < 1 hs(·) = 1

FKA −29.93 (1.06) / /
PKA 36.25 (1.17) −39.71 (1.12) −20.58 (0.91)
NKA 14.33 (1.37) −51.69 (1.35) −19.35 (0.92)

Double-observer estimator

MS MS
IS hs(·) < 1 hs(·) = 1

FKA −1.18 (0.12) 1.28 (0.12) 1.29 (0.13)
PKA 1.20 (0.27) 2.93 (0.20) 1.08 (0.15)
NKA −32.77 (0.83) −4.93 (0.37) 1.99 (0.18)

0.83 in Scenario I with one and with two observers, respec-
tively, and with probability approximately 0.22 and 0.27 in
Scenario II with one and with two observers, respectively.

In some scenarios in which not all parameters are identifi-
able, it is still possible to estimate effective strip half-width.
For example, in the PKA/IS single-observer case, it is pos-
sible to estimate λ1θ1, the product of the surfacing rate and
the intercept of the detection hazard function, even though
λ1 and θ1 are not individually identifiable. In these cases, we
reparameterized the model in terms of these estimatable com-
pound parameters.

4.2. Simulation Results

Simulation results are shown in 1 and 2. In all cases, we an-
ticipate better estimator performance in Scenario I than Sce-
nario II, because the mode of fl(l1|x = 0) is well ahead of
the observer in Scenario I but not Scenario II. Estimation of
the probability of detection at x = 0 amounts to estimation of
Fl(ymax(0)|x = 0), i.e., estimation of the proportion of the area
under fl(l|x = 0) from 0 to ∞ that occurs before l = ymax(0).
To estimate this proportion, one has to effectively estimate the
area under fl(l|x = 0) in that part of the support of fl(l|x = 0)
from which one cannot get data (i.e., for l > ymax). If there
is a clear decline in fl(l|x = 0) before l = ymax(0) (the region
from which one does get data), then given that fl(l|x = 0)
is unimodal and smooth, the data are somewhat informative
about the area under fl(l|x = 0) beyond l = ymax, and so one
is better able to estimate the proportion than if there is no de-
cline. By contrast, if fl(l|x = 0) increases monotonically with
l for l < ymax(0), there is very little information in the data
about where the mode of fl(l|x = 0) occurs, how high it is,
and how long it takes for fl(l|x = 0) to decrease to zero. This
makes Scenario II more difficult than Scenario I.

We start by considering the results for the IS (initial sight-
ing only) simulations. The double-observer estimator is less
biased (much less in the case of Scenario II) and in all cases
much more precise than the single-observer estimator. In-
deed, the performance of the single-observer estimator is too
poor in Scenario II to be practically useful (with high bias
and coefficients of variation greater than 100% in all cases).
The double-observer estimator is very much better than the
single-observer estimator in the IS case. However, the high
bias (−32%) and coefficient of variation (83%) of the double-
observer estimator with no knowledge of the availability pro-
cess (NKA) in Scenario II means it may be of questionable
utility with initial sightings only in scenarios like this when
the availability process is unknown.

The picture is similar in the case of MS (hs(·) < 1). The
performance of the single-observer estimator improves to the
extent that it is now practically useful in Scenario I (although
not Scenario II), but it remains substantially worse than that
of the double-observer estimator. In addition, for all of the
practically useful estimators, performance is better in the case
of MS (hs(·) < 1) than IS, and when the estimator has no
knowledge of the MMPP (rows NKA in Table 1), it is quite
substantially better. Moreover, the double-observer estimator
performs well in the NKA case for both Scenarios. Improved
performance is not surprising: when one is ignorant of the
MMPP parameters, getting repeat detections of individuals’
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Figure 3. Detection hazard function, i.e., the probability of a surfacing at forward distance l and perpendicular distance x

leading to a sighting, in Scenarios I and II and in each case for the two observers at the initial sighting.

availability events improves one’s ability to draw inferences
about these parameters.

The performance of the estimators in the MS (hs(·) = 1)
simulations is broadly similar to that with MS (hs(·) < 1),
but estimators are for the most part slightly less biased and
slightly less variable. With biases of around 20% and coeffi-
cients of variation of about 0.9, the single-observer estimator
remains practically unusable in Scenario II.

5. An Analysis of a Double-Observer Survey of
Minke Whales

To estimate minke whale abundance in the Northeastern At-
lantic, line transect surveys with two independent observer
platforms were conducted from 1996 to 2001 (see Skaug et al.,
2004). Transects were located using a systematic design with
random start point, and the randomization makes it rea-
sonable to assume that animals are uniformly distributed
with respect to perpendicular distance from the lines (i.e.,
p(x) = 1/W ; here W = 2000). After its initial sighting, each

animal was continually observed, with the encounter history
giving all the animal’s sighting events until it had either been
seen by observers on both platforms or it had left the de-
tectable range (case MS in the simulations above, with the
slight difference that here observation of an animal stopped
when it was seen from both platforms). In this survey, it can
reasonably assumed (Skaug, pers. commun.) that all availabil-
ity events of an animal after its initial detection will be de-
tected by the platform making the initial detection (hs(·) = 1
in the simulations above). A total of 870 minke whales were
detected in the survey, with between 1 and 8 sighting events
recorded per animal (1.7 on average).

Separate data on minke whale surfacing times were
gathered by VHF tagging of eight different minke whales
(Schweder et al., 1999). Using these auxiliary data, we first
implemented the FKA scenario, fitting a two-state MMPP
to the auxiliary data (with one state being diving, in which
no surfacing events occur), and then embedding this MMPP
in the double-observer shipboard survey analysis. Beaufort
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Table 3
Minke whale data: estimated effective strip half-width for both platforms combined (μ), estimated mean state dwell-times (in

seconds) in the surfacing and diving states (dsurf and ddive, respectively), and estimated mean inter-surfacing times in the
surfacing state (λ1); all estimates are given with 95% confidence intervals (obtained through bootstrapping).

FKA PKA NKA

estimate 95% C.I. estimate 95% C.I. estimate 95% C.I.

μ for B ∈ {0, 1} 681 (600, 762) 282 (228, 375) 267 (143, 382)
μ for B = 2 504 (444, 572) 199 (160, 258) 188 (100, 268)
μ for B ∈ {3, 4} 351 (315, 395) 131 (109, 168) 124 ( 68, 173)

dsurf 100 (44, 231) 136 (106, 184) 141 (102, 205)
ddive 53 (31, 83) 255 (205, 287) 285 (154, 715)

λ1 36 (29, 43) 68 (60, 77) 68 (60, 77)

sea state, B, was included in detection hazard functions as a
factor with three levels: B ∈ {0, 1} (calm or light air), B = 2
(light breeze), and B ∈ {3, 4} (gentle or moderate breeze); the
survey effort only involved Beaufort states 0–4. Following
Skaug et al. (2004), the sea state was assumed to influence
the scale parameter of the hazard function (Equations (4)
or (5)): log(θi,2) = βi,0 + βi,1 I{B∈{0,1}} + βi,2 I{B∈{3,4}}, where the
subscript i, i = 1, 2, indicates the i-th observer, and where
I denotes the indicator function and βi,0 is the value of the
predictor for B = 2.

The likelihood was maximized numerically using nlm in R.
The exponential power hazard model (Equation (4)) yielded
log(L(β)) = −17446.45, while the inverse power hazard model
(Equation (5)) gave log(L(β)) = −17432.99; in the following,
we focus on the models that use the inverse power model. The
likelihood ratio test for the hypothesis that the sea state has
no influence on the scale parameter of the hazard function,
i.e., that β1,1 = β1,2 = β2,1 = β2,2 = 0, yields the test statistic
125.5 and hence a p-value of 0, and the hypothesis is rejected.

We also implemented the scenarios PKA and NKA. With
PKA, the model was fitted to the survey data conditional on
the mean dive cycle length of 391.5 seconds. This value was
chosen based on Christiansen et al. (2011), who fitted HMMs
to inter-surfacing times and reported mean surfacing intervals
of 43 seconds in the surfacing state and 155 seconds in the
deep dive state, with a dive cycle comprising “five to six reg-
ular dives [in the surfacing state] followed by one deep dive.”
Table 3 gives the estimates and associated confidence intervals
of the MMPP availability process parameters and of the ef-
fective strip half-widths, for the three different scenarios con-
sidered (FKA, PKA, and NKA). To obtain interval estimates,
we conducted, in each of the three scenarios, a bootstrap with
1000 iterations, in each iteration drawing a non-parametric
bootstrap sample from the distances associated with sightings
(i.e., sampling with replacement from the observed triplets of
forward distances, perpendicular distances, and associated co-
variate value), and, in case of the FKA scenario, an additional
parametric bootstrap sample from the models for surfacings
(i.e., generating observations from the fitted MMPP availabil-
ity model and then refitting the model). In case of the PKA
scenario, the uncertainty in the expected dive cycle length
was accounted for using the uncertainty quantification given
in Christiansen et al. (2011).

The differences between the FKA estimates on the one
hand and the PKA and NKA estimates on the other are strik-
ing. ESHW estimates for PKA and NKA are about 40% of
those from FKA and would result in density estimates being
about 2.5 times larger for PKA and NKA than FKA. The dif-
ference between FKA and PKA estimates is a consequence of
the fact that mean dive cycle length obtained by fitting to the
minke VHF tag data is 153 seconds, while that of Christiansen
et al. (2011) is 2.55 times longer. Estimates of mean dive cycle
length and other parameters for NKA are broadly consistent
with those from PKA. The differences in dive cycle length
and related parameters may be a consequence of the diving
behavior at the time and location of the survey being differ-
ent from those of VHF-tagged animals (which were obtained
at different times and locations)—in which case the PKA or
NKA estimates are more appropriate. They might also be a
consequence of failure of the assumption that all surfacings af-
ter initial detection are seen—in which case something closer
to the FKA estimates may be appropriate.

6. Discussion

We have extended the approach developed by Langrock et al.
(2013) for single-observer LT surveys with stochastic ani-
mal availability, to allow for MR data generated by double
observers. Viewed from an MR perspective, the model is a
continuous-time variant of the closed-population conditional
MR likelihoods of Huggins (1989) and Alho (1990), with de-
tection probability that changes with time, with an MMPP
temporary immigration/emigration structure (rather than
the completely random or Markovian immigration/emigration
structures of Kendall et al., 1997, for example), and with an
observed random effect (namely x) in detection probability.
As such, it can be classed as a continuous-time MR model
of type Mth (Otis et al., 1978) with temporary immigration
and emigration. If we allow the parameters of the hazards to
change after first detection, then it is of type Mtbh.

The new approach was shown to improve estimation
precision and allows more reliable estimation of ESHW
and abundance. It also allows estimation using limited or
no independent information on the availability process in
some circumstances, particularly when data include multiple
sightings of animals by the same observer. Including multiple
sightings roughly halved estimator coefficient of variation
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in our (simulation) Scenario I and reduced it by a factor of
between 2 and 4 in our Scenario II.

The estimates of ESHW from the minke survey were sen-
sitive to assumptions about the availability process. As it is
often the case that little is known about how availability pat-
terns vary in time and space, using availability process esti-
mates external to the survey may involve strong assumptions,
which if violated, can result in biased ESHW and abundance
estimates. There is therefore merit in being able to estimate
availability process parameters simultaneously with detection
hazard parameters from the LT survey data. The cost of in-
corporating resightings to do this is the need to model how de-
tection probability changes for subsequent sightings, except in
cases where detection probability does not change after initial
detection. We considered only the case in which all hazard pa-
rameters change after first sighting and then stay unchanged.
It is possible that only some parameters change, and/or that
change depends on how many times an animal has been de-
tected by that point and/or how much time has passed. In
principle one can construct hazards accordingly and choose
between models using model selection criteria. Sample size
may of course limit the ability to distinguish between models.
Nevertheless, using resightings data seems to us something
worth doing as these data contain information on availability
and one may avoid substantial bias by estimating availability
in situ.

In the light of our analyses, we recommend: (i) that double-
observer survey methods be used when this is feasible and
(ii) that consideration be given to instructing observers to
record all detections of animals, not just the initial detection.
If it is infeasible to record multiple detections in areas of high
animal density, we recommend that this be attempted only in
lower density areas. Detection probability estimates from such
data will rely on the assumption that availability processes are
similar in high- and low-density areas, and surveyors should
consider whether this is a plausible assumption in the context
of their surveys.

A final issue, to which we alluded in Section 1, is bias
due to unmodelled heterogeneity. We can investigate how
much of the bias from unmodelled stochastic availability has
been accounted for by modeling the availability process, by
comparing detection probability from our model (p = μ/W)
with detection probability from the so-called “full indepen-
dence” (FI) model (see Borchers et al., 2006; Burt et al.,
2015), which assumes independence conditional on x: pFI =∫ W

0
pFI(x)π(x)dx, where pFI(x) = 1 − {1 − p1(x)}{1 − p2(x)},

pi(x) = Fl(i)(ymax(z), z; θ), and Fl(i)() is the same as Fl( ), but
evaluated using hi( ) in place of h( ) (i = 1, 2). For Scenarios I
and II, p is 5 and 10% smaller than pFI , respectively, suggest-
ing that pFI is biased by 5% to 10% due to neglecting stochas-
tic availability. (Bias can be much larger; we constructed other
scenarios with bias of more than 30%.)

Neglect of other variables may also cause bias. We incor-
porated sea state in our analysis of minke sightings but there
may be unrecorded variables that affect detectability of ani-
mals. MRDS estimators deal with this using “point indepen-
dence” (PI) models (see Borchers et al., 2006; Burt et al.,
2015, for details). These model the shape of the detection
function using a model, pshape(x), with intercept 1, for the

distribution of detections by any observer in the x dimension
(without using recapture data or assuming independence be-
tween observers’ detections), and a separate FI model, p(x),
that uses the recapture data and assumes independent de-
tections, given x. They are combined thus to estimate de-
tection probability: p(0)pshape(x). One could do the same at
the level of the detection hazard, conditional on (l, x). For
this one needs a model hshape(l, x), with intercept 1, for the
distribution of detections by any observer in the (l, x) plane.
A PI hazard function might then be h(ymax(0), 0)hshape(l, x),
where h(ymax(0), 0) is h(l, x) = 1 − {1 − h1(l, x)}{1 − h2(l, x)}
evaluated at (l = ymax(0), x = 0).

There are, however, difficulties that arise when using PI at
the hazard level rather than the perpendicular distance detec-
tion function level. For example, having a single hshape(l, x) is
in general inadequate because animals that are undetected by
l should have a different hshape(l, x) from animals seen by ob-
server 1 only by l, and these may have a different hshape(l, x)
from animals seen by 2 only by l. In general, one would require
three related hshape(l, x) functions (and need to estimate up
to three sets of parameters), and it is not obvious how they
should be related, without making the kind of independence
assumption that one is trying to avoid by constructing a PI
model. This is a topic for future research.

7. Supplementary Materials

The R code used to fit the models and generate the results
of this article is available at the Biometrics website on Wiley
Online Library.
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