
Forum

www.biosciencemag.org  May 2013 / Vol. 63 No. 5  •  BioScience   397   

species composition in these contemporary NTAs does not 
represent historical baselines (McClanahan and Omukoto 
2011). Although many NTAs in the western Indian Ocean 
are relatively large by global standards, they are adjacent 
to dense human populations that influence the resources 
surrounding the protected areas, and in some of the region, 
there is weak compliance with NTA rules (Pollnac et al. 
2010, Daw et al. 2011). In addition, the sizes of these NTAs 
are smaller than what may be necessary to create wilderness 
conditions (Mittermeier et al. 2003).

Chagos marine wilderness area case study
The Chagos Archipelago, also known as the British Indian 
Ocean Territory, is the largest unfished, uninhabited, and 
remote coral reef wilderness area in the Indian Ocean 
( figure 1). The previously sparsely populated northern atolls 
of Chagos have been uninhabited since the early 1970s and, 
in April 2010, the entire 640,000-km2 archipelago and its 
associated exclusive economic zone was officially estab-
lished as the world’s largest no-take marine protected area 
(Sheppard et al. 2012). Consequently, to better understand 
the context of human impacts and the effectiveness of small 
NTAs in re-creating coral reef ecosystems comparable to 
wilderness areas, we surveyed reef fish biomass and com-
position in remote atolls of the Chagos Archipelago for the 
first time in 2010 and, here, compare this wilderness area 
with reef fish communities influenced by different manage-
ment across the western Indian Ocean and in other large 
remote wilderness locations across the globe. We assessed 
fish biomass because fishing is one of the most pervasive 
threats to coral reefs in the Indian Ocean, and fish bio-
mass has been shown to be a good proxy for a range of key 

Wilderness areas are defined as large areas (greater   
than 10,000 square kilometers [km2]) that host over 

70% intact biodiversity and human densities of five people 
per km2 or less (Mittermeier et al. 2003). This label has 
typically been restricted to terrestrial ecosystems, and little 
is known about marine wilderness areas. For example, 
are large, unfished marine wilderness areas different from 
small protected areas that are embedded within fished, 
human-dominated seascapes? A large number of national 
 governments have embraced small (i.e., mostly less than 
10 km2) no-take marine protected area management, or 
no-take areas (NTAs), and there are now over 4400 NTAs, 
covering 2.35 million km2 (Wood et al. 2008). Can these 
small NTAs protect a suite of species and ecological pro-
cesses in a manner comparable to that of wilderness areas? 
These questions require urgent answers as we undertake an 
unplanned global experiment in population growth and 
climate change in which moral pragmatism and a shifting 
baseline are quickly withering any salient concepts of pris-
tine, wild ecosystems.

In the western Indian Ocean, one of the poorest regions 
on Earth, a number of relatively large (up to about 30 km2) 
NTAs have existed for more than 40 years, and some, such 
as those along the Kenyan coast, have received the best 
available protection. It has been argued that these NTAs are 
among the most pristine coral reefs in the Indian Ocean in 
areas inhabited by people (McClanahan et al. 2011), and the 
Kenyan NTAs have reached asymptotes in the recovery of 
fish biomass (McClanahan et al. 2007). However, in a recent 
study, these NTAs were compared with historical fish catch 
archived between the eighth and fourteenth centuries. An 
analysis of Swahili settlement trash middens showed that the 
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functional groups and ecological processes across the region 
(McClanahan et al. 2011).

Reef fish biomass in Chagos dwarfs that of the rest 
of the NTAs in the western Indian Ocean (p < .001; see 
supplemental table S1, available online at http://dx.doi.
org/10.1525/bio.2013.63.5.13), with a mean biomass at a 
9-meter (m) depth of more than 7500 kilograms per hect-
are (kg/ha)—six times that of the most successful small 
NTAs in the region (figure 2a). This probably highlights a 
huge exploitation gap, whereby extraction across the rest of 
the region has reduced biomass, and the small spatial scale 
of most NTAs within exploited seascapes does not approach 
the true potential of these ecosystems. Furthermore, the 
contribution of higher trophic levels to the standing fish 
biomass is far greater in Chagos than elsewhere in the 
Indian Ocean, with over half of the biomass consisting of 
fish with a mean trophic level of more than 3.5. The small 
proportion of these higher-trophic-level species across the 
rest of the Indian Ocean points to trophic downgrading of 
ecosystems at large scales (Estes et al. 2011). Biomass at a 
3-m depth in Chagos, where extreme wave energy results 
in low reef complexity (figure 3), is much lower than that 

at 9 m but is still higher than that of many sites across the 
western Indian Ocean, where no effect of survey depth on 
biomass was apparent (figure 2a; supplemental tables S2 
and S3). It is possible that geographic or oceanographic 
factors contributed to the differences in fish biomass across 
the region, but much of the data come from islands and 
atolls with similar geomorphology. Exploitation is the 
most likely driver, given the differences in the numbers 
of high-trophic-level fish between NTAs and the Chagos 
wilderness.

The family-level biomass community composition of the 
fish assemblages also differs substantially between Chagos 
and the rest of the Indian Ocean (figure 2b). Crucially, of 
the 10 reef fish families that make up 70% of the difference 
between Chagos and the rest of the Indian Ocean, all had 
a higher biomass in Chagos than elsewhere or were pres-
ent only in Chagos (supplemental table S4). This suggests 
that fish diversity and composition in coral reef wilderness 
areas are also substantially different from those in locations 
dominated by humans. The most likely explanation for the 
inability of small NTAs to mimic wilderness areas is the spa-
tial scale over which some larger marine fish range (Heupel 

Figure 1. Location of the approximately 640,000-square-kilometer Chagos no-take marine protected area in the central 
Indian Ocean and the other countries in which coral reef fish communities were sampled. The green dots denote coral 
reefs. Abbreviation: U. K., United Kingdom.
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7500 kg/ha (figure 2c). These three areas represent loca-
tions that are extremely remote from human habitation or 
that have had unusually large well-enforced NTAs for some 
time. However, the composition of the fish communities 
varies greatly among the three locations (p < .001), with 

et al. 2010), which exceeds the size of most small NTAs and 
exposes these populations to fishing pressure.

The highest reported reef fish biomass estimates from 
remote reefs of the Pacific Ocean, the Caribbean, and 
the Indian Ocean are comparable, ranging from 5500 to 
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Figure 2. (a) Total reef fish biomass (in kilograms per hectare [kg/ha]) as a function of trophic level (TL), management, 
and depth in nine countries across the central and western Indian Ocean. The error bars represent the standard error. 
(b) Multidimensional scaling plot of reef fish family biomass composition in nine countries across the central and western Indian 
Ocean. (c) Comparison of biomass trophic group composition for the highest reported reef fish biomass estimates (in kg/ha) from 
the Indian Ocean, the Caribbean, and the Pacific Ocean. Unfished refers to no-take marine protected areas. The data for the 
Caribbean are from Newman and colleagues (2006), and those for the Pacific Ocean are from Sandin and colleagues (2008).
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sharks and other top predators dominating Kingman atoll 
in the Pacific (Sandin et al. 2008), generalist carnivores 
dominating in Cozumel (Newman et al. 2006), and a more 
balanced composition of all four feeding groups (i.e., top 
predators, generalist carnivores, planktivores, and herbi-
vores) contributing in Chagos. It is notable that reef sharks 
declined in numbers by 90% in Chagos between the 1970s 
and 2006 because of poaching (Graham et al. 2010), and so 
the potential biomass of top predators at Chagos is likely 
to be substantially higher. It is currently unknown whether 
the reduction in sharks would have had much impact on 
the biomass of other groups. Because shark populations 
typically show slow recovery rates, it will probably take many 
decades of stricter enforcement to reinstate the ecological  
processes that they provide.

The case for protecting marine wilderness
It is clear that the fish biomass that can be attained in 
remote coral reef wilderness areas far outstrips the levels 
that are seen in populated coastlines, including within small 
NTAs. Similar findings of exceptional fish biomass have 
been documented in a comparison of the remote north-
west Hawaiian Islands with the populated main Hawaiian 
Islands (Friedlander and DeMartini 2002) and in a com-
parison of the unpopulated northern Line Islands with 
the populated atolls to the south (Sandin et al. 2008). 

Remoteness from many direct human influences and high 
biomass of fish populations are likely to provide important 
processes for the wider ecosystem (McClanahan et al. 2011). 
For example, the general reef condition in terms of coral 
cover and recovery from disturbances is high in Chagos 
and the northern Line Islands relative to that in many other 
reef locations (Sandin et al. 2008, Sheppard et al. 2008, 
Ateweberhan et al. 2011). Furthermore, microbial commu-
nities that can cause coral disease and associated declines 
in reef condition are in lower densities in the more pristine 
remote reefs of the northern Line Islands than in the popu-
lated atolls to the south (Dinsdale et al. 2008). Wilderness 
areas will not be immune to some longer-term threats, such 
as ocean warming and acidification, but their expanse may 
help mitigate some of the impacts by protecting certain 
oceanographic and habitat features necessary to provide 
some species with refuge.

It is evident that wilderness areas in the oceans offer 
unparalleled ecosystem conditions at a time when the 
majority of the discourse describes the declining state of the 
world’s oceans (Halpern et al. 2008, Hoegh-Guldberg and 
Bruno 2010). Indeed, there seems little doubt that formal 
legislative protection of some of the world’s last remaining 
marine wilderness locations, such as the Chagos NTA, is a 
crucial step to maintaining some near-pristine legacy areas 
in the oceans (Pew Environment Group 2010). Similar moves 

Figure 3. Many reef sites at a depth of 3 meters in Chagos experience extreme wave energy through much of the year, 
which reduces the small-scale structure of the reef and causes it to form spur and groove features (a, b). Fish biomass 
was still fairly high, particularly where the sites were less exposed to wave energy, and was dominated by lower-trophic-
level species, such as parrotfishes (c). At a depth of 9 meters in Chagos, very high fish biomass was recorded, with large 
schools and very large individuals of species that are heavily targeted elsewhere in the Indian Ocean (d, e, f). Photographs: 
Nicholas A. J. Graham.
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local management in human-dominated seascapes can have 
important effects on ecosystem function. In terms of eco-
system services, small NTAs can enhance the profitability of 
adjacent fisheries (McClanahan 2010) and can attract dive 
tourism (Peters and Hawkins 2009).

However, regulations in many small NTAs are often not 
well complied with, and in these cases, there may be few 
biological benefits (figure 2a; Pollnac et al. 2010). Indeed, 
governance and poverty challenges may mean that NTAs 
are not always the most appropriate policy or management 
tool. Management in resource-dependent socioecological 
(often called social-ecological) settings requires much more 
innovative stewardship (Chapin et al. 2010) to engender 
some of the ecosystem function and service benefits at larger 
spatial scales that are seen in the more successful NTAs while 
still maintaining the livelihoods and nutritional needs of 
the many people who rely on reefs. This will require bold 
initiatives, such as expansions of gear-based management 
(Johnson 2010), the devolvement of governance structures 
in order to empower local stakeholders (Cinner et al. 2012), 
appropriate aid that leverages escape from socioecological 
traps that are often driven by poverty (Cinner 2011), and 
broadening the nutritional portfolio.
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