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SUMMARY

With the availability of limited resources, innovation for improved statistical method for the design and
analysis of randomized controlled trials (RCTs) is of paramount importance for newer and better treatment
discovery for any therapeutic area. Although clinical efficacy is almost always the primary evaluating
criteria to measure any beneficial effect of a treatment, there are several important other factors (e.g., side
effects, cost burden, less debilitating, less intensive, etc.), which can permit some less efficacious treatment
options favorable to a subgroup of patients. This leads to non-inferiority (NI) testing. The objective of NI
trial is to show that an experimental treatment is not worse than an active reference treatment by more than
a pre-specified margin. Traditional NI trials do not include a placebo arm for ethical reason; however, this
necessitates stringent and often unverifiable assumptions. On the other hand, three-arm NI trials consisting
of placebo, reference, and experimental treatment, can simultaneously test the superiority of the reference
over placebo and NI of experimental treatment over the reference. In this article, we proposed both novel
Frequentist and Bayesian procedures for testing NI in the three-arm trial with Poisson distributed count
outcome. RCTs with count data as the primary outcome are quite common in various disease areas such
as lesion count in cancer trials, relapses in multiple sclerosis, dermatology, neurology, cardiovascular
research, adverse event count, etc. We first propose an improved Frequentist approach, which is then
followed by it’s Bayesian version. Bayesian methods have natural advantage in any active-control trials,
including NI trial when substantial historical information is available for placebo and established reference
treatment. In addition, we discuss sample size calculation and draw an interesting connection between the
two paradigms.
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1. INTRODUCTION

The randomized controlled trials (RCTs) are traditionally the gold standard for judging the benefits of
treatment for a disease under idealistic condition. According to the requirements set by the regulatory
agencies (e.g., FDA, 2016; EMA, 2005), drug developers need to demonstrate evidence of efficacy and
safety of an intervention through well-designed randomized placebo-controlled trial/s (RCTs). However,
in the presence of an established treatment regime conducting placebo-controlled trial is unethical. Instead,
experimental treatment is compared with an active control or reference treatment/drug/intervention. Most
of such active comparator trials are superiority trials. However, when superiority of the experimental
intervention is not clear, yet it poses certain attractive properties, one may resort to a non-inferiority (NI)
trial. The objective of efficacy seeking NI trial is to establish that an experimental treatment is non-inferior
to an active comparator within a small, pre-specified margin (or NI margin), and at the same time retains a
substantial portion of the active controls effect in the current trial (D’Agostino Sr and others, 2003). The
choice of this NI margin has been an area of major concern and some broad outlines have been provided
by regulatory agencies (ICH Steering Committee, 1998, 2000; FDA, 2016; EMA, 2005). The following
references (FDA, 2016; Hung and Wang, 2004; Schumi and Wittes, 2011) provide a detailed discussion
on NI margin that must be constructed based on the past performance of active control. Sometime an
intervention after passing superiority test for efficacy, additionally also tested for NI for safety, however
that is not the main focus of this article (Tsong and Zhang, 2007; Lu and others, 2018).

For the ethical reason discussed above, NI trials mostly lack a placebo arm. Hence, such two-arm NI
trials make some important assumptions regarding assay sensitivity and constancy. The validity of the
resulting inference depends heavily on external validation. Assay sensitivity (AS) of a clinical trial is
defined in its ability to distinguish an effective treatment from a less effective/ineffective one as defined
by the ICH guideline (ICH Steering Committee, 1998, 2000). Moreover, it is also required that the effect
size of the active control over placebo in the historical placebo-controlled trial holds in the current NI
trial (i.e., constancy), otherwise efficacy of the experimental treatment over putative placebo cannot be
shown. Kieser and Stucke (2016) mentioned several other factors that often plague two-arm NI trials. To
alleviate some of these issues and if ethically acceptable and practically feasible, it is recommended by
EMA (2005) to include a placebo arm in the current trial, resulting in a three-arm trial often known as
“gold-standard” design. In Frequentist setup, Pigeot and others (2003) first proposed an approach where
NI margin is adaptively formulated as the pre-specified negative fraction of the unknown effect size of
the reference treatment over placebo in the current three-arm trial. Such formulation of the NI margin,
called the fraction margin approach, is also known as “effect retention.” This approach was extended
by Kieser and Friede (2007) and Chowdhury and others (2018b) for the binary outcome, Mielke and
others (2008) for censored exponentially distributed outcome, Ghosh and others (2017) for non-normal
continuous outcome, Stucke and Kieser (2013) and Mütze and others (2016) for the count outcome to
name a few.

1.1. Background and motivating example

A three-arm trial via fraction margin approach is a two-step process. In the first step, one must show
that superiority of the reference over placebo, i.e., the AS condition holds. If this is successful, one
proceeds to test NI of the experimental treatment. Due to the hierarchical structure of the multiple testing
problem (AS and NI) though one do not need to adjust for type-I error, however, the pretest for assay
sensitivity may lead to a reduction in power when testing for NI. This fact was demonstrated clearly in
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Kieser and Friede (2007). A possible alternative is proposed by Hida and Tango (2013), where they
suggested joint testing of AS and NI. This approach requires joint rejection of AS and NI null hypotheses
to claim NI (with AS) leading to Intersection–Union testing (IUT). Though logical and can be tightly
controlled (for type-I error) the IUT under Frequentist setup may lead to biased test (Berger, 1997). This
is discussed in detail by Chuang-Stein and others (2007) in the superiority trial context. In this article
based on Frequentist approach we have developed first, a more powerful test based on conditional principle
for fraction margin based NI testing.

Since NI trials involve active control that has been well established in the past, the availability of
historical information is almost guaranteed. Bayesian paradigm provides a natural path to combine infor-
mation from various historical trials as prior and then to combine them with the current trial. This has
the possibility of reducing sample size and cost burden. Bayesian approaches have been predominantly
used in clinical trials, particularly in the NI trials since long past (e.g., see Simon, 1999; Ghosh and
others, 2011, 2016; Gamalo and others, 2016, 2014). Bayesian approach for NI trial for two-arm can be
found in Gamalo and others (2011), Chowdhury and others (2018a) and for three-arm can be found in
Ghosh and others (2011), Ghosh and others (2016). To the best of our knowledge no literature exists
for NI testing for count outcomes under Bayesian paradigm. Even from the Frequentist approach the
papers are only handful. Albeit as mentioned in Stucke and Kieser (2013), the existence of count type
outcome is not very uncommon. Examples include relapse-remitting count in multiple sclerosis (MS) trial
(Friede and Schmidli, 2010; Noseworthy, 2003; Sormani and others, 2001); lesion count in cancer trial
(McIntosh, 2001; Xie and Aickin, 1997); number of attacks in migraine trial (Silcocks and others, 2010);
number of manic episodes in bipolar trial (Soeiro-de Souza and others, 2013); post-discharge adverse
events (Tsilimingras and others, 2015) to name a few. Along with a novel and more powerful conditional
Frequentist approach in this article, we also propose both exact and an approximate Bayesian approach
for testing the NI hypothesis for count outcomes in three-arm trial. Effective sample size is calculated
using all procedures to make a comparative analysis.

Our motivation for developing both Frequentist and Bayesian tests comes from a clinical trial dataset
(Calabrese and others, 2012) on MS where primary outcome is counts of cortical inflammatory lesions
(CLs). Recent studies have shown that CLs may have a major role in determining disability in patients with
MS. Some of the critical symptoms of CLs include epilepsy, memory loss in relapsing-remitting multiple
sclerosis (RRMS) patients, cortical atrophy in primary progressive MS, etc. The original dataset comprises
of patients who were untreated or treated with different disease modifying drugs (DMDs). The objective
of the study was to assess the effects of the DMDs compared with no therapy (placebo). The patients with
RRMS were enrolled in a 2-year prospective, randomized, single-centric study. There were 50 patients
who did not receive any therapy for the 2 years of the follow-up period, while the remaining patients who
were part of the clinical study, received the respective DMDs. These patients were evaluated at baseline,
at 12 and 24 months after the treatment. Table 1 shows the frequencies of the new CLs developed by
these patients with MS after 1 year and 2 years of their treatment with the DMDs. As evident the primary
response is count type, with good fit to Poisson distribution via Index of Dispersion test (Gbur, 1981) for all
arms. We have applied our proposed test procedures to determine NI of the DMD glatiramer acetate (GA)
(E) over subcutaneous interferon (IFN) beta-1a (R) for both 1- and 2-year data. The detailed illustrations
are in Section 6.

The rest of the article is organized as follows. In Section 2, we give the NI hypothesis and existing
Frequentist methods for testing the count data. We also introduce our proposed more powerful conditional
testing in this section. In Section 3, we propose a novel Bayesian methodology for the same. We consider
both conjugate and non-conjugate priors incorporating the condition of AS. In Section 4, the power and
sample size calculations are discussed in detail for Frequentist approach, Bayesian normal approximation,
and exact Bayesian methods. Section 5 presents the simulation results along with the power curves. Finally
in Section 6, we apply our proposed Bayesian methodology for NI testing on this clinical trial dataset.
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Table 1. Frequencies of new MRI CLs over 1 and 2 years. N denotes sample size.

1 year 2 years

Arm Counts Frequencies N , Mean, Var Arm Counts Frequencies N , Mean, Var

P
0 13

50, 1.6, 1.2 P
0 9

50, 3.0, 2.6≥ 1 37 ≥ 1 41

R
0 34

46, 0.4, 0.49 R
0 22

46, 0.8, 0.6≥ 1 12 ≥ 1 24

E
0 24

48, 0.8, 1.0 E
0 18

48, 1.3 , 1.21≥ 1 24 ≥ 1 30

The article concludes with discussion and future direction in Section 7.All proofs and additional simulation
results are provided in Supplementary Appendix available at Biostatistics online.

2. FREQUENTIST APPROACH FOR NI TESTING

We adopt the notation used in Stucke and Kieser (2013) to illustrate the fraction margin approach for
three-arm NI trial. We denote the experimental treatment by E, the reference by R, and the placebo by
P. The sample size corresponding to the three arms are denoted by nE , nR, and nP, respectively, which
are not necessarily equal. Let XkE , XkR, and XkP, k = 1, . . . , nl denote the primary count type independent
random variable corresponding to the kth individual in the respective treatment arms. The Xkl is distributed
as Poisson (λl tl) with λl(> 0) represents the rate parameter and tl denotes the fixed follow-up times for
l ∈ {E, R, P}. Hence, λl tl denotes the expected number of counts per-patient in the lth group. We assume
that these random variables are mutually independent. Without loss of generality, we assume that higher
the values of the Poisson rates λl , greater is the treatment benefits. Again, we denote the total number of
counts for all nl patients in the lth treatment arm by Xl = ∑nl

k=1 Xkl which is distributed as Poisson (λl tlnl),
l ∈ {E, R, P}. Later on for our analysis, we will consider homogeneous Poisson distributions for the
treatment arms; that is, we take tl = 1 for l ∈ {E, R, P}. Modeling non-homogeneous Poisson distribution
is a possibility which we did not explore in this article. The usual NI hypothesis for a two-arm trial (without
placebo) is

H0 : λE − λR ≤ δ vs. H1 : λE − λR > δ, (2.1)

where δ < 0 denotes the pre-specified amount of NI margin. In the current three-arm trial, the construction
of δ via fraction margin approach (Pigeot and others, 2003) can be mathematically expressed as δ = f (λR−
λP), where −1 < f < 0 assuming the condition of AS (λR > λP). Hence, the hypothesis in (2.1) can be
rewritten using the expression for δ as follows: H0 : λE −λR ≤ f (λR − λP) vs. H1 : λE −λR > f (λR −λP).
Now, putting θ = 1 + f , the above hypothesis becomes

H0 :
λE − λP

λR − λP
≤ θ vs. H1 :

λE − λP

λR − λP
> θ , (2.2)

where θ is the pre-specified fraction of the effect of the reference drug relative to the placebo. Clearly,
rejection of the null hypothesis ensures that the experimental treatment retains a portion of the unknown
effect of the reference over placebo under the fraction margin approach (Kieser and Stucke, 2016) and
would support NI of the experimental drug over the active control. Different choices of θ(∈ [0, 1]) have
been proposed in Pigeot and others (2003). Particularly, for NI testing of the experimental drug, θ is

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/23/1/136/5834925 by guest on 23 April 2024

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa014#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa014#supplementary-data
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allowed to vary in the interval [0.5, 1), indicating at least 50% or more effect retention. The hypothesis in
(2.2) can be expressed in the following form which is used later for deriving the statistical test procedures

H0 : λE − θλR − (1 − θ) λP ≤ 0 vs. H1 : λE − θλR − (1 − θ) λP > 0. (2.3)

2.1. Existing Frequentist approaches

Mütze and others (2016) developed NI hypothesis testing where count outcome assumed to follow a
negative binomial distribution. They constructed the test statistic for testing NI hypothesis by considering
the maximum likelihood (ML) estimate of the linear contrast in H0 (in 2.3) given by, T = λ̂E − θλ̂R −
(1 − θ) λ̂P, where λ̂l = Xl/nltl is the maximum likelihood estimate (MLE) of λl , l ∈ {E, R, P}. The
variance of the test statistic is given as Var (T ) = λE/nEtE + θ 2λR/nRtR + (1 − θ)2 λP/nPtP. Both ML and
restricted maximum likelihood (RML) estimation techniques can be adopted to estimate Var(T ). The RML
estimator can be obtained subject to the constraint λE − θλR − (1 − θ) λP = 0. Mütze and others (2016)
also derived asymptotic sample size formulae along with optimal sample size allocation considering both
balanced and unbalanced designs albeit in the Frequentist set up. For a two-arm trial, Stucke and Kieser
(2013) derived the statistical test procedure using RML estimator and obtained approximate sample size
formulae under the Frequentist set up. Note, this approach of NI testing is valid provided the AS null
hypothesis has already been rejected first. Hence, the step for NI testing is always a conditional test.
However, this AS conditioning is not used in any of the existing approach of Frequentist test. We have
shown mathematically that if the pretested AS condition is used properly in the second step (i.e., in NI
testing), this could lead to a more powerful test with considerable savings in sample size.

2.2. Proposed Frequentist approach

As mentioned in Section 1.1, it is often argued (Pigeot and others, 2003; Koch and Röhmel, 2004; Ghosh
and others, 2011; Wu and others, 2018) that if active control has not lost all of its effect over placebo
then the statistical power to perform joint testing (NI and AS) will be very similar to NI testing only.
This may not be true in all situation as shown in Kieser and Friede (2007), except when power of the
pretest is close to unity. Nevertheless, NI testing only happens provided the AS condition (λR > λP) holds.
However, this pretestedAS condition has not been used further, though NI andAS test statistics are related.
We introduce here a new conditional approach for NI hypothesis testing by incorporating the pretested
AS condition (λR > λP) directly. We have shown that this approach will perform better or as good as the
existing approach. For finding the MLE, we truncate the parameter space of (λE , λR, λP) such that it belongs
to {λE , λR, λP : λE , λR, λP ∈ [0, ∞), λR > λP}. One may develop a likelihood ratio test based on the statistic
T = λ̂E−θλ̂R−(1−θ)λ̂P = (λ̂E−λ̂P)−θ(λ̂R−λ̂P) = U −θV under null hypothesis subject to the imposed
condition, λ̂R > λ̂P via Wald-type test. Following Mütze and others (2016) argument, one can improve the

convergence of Wald-type test via the RML which requires solving under H0,
(
λ̂E,RML, λ̂R,RML, λ̂P,RML

)
=

arg maxλE−θλR−(1−θ)λP≤0,λR > λP
log l(λE , λR, λP), where log l(λE , λR, λP) is the log-likelihood of (λE , λR, λP)

to estimate T by TRML. This optimization problem can be solved only numerically as no closed form
expression is possible. To reduce computational burden one practical strategy that is often recommended
is to work with unrestricted MLE which is TML = λ̂E,ML−θλ̂R,ML−(1−θ)λ̂P,ML, however, only considering
the part restricted by λ̂R,ML > λ̂P,ML, which is

TRML � TML ∗ I [λ̂R,ML > λ̂P,ML]. (2.4)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/23/1/136/5834925 by guest on 23 April 2024



New approaches for testing non-inferiority for three-arm trials with Poisson distributed outcomes 141

This strategy is proved to be quite useful in many practical applications (Huang and others, 2011;
Kulldorff, 1997). Since working with product of random variables in (2.4) is little cumbersome, one
can further show that f (TRML) � f (TML|λ̂R,ML > λ̂P,ML) × Pr[λ̂R,ML > λ̂P,ML]. It is easy to prove that
Pr[λ̂R,ML > λ̂P,ML] is a constant value which can be absorbed as a proportionality constant. Hence,
for all practical purposes, one can consider the distribution of the test statistic, f (TML|λ̂R > λ̂P) ∝
f (λ̂E,ML − θλ̂R,ML − (1 − θ)λ̂P,ML|λ̂R,ML > λ̂P,ML). For notational simplicity from now onwards, we denote
the ML estimate λ̂l,ML by λ̂l , l ∈ {E, R, P}. This leads to the modified test statistic for NI testing:
W = (λ̂E − θλ̂R − (1 − θ)λ̂P|λ̂R > λ̂P) = (U − θV |V > 0). Under the asymptotic normality of W ,
we have (W − μw)/σw ∼ AN (0, 1), where μw and σ 2

w are the mean and variance of W , respectively.

LEMMA 2.2.1 Under conditional normal approximation, the mean μw and variance σ 2
w of W =

λ̂E − θλ̂R − (1 − θ)λ̂P|λ̂R > λ̂P are given by μw = μU + σU
ρ

c φ (d) − θ
(
μV + σV

1
c φ (d)

)
, σ 2

w =
σ 2

U

[
1 + ρ2

c dφ (d) − (
ρ

c φ (d)
)2
]
+ θ 2σ 2

V

[
1 − φ(d)

c

(
φ(d)

c − d
)]− 2θ

[
σU σV

ρ

c (c + dφ (d)) + σU μV
ρ

c φ (d)

+σV μU
1
c φ (d) + μU μV − (

μU + σU
ρ

c φ (d)
) (

μV + σV
1
c φ (d)

)]
, where μU = λE − λP, μV = λR −

λP, σ 2
l = λl

nl
for l ∈ {E, R, P}, d = −μV

σV
, c = 1 − � (d) , σ 2

U = σ 2
E + σ 2

P , σ 2
V = σ 2

R + σ 2
P , and ρ =

Var(λ̂P )√
Var(U )Var(V )

= σ2
P√

σ2
U σ2

V

.

Proof: See Supplementary Appendix A available at Biostatistics online.

Now under H0, let us denoteλE by λnull
E and under H1 denoteλE by λalt

E as point alternative. Sinceλnull
E sat-

isfies λnull
E −θλR−(1−θ)λP = 0, the expression of λnull

E can be obtained via λnull
E = λP+θ (λR − λP) . Under

H1, λalt
E satisfies λalt

E −θλR−(1−θ)λP > 0 ⇒ (λalt
E −λP) > θ(λR−λP). Since λE is involved in the expression

of the mean and variance of W , we denote E (W ) and Var (W ) under H0 by μnull
w and σ 2null

w and under H1, by
μalt

w and σ 2alt
w , respectively. Thus, we have (W − μnull

w )/σ null
w ∼ AN (0, 1) under H0 and (W − μalt

w )/σ alt
w ∼

AN (0, 1) under H1. In Frequentist approach, the critical region of the test is given by W > k∗
α , where

k∗
α is obtained by assuming a test of size α: PH0

(
W > k∗

α

) = α ⇒ k∗
α = μnull

w + z1−ασ
null
w , where z1−α

is the 100 (1 − α) % percentile point of the N (0, 1) distribution. Traditionally, the value of α is cho-
sen to be 0.025 (other choices are possible too). The expression of the power of the test is given by
PH1

(
W > k∗

α

) = 1 − �((k∗
α − μalt

w )/σ alt
w ).

LEMMA 2.2.2 At a fixed α and sample size N (= nE + nR + nP), proposed conditional test statistic (W )

has more power than the existing marginal test statistic (T ) for testing NI hypothesis in (2.3).
Proof: See Supplementary Appendix B available at Biostatistics online.

This lemma shows that there is effective power gain in the conditional test or conversely speaking, to
attain a fixed power, the conditional test requires smaller sample size. Though for simplicity, the proof
is given for equal allocation case, it can be easily extended for more general unequal allocation case. As
observed in the Section 4.5, this power difference is substantial when the gap between λR and λP is small.
In Supplementary section available at Biostatistics online, we have provided additional simulation result
to demonstrate this fact. It should be also noted that this lemma is generalizable for continuous as well as
for binary outcome with slightly different algebra, indicating the fact that our proposed conditional test
should be de facto standard for Pigeot’s fraction margin approach irrespective of the outcome types.

3. BAYESIAN APPROACHES FOR NI TESTING

As indicated in Section 1, availability of considerable prior information is almost guaranteed in any
active control trial and NI RCT is not an exception. Albeit, the usage of these historical information via
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the Frequentist approaches is rather limited. Bayesian approach provides a natural path to leverage this
historical data which may result in substantial effective sample size gain. However, to the best of our
knowledge no Bayesian methodology paper exists for any three-arm trial with count type endpoints. In
this section, we discuss an exact Bayesian and an approximation-based Bayesian method for NI testing
involving Poisson rates. Note, we did not develop here Bayesian approach for existing Frequentist approach
of Mütze and others (2016). However, as we proposed a more powerful Frequentist test in Section 2.2,
our Bayesian development closely follows that procedure.

As stated earlier, the NI margin is constructed as the negative fraction of the unknown difference of the
count rate of responses in the reference and the placebo arm. We consider θ ≥ 0.5 to test for the NI of
E relative to R with two different prior scenarios, including the conjugate prior where the AS condition
(λR > λP) is directly incorporated. This restriction reflects that the NI study is being carried out under the
similar condition as that of the former studies in which the efficacy of the active control was proved, and it
still retains its effect over placebo. This is a very realistic assumption because if the current trial is similar
to the historical trial then the effect of reference drug over placebo should be constant in both the current
and the historical trial (constancy assumption). In the following section, we discuss both the conjugate
and non-conjugate prior settings. In case there is no available prior information, flat non-informative prior
is assigned to λl which includes Jeffreys prior and other priors with adjusted parameters yielding large
variance.

3.1. Exact Bayesian approach

3.1.1. Conjugate Gamma prior In the conjugate prior setting, we use a Gamma distribution as the prior
for the Poisson rate in each arm of the trial; that is, we assume λl ∼ Gamma (αl , βl), l ∈ {E, R, P}, where we
assume αl , βl to be fixed hyper-parameters. After incorporating the assumption of AS (λR > λP), the joint
prior distribution of the Poisson rates in the three-arms becomes f (λ) = I (λR > λP)

∏
l∈{E,R,P} f (λl|αl , βl),

where f (λl|αl , βl) is the density of Gamma(αl , βl) distribution given as

f (λl|αl , βl) ∝ λ
αl−1
l exp {−λlβl}, λl > 0.

Since the number of counts, Xl , in each arm, follows a Poisson distribution with parameter nlλl tl , l ∈
{E, R, P}, the posterior distribution for λl|Xl is Gamma (αl + Xl , βl + nltl) satisfying AS condition is
given by

f (λE , λR, λP|Data, αl , βl) ∝ I (λR > λP)
∏

l∈{E,R,P}
λ

αl+xl−1
l exp{−λl (βl + nltl)}, λl > 0, l ∈ {E, R, P}.

The Markov chain Monte Carlo (MCMC) samples can be easily generated from this joint posterior
distribution. The hyper-parameters αl and βl , l ∈ {E, R, P} can be chosen depending on how much prior
information is available. In the absence of prior information from historical placebo-controlled trial, they
are chosen to be vague. The mean (μ), mode

(
μ0
)
, and variance

(
σ 2
)

of Gamma (α, β) are given as
μ = α/β, μ0 = (α − 1)/β, and σ 2 = α/β2. For the informative priors, the variance is made smaller
making priors to be more specific.

3.1.2. Non-conjugate prior In this case, the prior distributions are so assigned to the parame-
ters λE , λR, and λP that satisfy the restriction 0 < λP < λR. We give joint prior on (λR, λP) by
putting a Gamma prior on λR and a Beta prior on λP/λR which ensures λR > λP. We put unre-
stricted prior Gamma (αE , βE) on λE . The following transformation is made from (λR, λP) to (u1, u2):
u1 = λP/λR ∼ Beta (a, b) , u2 = λR ∼ Gamma(p, r). So, we have 0 < u1 < 1 (satisfies the AS
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condition (λR > λP)) and u2 > 0. The joint distribution of (u1, u2) is given by f (u1, u2) = Beta (a, b) ×
Gamma (p, r) ∝ ua−1

1 (1 − u1)
b−1 exp {−ru2}up−1

2 , which gives the joint distribution of (λR, λP) as
f (λR, λP) ∝ 1

λR
(λP/λR)

a−1 (1 − λP/λR)
b−1 exp {−rλR}λp−1

R , 0 < λP < λR. The joint prior distribution of
(λE , λR, λP) can be obtained by multiplying f (λR, λP) with f (λE) ≡ Gamma (αE , βE), which is given as

f (λE , λR, λP) ∝ λ
αE−1
E exp {−βEλE}λa−1

P (λR − λP)b−1 exp {−rλR}λp−a−b
R ,

0 < λE < ∞, 0 < λP < λR < ∞. The joint posterior distribution f (λE , λR, λP|Data) is proportional to the
multiplication of the joint likelihood and the joint prior as

f (λE , λR, λP|Data) ∝ Gamma (λE|αE + XE , βE + nEtE) × exp {−nPλPtP}λa+xP−1
P ×

exp {−λR (r + nRtR)}λxR+p−a−b
R (λR − λP)b−1 , 0 < λP < λR < ∞, 0 < λE < ∞.

The posterior is not in the closed form and a Metropolis–Hastings acceptance–rejection sampling is
required with a proposal density to generate posterior samples (Gelman and others, 2014). A convenient
proposal density could be Gamma distribution with appropriately chosen priors. In our simulation, we use
“rjags” (R-package; Plummer and others, 2016) to generate the samplers from the posterior density.

Remark 1: Following Pigeot and others (2003) and Ghosh and others (2011), we continue to assume
that AS condition (λR > λP) is tested in Step 1, before proceeding to test for NI. As a result truncated
priors are chosen in Step 2, i.e., at NI testing. This assumption explicitly reflects the fact that active control
still retains some of its effect over placebo. In a situation where this assumption is questionable, it is not
advisable to carry out a three-arm NI trial, rather a superiority trial of the new treatment over placebo is
more realistic.

3.1.3. Test procedure For NI testing, the value of θ is so chosen that is clinically acceptable to claim
that an experimental drug is non-inferior to an active control. Usually, θ is chosen in the range [0.5, 1)

and NI of the test drug relative to the reference is claimed if the posterior probability of the alternative
hypothesis given in (2.2) exceeds a pre-specified cutoff p∗. Following Ghosh and others (2011) (Section
3.3) thus, the Bayesian decision rule to claim NI of the test drug over the reference is given as

P

(
H1 :

λE − λP

λR − λP
> θ |λR > λP, Data

)
> p∗. (3.1)

The value of p∗ is usually chosen to be 0.975 or 0.95. The above probability can be calculated empirically
by generating the samplers from the posterior distribution of λl|Xl , l ∈ {E, R, P}. The estimated probability
is given by

P̂

(
H1 :

λE − λP

λR − λP
> θ |λR > λP, Data

)
≈

1

M

M∑
m=1

I

(
λm

E − λm
P

λm
R − λm

P

> θ |λm
R > λm

P , Data
)

, (3.2)

where λm
E , λm

R , and λm
P denote the mth sample value drawn from the posterior distributions.

3.2. Approximate Bayesian approach

Note that in the exact Bayesian approach, the posterior sample generation is necessary to carry out the
Bayesian inference which is often computationally intensive. Here, we propose an approximation-based
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Bayesian approach for NI testing incorporating the AS condition that gives closed form of the posterior
probability and hence, saves the computation time of the MCMC sample generation from posterior distri-
bution. Consider the Gamma prior for the rate λl in each arm, that is, λl ∼ Gamma (αl , βl) and assume that
the responses are distributed as Poisson; that is, Xl ∼ Poisson (nlλl tl) for l ∈ {E, R, P}. The Frequentist test
statistic for testing the hypothesis in equation (2.3) is given by T = XE/nEtE −θXR/nRtR −(1−θ)XP/nPtP.
For the sake of simplicity, we take tl = 1, l ∈ {E, R, P}. Under asymptotic normality assumption, we
have T |μT ∼ AN

(
μT , σ 2

T

)
, where μT = λE − θλR − (1 − θ)λP = (λE − λP) − θ(λR − λP) and

σ 2
T = λE/nE +θ 2λR/nR +(1 − θ)2 λP/nP. Putting Normal prior on μT , we have μT ∼ AN

(
μ∗, σ ∗2

)
, where

μ∗ = E (μT ) = μE −θμR −(1 − θ) μP and σ ∗2 = σ 2
E +θ 2σ 2

R +(1−θ)2σ 2
P , μl and σ 2

l , l ∈ {E, R, P} are the
respective mean and variance of the Gamma prior for the Poisson rates. Next, we bring in the condition
of AS (λR > λP). So instead of taking prior on μT , we take prior on νT ≡ (μT |λR > λP). Assume that
νT ∼ AN

(
μ∗

ν , σ ∗2
ν

)
and the posterior, νT |Data ∼ AN

(
μ̃T σ̃ 2

T , σ̃ 2
T

)
. We refer to Arnold and Beaver (1993)

for the detailed derivation of μ∗
ν , σ ∗2

ν , μ̃T , and σ̃ 2
T (see also Supplementary Appendix C available at Bio-

statistics online). The Bayesian decision rule for the experimental treatment to be non-inferior to the active
comparator is given by Gamalo and others (2014): P (νT ≥ 0|Data) > p∗, where p∗ is the pre-specified
clinically reasonable constant.

4. POWER AND SAMPLE SIZE DETERMINATION

We address the problem of calculating the sample size for the assessment of NI to attain a desired power
using three approaches described in Sections 2 and 3. The normal approximation-based approaches do not
require any simulation for the estimation of the power function as it can be expressed in a closed form (as
presented in the following subsections). However, the exact Bayesian approach requires the simulation
technique to obtain the empirical power which is then set to a desired level to calculate the corresponding
sample size. In our sample size calculation, we consider tl = 1, l ∈ {E, R, P}. We want to determine
the sample size nl , l ∈ {E, R, P} setting the power at (1 − β), β is the pre-specified type-II error. We
assume nE = n, nR = r1n, and nP = r2n, where r1 and r2 determine the allocation of the sample sizes
in the reference and the placebo arms, respectively, relative to the experimental arm. The total sample
size in that case would be N = n (1 + r1 + r2). In the following sub-section, we discuss the power
and sample size calculation under the proposed Frequentist, approximation-based Bayesian, and exact
Bayesian approaches.

4.1. Frequentist approach

To obtain the empirical power function of the NI testing in (2.3) using the test procedure described in
Section 2.2, we fix λR, λP, and θ and vary λE such that the ratio (λE − λP)/(λR − λP) ∈ [0.5, 1.5]. The
ratio (λE − λP)/(λR − λP) is so chosen that for NI testing under H0 it equals θ ∈ [0.5, 1) and exceeds
θ under H1. Under the null hypothesis, denote λE by λnull

E which satisfies (λnull
E − λP) = θ(λR − λP) and

under H1, denote λE by λalt
E which satisfies (λalt

E −λP) > θ(λR −λP). The empirical type-I error is obtained
for λE = λnull

E and the power is obtained for λE = λalt
E . The sample size is calculated from the following

equation, to achieve a power of at least 100(1 − β)%

PH1

(
W > k∗

α

) ≥ 1 − β ⇒ �

(
k∗

α − μalt
w

σ alt
w

)
≤ β. (4.1)

Setting β at 20%, that is, to have at least 80% power and at fixed α(= 0.025), n is determined from (4.1).
We vary λalt

E to get the minimum sample size satisfying at least 80% power for each λalt
E .
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4.2. Exact Bayesian approach

The Bayesian decision rule to declare NI as given in (3.1) can be written as:

P (λE − θλR − (1 − θ)λP > 0|λR > λP, Data) > p∗, (4.2)

Define ηRP = λR − λP. Since the probability in (4.2) does not have a closed form, it is approximated by
generating samples from the posterior distribution and estimating the probability as

P (λE − θλR − (1 − θ)λP > 0|λR > λP, Data) =P ((λE − λP) > θ (λR − λP) |λR > λP, Data)

=
∫ ∞

0
P (λE − λP > θc|ηRP = c, Data) fηRP |ηRP > 0 (c) dc ≈ 1

M

M∑
i=1

g(θci, Data),

(4.3)
where g (θci, Data) = P (λE − λP > θci|ηRP = ci, Data) and ci being the ith sample value of (λR − λP|
λR > λP). We repeat the calculation of the estimated probability given in the left-hand side of the equation
(4.2) for n∗ times and obtain the proportion of times it exceeds the cutoff p∗. In simulation, the value of
n∗ is usually chosen to be 1000. As in the previous two approaches, we keep λR, λP, and θ fixed and vary
λE such that (λE − λP)/(λR − λP) varies within the range [0.5, 1.5]. For λalt

E > λnull
E , the estimated power

of the test can be calculated as

ˆPower = No. of times P
(
λalt

E − θλR − (1 − θ)λP > 0|λR > λP, Data
)

> p∗

n∗ .

The sample size can be obtained by setting the estimated power to be at least 100(1 − β)%, β is usually
chosen to be 0.2. We note here that since under the exact Bayesian approach the estimation of power
involves generating samples from posterior distributions, there could be minor fluctuation in the estimated
sample size.

4.3. Approximate Bayesian approach

For sample size determination under the approximation-based Bayesian approach, we choose “n” that
satisfies the two conditions (Gamalo and others, 2014): (C1) P [P (νT ≥ 0|Data) > p∗|H0] ≤ α, (C2)
P [P (νT ≥ 0|Data) > p∗|H1] ≥ 1 − β, where the probability in (C1) is the estimated average type-I error
while that in (C2) is the estimated power of the test, β being the type-II error. The sample size is determined
from condition (C2) by fixing β to have at least 100 (1 − β) % power and simultaneously satisfying
condition (C1). As in the Frequentist approach, we choose α = 0.025. We note that P (νT ≥ 0|Data) =
P
(
(νT − σ̃ 2

T μ̃T )/σ̃T ≥ −σ̃ 2
T μ̃T /σ̃T

)
> p∗ ⇔ −σ̃T μ̃T ≤ z1−p∗ ⇔ T ≥ −z1−p∗

(
1/σ 2

T + 1/σ ∗2
ν

)1/2
σ 2

T −
μ∗

ν/σ
∗2
ν σ 2

T , where μ̃T = T/σ 2
T + μ∗

ν/σ
∗2
ν and σ̃ 2

T = 1/(1/σ 2
T + 1/σ ∗2

ν ) (see Supplementary Appendix C
available at Biostatistics online). Here, z1−p∗ is the 100 (1 − p∗) % of the N (0, 1) distribution. Now, the
power function is obtained by varying λE such that 0.5 ≤ (λE − λP)/(λR − λP) ≤ 1.5, keeping the
other rates and θ fixed. Let us denote μT and σ 2

T by μnull
T and σ 2null

T , respectively, under H0, and similarly
under H1, denote the respective quantities by μalt

T and σ 2alt
T . Thus condition (C1) can be rewritten in terms

of T as

PH0

[
T > − z1−p∗

(
1

σ 2null
T

+ 1

σ ∗2
ν

)1/2

σ 2null
T − μ∗

ν

σ ∗2
ν

σ 2null
T

]
≤ α
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⇔ PH0

[
T − μnull

T

σ null
T

>

(
−z1−p∗

(
1

σ 2null
T

+ 1

σ ∗2
ν

)1/2

σ 2null
T − μ∗

ν

σ ∗2
ν

σ 2null
T − μnull

T

)/
σ null

T

]
≤ α (4.4)

⇔ Φ

(
z1−p∗

(
1

σ 2null
T

+ 1

σ ∗2
ν

)1/2

σ null
T + μ∗

ν

σ ∗2
ν

σ null
T + μnull

T

σ null
T

)
≤ α.

Similarly, condition (C2) becomes

Φ

(
z1−p∗

(
1

σ 2alt
T

+ 1

σ ∗2
ν

)1/2

σ alt
T + μ∗

ν

σ ∗2
ν

σ alt
T + μalt

T

σ alt
T

)
≥ 1 − β. (4.5)

A similar derivation albeit for two-arm NI trial for binary outcome can be found in Gamalo and others
(2014). Now, “n” can be solved from (4.5) by setting β = 20% and simultaneously satisfying condition
(C1) for each λalt

E (which is included in μalt
T ).

4.4. Sample size under different allocation

We determine the approximate sample size to attain a power of 1−β = 0.8 under three different allocation
scenarios for (E, R, P): (1:1:1), (2:2:1), and (3 : 2 : 1) of the total sample size N (= n(1 + r1 + r2)).
We express the sample sizes in the reference and the placebo group as proportions r1 and r2 of the
sample size nE in the experimental group. Hence, for the allocation (1 : 1 : 1) , r1 = r2 = 1; for (2:2:1),
r1 = 1 and r2 = 1

2 ; and for (3:2 : 1) the values are r1 = 2
3 and r2 = 1

3 . Type-I error or α = 0.025 is kept
fixed for the Frequentist approach, while for Bayesian approach we also made sure the equations (4.4)
and (4.5) hold simultaneously for fixed (α, β). In practice, θ is chosen in [0.5, 1), to ensure retention of
at least 50% effect of the active control. The sample sizes are presented for θ = 0.8 and 0.75 and for a
range of λE keeping λR = 21 and λP = 7 in Table 2. Other values of λ’s are also possible satisfying the
restriction λR > λP.

We present the sample size for the placebo group (nP). The sample sizes nR and nE for the arms R
and E can be obtained from the allocation ratios. The total sample size for (1:1:1) is N = 3n(1)

P , that
for (2:2:1) is N = 5n(2)

P , while for (3:2:1) it is N = 6n(3)

P , where n(1)

P , n(2)

P , and n(3)

P are the respective
sample sizes for the placebo group under the three allocations. Although appealing at first glance, one
may not want to use a balanced study design because of two aspects: (i) due to ethical reasons in case
an effective treatment exists, the number of patients receiving the placebo should be kept as small as
possible and (ii) as pointed out by Koch and Tangen (1999), the difference between E and R should be
expected to be much smaller than their respective difference from placebo so that the latter are easier to
detect. From Table 2, we note that the necessary sample size is remarkably smaller for the unbalanced
allocation (2:2:1) as compared to a balanced design and a minor reduction is again obtained for the
unbalanced allocation (3:2:1) as compared to (2:2:1). Some additional results on this are also provided in
Supplementary Appendix available at Biostatistics online.

4.5. Sample size for marginal vs. conditional Frequentist approach

To make a comparison of the existing marginal Frequentist approach with the proposed conditional Fre-
quentist approach one, we present the sample sizes under both the approaches in Table 3. For simplicity,
we only consider equal allocation to the three treatment arms. We determine the sample size under the two
approaches for θ = {0.9, 0.8} with (λR = 21, λP = 7), (λR = 18, λP = 17.5), and (λR = 7.5, λP = 7).
From Table 3, we observe that for λR = 21 and λP = 7 the sample size under the conditional approach
is identical to that calculated under the marginal approach, while for λR = 18 and λP = 17.5 or λR = 7
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Table 2. Sample sizes based on exact and approximate approaches to achieve a power of 80% for
θ = 0.8 and 0.75, α = 0.025 and keeping λR = 21 and λP = 7 under three different allocations.
The simulated power (φ̂) and estimated average type-I error (α̂) for exact Bayesian approach under
non-informative Gamma prior are also reported to show that calculated sample size is adequate to
guarantee 80% power except for minor numerical fluctuation. Note, Frequentist type-I error is always
strictly maintained at α = 0.025 by equation 4.1.

Frequentist normal Approximate Bayesian Exact Bayesian

E R P θ λE nP N φ̂ nP N φ̂ nP N φ̂ α̂

1 1 1

0.80

20.0 79 237 0.802 78 234 0.801 79 237 0.802 0.0215
19.7 113 339 0.802 112 336 0.798 112 336 0.808 0.0222
19.4 176 528 0.790 175 525 0.795 175 525 0.796 0.0225
19.1 312 936 0.795 310 930 0.797 302 906 0.789 0.0229
18.8 700 2100 0.803 697 2091 0.799 685 2055 0.802 0.0224

0.75

20.0 39 117 0.810 38 114 0.813 38 114 0.807 0.0173
19.7 50 150 0.806 48 144 0.798 48 144 0.786 0.0208
19.4 66 198 0.805 65 195 0.804 65 195 0.804 0.0217
19.1 93 279 0.803 91 273 0.804 88 264 0.790 0.0185
18.8 140 420 0.801 138 414 0.806 133 399 0.787 0.0184

2 2 1

0.80

20.0 40 200 0.805 40 200 0.808 37 185 0.794 0.0219
19.7 57 285 0.801 57 285 0.803 52 260 0.798 0.0208
19.4 89 445 0.799 89 445 0.802 81 405 0.783 0.0217
19.1 158 790 0.798 157 785 0.800 153 765 0.805 0.0193
18.8 353 1765 0.804 352 1760 0.802 351 1755 0.797 0.0189

0.75

20.0 20 100 0.813 19 95 0.800 18 90 0.821 0.0210
19.7 26 130 0.816 25 125 0.809 24 120 0.811 0.0201
19.4 34 170 0.808 33 165 0.801 33 165 0.815 0.0181
19.1 48 240 0.813 46 230 0.801 45 225 0.831 0.0181
18.8 72 360 0.808 70 350 0.804 64 320 0.810 0.0180

3 2 1

0.80

20.0 33 198 0.819 32 192 0.813 31 186 0.795 0.0216
19.7 47 282 0.804 46 276 0.799 44 264 0.805 0.0210
19.4 72 432 0.798 71 426 0.796 71 426 0.786 0.0199
19.1 128 768 0.803 127 762 0.799 125 750 0.795 0.0205
18.8 287 1722 0.800 284 1704 0.797 277 1662 0.782 0.0209

0.75

20.0 16 96 0.814 15 90 0.799 15 90 0.802 0.0225
19.7 21 126 0.821 20 120 0.813 18 108 0.787 0.0201
19.4 27 162 0.799 27 162 0.809 26 156 0.802 0.0216
19.1 38 228 0.807 37 222 0.804 37 222 0.796 0.0193
18.8 58 348 0.807 56 336 0.800 54 324 0.811 0.0188

and λP = 7.5, the sample size under the conditional approach is smaller than the existing one to achieve a
power of 80%. This observation points out that for smaller difference between λR and λP, the proposed con-
ditional approach is more powerful than the existing marginal approach, while for larger difference both
the approaches behave similarly. This in line with the theoretical result we have proven in Lemma 2.2.2.

5. SIMULATION STUDIES

We enumerate few simulation studies to evaluate the performance of the Frequentist as well as Bayesian
procedures presented above. We generate the power curves for different values of θ , under both the
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Table 3. Sample size for marginal vs. conditional Frequentist approach

Marginal Conditional Marginal Conditional Marginal Conditional
(λR = 21, λP = 7) (λR = 18, λP = 17.5) (λR = 7.5, λP = 7)

θ λE nP N nP N λE nP N nP N λE nP N nP N

0.9 23.0 26 78 26 78 20.3 48 144 44 132 10.0 18 54 16 48
22.7 31 93 31 93 20.0 63 189 57 171 9.7 23 69 21 63
22.4 38 114 38 114 19.7 86 258 79 237 9.4 30 90 27 81
22.1 47 141 47 141 19.4 124 372 115 345 9.1 41 123 38 114
21.8 61 183 61 183 19.1 197 591 185 555 8.8 61 183 57 171
21.5 81 243 81 243 18.8 359 1077 345 1035 8.5 100 300 91 273

0.8 23.0 12 36 12 36 20.3 43 129 40 120 10.0 16 48 15 45
22.7 13 39 13 39 20.0 55 165 52 156 9.7 20 60 19 57
22.4 15 45 15 45 19.7 75 225 71 213 9.4 26 78 25 75
22.1 18 54 18 54 19.4 107 321 102 306 9.1 36 108 34 102
21.8 20 60 20 60 19.1 167 501 160 480 8.8 52 156 50 150
21.5 24 72 24 72 18.8 295 885 287 861 8.5 84 252 80 240

conjugate and non-conjugate priors and make a comparison among the informative and relatively non-
informative Gamma priors under the conjugate set up. We consider a randomized trial with the sample size
allocation ratio nE:nR:nP = 1:1:1. Unequal sample size allocation is also possible and shown in Table 2
from the sample size perspective. However, to maintain brevity for the current power comparisons only
equal allocation is described in detail.

5.1. Simulation steps

The following simulation steps are used to calculate the type-I error and power for the two different prior
scenarios described earlier: (i) conjugate Gamma prior and (ii) a non-conjugate prior. For the conjugate
prior setting, we choose two sets of hyper-parameters, one of which is relatively informative with respect
to the other. Note that the priors are so chosen that the mean of the Gamma distribution equals the Poisson
rates and shrinking the variance for the informative priors compared to the non-informative ones. For the
non-conjugate prior, we put non-informative Gamma prior on λE and suitable values are chosen for the
Beta and Gamma hyper-parameters. In the following, we give the formal steps of the simulation:

Step 1. Specify nE , nR, nP (or, the allocation ratios), λl , l ∈ {E, R, P} with λR > λP, and θ so that
λE ∈[λP + 0.5(λR − λP), λP + 1.5(λR − λP)] to generate {XE , XR, XP} = Data.

Step 2. For a given value of (λE − λP)/(λR − λP) or equivalently λE , generate the data Xl from Poisson
distribution Poisson (nlλl), l ∈ {E, R, P}.

Step 3. Generate M many posterior samples from the posterior distribution under the two priors given
under Section 3.1. For the conjugate prior, we keep only those posterior values in the sample
for which λR > λP. For the non-conjugate prior, the posterior sample values satisfy λR > λP

automatically because of the in-built restriction. For the mth posterior sample, calculate the ratio
(λm

E − λm
P )/(λm

R − λm
P ).

Step 4. Calculate the posterior probability:

P

(
λE − λP

λR − λP
> θ |λR > λP, Data

)
≈ 1

M

M∑
m=1

I

(
λm

E − λm
P

λm
R − λm

P

> θ |λm
R > λm

P , Data
)

.
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Step 5. Bayesian decision criterion: If P ((λE − λP)/(λR − λP) > θ |λR > λP, Data) > p∗, increase
COUNTS by 1; otherwise 0.

Step 6. Go back to step 2 and repeat the simulation n∗ (a large number chosen a priori) number of
times:

i. Calculate the type-I error by using COUNTS divided by n∗ for λE satisfying
(λE − λP)/(λR − λP) = θ .

ii. Calculate the power by using COUNTS divided by n∗ for λE satisfying
(λE − λP)/(λR − λP) > θ .

Step 7. The power curve is generated for a range of λE such that 0.5 ≤ (λE − λP)/(λR − λP) ≤ 1.5.

Note that under the Frequentist and approximation-based Bayesian approaches, Step 3 is not needed and
Step 5 needs to be replaced by the corresponding decision criterion given in Section 2.2 and Section 3.2,
respectively.

5.2. Simulation results

For the conjugate prior, we chose the number of posterior samplers, M , to be 1000. For the non-conjugate
prior, a trace plot of posterior estimate for each parameter suggests M = 1000 MCMC samplers, where
every 50th value of 50,000 MCMC samples taken as a value in the sample with 1000 burn-ins, are more
than sufficient to produce stable estimate of the parameters. We consider λR = 21, λP = 7, and varying
λE as in Table 2 for generating the power curves. Additionally, we also consider another specification of
the parameters: λR = 7, λP = 1, and set λE in the range [4, 9], to see the behavior of the power curves for
smaller values of λl , l ∈ {E, R, P}. The choice of p∗ is an important criteria. Following the Frequentist set
up, we choose p∗ = 0.975. However, as reported in Gamalo and others (2011), this choice of p∗ could give
too restrictive type-I error. One way to alleviate this problem is to perform Bayesian calibration; however,
it is not pursued in the present paper. In Figure 1, we present four power curves corresponding to four
different values of θ = {0.8, 0.75, 0.7, 0.65} with n = 100 for parameter specification (λR = 21, λP = 7)
and (λR = 7, λP = 1) under the Frequentist and Bayesian conjugate prior. We see that as θ increases, the
power curve shifts to the right as the proposed NI test is more powerful for smaller values of θ . This is
because for smaller values of θ , it is easier to declare NI. Note that for the exact Bayesian approach, we
chose the Jeffreys prior as Gamma(0.5, 0.00001) which is a flat prior having large variance. The Jeffreys
prior is obtained by equating

√
(I (λ)) = cλ−0.5 with the density of Gamma(α, β) and thus solving for α,

β, and the constant c, I (λ) is the Fisher information of λ. This prior is also used in computing Table 2. For
interested reader an excellent discussion on choosing other neutral and non-informative priors on Gamma
distribution is given in Kerman and others (2011). The horizontal red line in the Figure 1 corresponds to
α = 0.025. The type-I error rate under the Frequentist approach is always maintained at α = 0.025, while
that under the exact Bayesian approach is maintained at or below α = 0.025 (see Table 2). Additional
results on simulation for comparing conjugate vs. non-conjugate as well informative vs. non-informative
priors are provided in Supplementary Appendix available at Biostatistics online.

6. APPLICATION

We illustrate our proposed Frequentist and Bayesian methodology with a MS (Calabrese and others, 2012)
example described in Section 1.1. The lesions of MS typically arise within the optic nerves, spinal cord,
brain stem, and the periventricular white matter of the cerebral hemispheres. Neuropathological techniques
and magnetic resonance imaging (MRI) are used to identify the relationship of lesions to cortical veins.
Further details of the data are presented in Table 1. For our NI testing, we consider GA as the experimental
treatment (E), subcutaneous (sc) IFN beta-1a as the reference drug (R), and no therapy as the placebo
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Fig. 1. Power curves for different θ under two sets of Poisson distribution parameter values (1) λR = 21, λP = 7
(top row) and (2) λR = 7, λP = 1 (bottom row). (a and c, left column) for Frequentist approach, while (b and d, right
column) for exact Bayesian conjugate prior.

(P) for both 1-year and 2-year data. As indicated before, Poisson model provides satisfactory result in
goodness of fit test for each arm. For our illustration, we analyze both 1-year and 2-year CLs count
data separately using the exact Bayesian method under different priors, as well as using the Frequentist
method. However, for formulating the original NI hypothesis, we assumed higher rate indicates greater
treatment benefit, but here, for the lesion count data, smaller rate indicates higher treatment benefit. So,
we reformulated the hypothesis in (2.3) as

H0 : λE − θλR − (1 − θ) λP ≥ 0 vs. H1 : λE − θλR − (1 − θ) λP < 0. (6.1)

The requiredAS condition will be (λP > λR). Now, from H0 given in (6.1) we have the following equivalent
condition: (λE − λP) − θ (λR − λP) ≥ 0 ⇒ (λP − λE) ≤ θ (λP − λR) ⇒ (λP − λE)/(λP − λR) ≤ θ .
Hence, the alternative hypothesis H1 in (6.1) becomes H1 : (λP − λE)/(λP − λR) > θ . From this, the
Bayesian decision criteria is

P

(
H1 :

λE − λP

λR − λP
> θ |Data

)
> p∗. (6.2)
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This shows that the Bayesian decision rule remains unchanged as in the previous case. We use p∗ = 0.975
to determine NI of GA over sc-IFN beta-1a.

From Table 1, we observe that after 12 months 37/50 (74%) of the patients who did not receive any
therapy developed ≥1 new CLs counts, 12/46 (26%) patients treated with sc-IFN beta-1a and 24/48
(50%) treated with GA respectively developed at least one lesian count. These figures after 24 months
came out as 41/50 (82%) for the patients with no therapy, 24/46 (52%) for those treated with sc-IFN
beta-1a, and 30/48 (62%) for the GA-treated patients. So, we observe that the percentages of at least one
lesian count increased from 1 year to 2 years for all treatment arms.Also, the calculated rates of occurrence
of the CLs for no therapy, reference, and test drug, are respectively, 1.53, 0.37, and 0.79 after 1-year and
2.94, 0.72, and 1.29 after 2 years. The rate of the untreated (placebo) group is much higher than those
of the treated groups, which indicates that the treatments have beneficial effect in lowering the new CLs
development. We first carry out the analysis under the Frequentist approach and calculate the p-value for
testing the hypothesis in equation (6.1) as p-value = PH0(W < Wobs), where W is the test statistic given by
W = (λ̂E −θλ̂R − (1 − θ) λ̂P|λ̂P > λ̂R) and Wobs is the observed value of W . The p-value is then compared
with α = 0.025 to deduce the Frequentist decision of NI. For Bayesian conjugate prior, we carry out the
analysis assuming both non-informative and informative priors. For the non-informative case, we assume
Jeffreys prior as Gamma (0.5, 0.00001) for λl , l ∈ {E, R, P} and generate posterior samplers for the three
rates from Gamma distributions as in Step 3 of simulation studies, but keeping samples satisfying λP > λR

to account for the AS condition. We calculate the posterior probability for the rejection of H1 as given
in the left hand side of (6.2). We report P(H1|Data) in Table 4 for different values of θ in the range
[0.5, 1), in order to ensure that the test drug has a meaningful effect. These posterior probabilities are
compared with p∗ to deduce the Bayesian decision. In Table 4, we also report the decisions: 1 (if NI is
claimed) or 0 (otherwise) for Frequentist as well as Bayesian analyses. From Table 4, we observe that the
posterior probabilities increase as the values of θ decrease implying higher chance of declaring NI for
smaller values of θ . For the 1-year data, under Jeffreys prior, we see that the average posterior probability
P(H1|Data) are small for all values of θ meaning that NI of GA cannot be claimed for θ ∈ [0.5, 0.8].
This is due to the fact that the rate of lesion count occurrence for GA-treated patients is higher than those
treated with sc-IFN beta-1a, which gives an indication that GA is possibly inferior to sc-IFN beta-1a since
its effect is not within the NI margin. But if we choose an informative prior with suitable parameters,
then NI can be claimed for θ ≤ 0.55. In this case, we chose the following priors for the three arms
respectively: E: Gamma(8, 10), R: Gamma(20, 5), and P: Gamma(12, 8). For the 2-year data also, the
rate of lesian count for GA is higher than that of the reference group; however, the difference between
the rates is within the NI margin δ, to claim NI of GA for small values of θ , even under the Jeffreys prior.
Considering informative prior, we can still improve on the posterior probabilities. Choosing the following
priors: E: Gamma(64, 49.6), R: Gamma(12, 17), P: Gamma(60, 20.4), NI is claimed for θ ≤ 0.6. Finally,
considering the non-conjugate prior, for the reformulated hypothesis in (6.1), we assume the following:
u1 = λR/λP ∼ Beta(a, b),u2 = λP ∼ Gamma(p, r), where 0 < u1 < 1, which satisfies the AS condition
(λR > λP) and u2 > 0. For the 1-year data, assuming a relatively non-informative prior: Gamma (0.8, 1)

for E; Gamma (1.5, 1) for P; and Beta (1, 3.1) for λR/λP; we observe that NI cannot be claimed for any
θ ∈ [0.5, 0.8]. However, if the following priors are chosen: Gamma (160, 200) for E; Gamma (600, 400)

for P; and Beta (200, 630) for λR/λP; then NI can be claimed for θ = 0.5. Also for the 2-year data, the
observations are similar for the non-informative prior in the non-conjugate setting. NI cannot be claimed
for the priors: Gamma (0.8, 0.62) for E; Gamma (0.75, 0.255) for P; and Beta (1.2, 3.7) from the ratio
λR/λP. However, for the relatively informative priors: Gamma (80, 62) for E; Gamma (75, 25.5) for P;
and Beta (12, 37) for λR

λP
; NI can be claimed for θ = 0.5. We note that the hyper-parameters for both

conjugate and non-conjugate priors are so chosen that the mean of the Gamma distribution equals the
estimated count rate in the respective arms. Also, we observed that for the 1-year data, more informative
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priors are needed to claim NI, as compared to the 2-year data. This indicates that the present trial data for
1-year end-point does not support NI strongly, while for 2-year endpoint, NI can be claimed if we choose
θ < 0.6.

7. DISCUSSION

According to several guidelines, the NI margin should be pre-specified in the protocol, while some allows
flexibility of pre-specifying a fixed amount of effect retention (e.g., FDA, 2016; ICH Steering Committee,
1998, 2000; EMA, 2005; Wangge and others, 2013). Thus the value of the NI margin can vary greatly
depending on the estimated effect size of the reference treatment (λR − λP). In this article, we presented
novel Frequentist and Bayesian test procedures for three-arm NI trial under fraction margin approach. We
proposed more powerful conditional test (Lemma 2.2.2) based on Frequentist principle which directly
incorporates theAS condition in NI testing. We believe this is a better usage of available information. Under
AS assumption, conditional principle is more realistic and more powerful than the traditional marginal
NI testing and it does not result in a biased test (e.g., joint testing of NI and AS). In the conditional
Frequentist approach, we conditioned the NI test statistic on λ̂R > λ̂P; however, it is very much possible to
condition it based on the AS test statistic. However, this is not done in the current paper as that will make
Bayesian (conditioned on λR > λP) and Frequentist approach incomparable, since then each approach will
use slightly different conditioning statement. In the Bayesian context, we explored conjugate prior and
also specified more flexible non-conjugate prior choices. In Section 4.2, for integer-valued parameters we
have also shown an interesting connection between Bayesian posterior probability to Frequentist exact
probability. This could be further exploited to connect Bayesian and Frequentist sample size in the line
of Zaslavsky (2013). Since Bayesian power calculation requires additional computation, we tabulated the
sample size in Table 2 under three different types of allocation. We hope that the clinicians will find this
readily useful in designing such NI trial.

We have observed that the Bayesian normal approximation and the exact Bayesian approach yield
greater power and hence require smaller sample size compared to the Frequentist approach. Albeit, we
would like caution an user about the control of type-I error in Bayesian context as pointed out in recent
papers by Kopp-Schneider and others (2019) and Psioda and Ibrahim (2018). It is reported that with
informative prior strict type-I error control in the Frequentist sense is not possible under Bayesian setup.
In this article, all reported type-I errors are “average type-I error” as defined in Gravestock and others
(2017), which is essentially an average over all possible outcomes under null distribution. We thank an
anonymous reviewer for pointing this out.Also, it is evident that an unbalanced allocation of the sample size
in NI trial results in the reduction of the required number of patients to achieve a certain power. According
to Pigeot and others (2003), an unbalanced allocation of the total sample size in a NI trial is desirable from
ethical and substantial point of view. We also applied our proposed Bayesian test procedure on a clinical
trial data on MS. The results suggest that the Bayesian methods perform favorably in all situations and
that these methods do not depend on any asymptotic approximation as the Frequentist method.

Notably, with Poisson distributed outcomes, rate/count difference is not the only function of interest.
In the binary context, apart from risk difference similar methods for risk ratio and odds ratio has been
developed in both Frequentist (Chowdhury and others, 2018b) and Bayesian context Chowdhury and
others (2018a) very recently. In a similar line one may frame two-arm NI trial using the ratio of Poisson
rates as done in Stucke and Kieser (2013) for two-arm trial. However, for a three-arm trial, defining
such a functional (in ratio form) is non-trivial. We are currently developing both the Frequentist and
Bayesian methods for these types of functionals. Also for the count type outcome over-dispersion (and
under-dispersion) is a frequent issue and Poisson model is not an ideal choice. However, given the dearth
of Bayesian article for count data, we did not consider those issues in the current paper. One could use
negative binomial (Mütze and others, 2016) or generalized Poisson distribution instead, however the
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resulting Bayesian (and Frequentist) procedure will be much more involved and as a result left as a
future work.

SOFTWARE

The open source R codes for all the simulation studies and real data analyses performed in this manuscript
are available at https://github.com/erina633/Poisson3armNI. Also, there is a README.md file which
describes the contents of the R files and all the source functions. All the proofs and additional results are
placed in Supplementary Appendix available at Biostatistics online.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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