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SUMMARY

We show that the widely used concordance index for time to event outcome is not proper when interest
is in predicting a t-year risk of an event, for example 10-year mortality. In the situation with a fixed
prediction horizon, the concordance index can be higher for a misspecified model than for a correctly
specified model. Impropriety happens because the concordance index assesses the order of the event times
and not the order of the event status at the prediction horizon. The time-dependent area under the receiver
operating characteristic curve does not have this problem and is proper in this context.
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1. INTRODUCTION

The concordance index, also known as c-index or c-statistic (Harrell and others, 1982, 1996; Pencina and
D’Agostino, 2004) has been an enormously popular metric for evaluating the performance of a predic-
tive or prognostic statistical model. The c-index has the desirable features of being relatively simple to
calculate and explain to a clinical audience. Moreover, it is on a user-friendly scale that ranges from 0.5
(no discriminating ability) to 1.0 (perfect ability to discriminate between cases with different outcomes).
For these reasons, a very high proportion of prognostic models in the literature will report their perfor-
mance as measured by the c-index, and most readers and reviewers expect to see this metric reported. The
typical case is a prognostic model that reports t-year predicted probabilities, say 5-year overall survival
probabilities, that should be similar to 5-year observed outcomes. Examples where t-year risk predic-
tions are evaluated with the c-index are Stephenson and others (2005) and Pencina and others (2009). The
t-year area under the receiver operating characteristic (ROC) curve (AUCt) is an alternative measure of the
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discriminative ability (Heagerty and others, 2000; Chambless and Diao, 2006). Examples where t-year pre-
dictions are evaluated with AUCt are Cornec-Le Gall and others (2016) and Mortensen and others (2017).

To explain the main difference between the two major discrimination measures for survival analysis,
we consider two random subjects (i, j) from a population for who we have t-year risk estimates, Riskt(i)
and Riskt(j), respectively. Informally, the population parameters c-index C and AUCt are given by (see
Section 3 for a formal description, details and more references)

C = Prob(Riskt(i) > Riskt(j)| i has event before j)

AUCt = Prob(Riskt(i) > Riskt(j) | i has event before t and j has event after t).

The fact that two alternative discrimination measures are available is a dilemma for the practitioner
who needs to choose between them (see Section 2). The current guidelines (e.g., Hlatky and others, 2009;
Moons and others, 2015; Pencina and D’Agostino, 2015) clearly state that a discrimination measure
should be reported, but they do not provide recommendations on how to choose the most appropriate
discrimination measure. Another sign of the widespread confusion is that the term c-index sometimes
refers to what we define as C and sometimes to what we define as AUCt above.

However, the c-index has never been fully assessed as to whether it is a proper scoring rule. To satisfy
this condition, the c-index must be able to always achieve a maximum value for the rival prediction model
that truly outperforms any other model (i.e., the c-index needs to be highest for the best prediction model).
The purpose of this study is to examine, mathematically, whether the c-index is a proper scoring rule in
the t-year risk prediction setting.

Our derivations and conclusions are independent of the way c-index C and AUCt are estimated, and
we state them in terms of population level parameters. In particular, our derivations are not affected by
whether data are censored.

We argue that the c-index C is not generally suitable to evaluate t-year predictions. The reason is that
the outcome which corresponds to the predicted t-year risks is the binary event status at time t. However,
the c-index compares the ranks of the predictions with the ranks of the actual event times, and not directly
with the binary event status.

To make our argument rigorous, we state propriety (Gneiting and Raftery, 2007; Pepe and others, 2015)
as a minimal requirement on a measure of discrimination. We then derive a sufficient condition on the
underlying survival distribution under which the c-index satisfies the minimal requirement. But, we also
provide an example in which c-index fails this requirement. It is important to recognize that the condition
is about the unknown true distribution of the data and not satisfied in general. On the other hand, AUCt

satisfies this requirement without further conditions.
Based on these theoretical considerations, an outcome of our study is a new guideline for applied

research. We recommend that for evaluation of t-year risks, analysts should use the time-dependent area
under the ROC curve instead of the c-index.

2. MOTIVATION

The fact that there are several possibilities to calculate a concordance index for a survival model puts high
responsibility on the applied researcher and shows a demand for guidelines. A particular problem is that
the actual values of the different discrimination measures can be quite different in a given situation. We
first illustrate this dilemma by using five different survival data sets with fixed prediction horizon, and
then by varying the prediction horizon in a single data set.

2.1. Illustration of the difference between C and AUCt

In each data set, we first fit a Cox regression model (see Appendix for details) and then predict the 5-year
risk of the event of interest. Thus, the prediction horizon is the same (t = 5) in all examples but the
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Impropriety of c-index for t-year risk predictions 349

maximal end of follow-up time (τ ) differs between the different data sets. We then calculate the following
estimates of the discrimination measures (see Appendix for details):

1. IPCW estimate of AUC(t): ÂUCIPCW(t) (Uno and others, 2007)
2. IPCW estimate of c-index (Uno and others, 2011)

• outcome not artificially censored: ĈIPCW(τ )

• outcome artificially censored at 5 years: ĈIPCW(t)

3. Harrell’s estimate of the c-index (Harrell and others, 1996)

• outcome not artificially censored: Ĉ(τ )

• outcome artificially censored at 5 years: Ĉ(t).

The differences among the measures in Table 1 are substantial, underscoring the importance of choosing
a measure before the analysis. In Table 1, the values of ÂUC IPCW(t) are all larger than those of ĈIPCW(t),
but this can be the other way around, see e.g., Figure 1.

Table 1. Estimates of discrimination measures for Cox regression models that predict t-year survival
(t = 5 years) in five different data sets

Data set ÂUCIPCW(t) ĈIPCW(t) ĈIPCW(τ ) Ĉ(t) Ĉ(τ ) τ (years)

pbc 89.2 83.4 77.1 83.7 81.6 13.1
follic 64.0 61.3 63.7 61.3 62.4 31.1
GBSG2 75.4 68.2 67.8 69.3 69.2 7.3
cost 75.5 70.2 68.6 70.2 68.6 11.7
recc 81.3 81.2 67.2 83.1 82.2 17.0

Fig. 1. The ability of the standardized blood clotting time to discriminate patients who will either die or be transplanted
within the next t-years from those who will be event-free at time t. Discrimination ability is quantified by AUCt , Cτ

(where τ = 13.1 years), and by Ct obtained by artificially censoring the outcome at the prediction horizon t.
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2.2. Varying prediction time horizon

We now vary the prediction time horizon in the pbc data set (see Appendix for details) to show how
contradicting conclusions can occur depending on whether Cτ or AUCt is used. For this example, we
consider the discriminative ability of a single predictor variable: the standardized blood clotting time
and vary the prediction horizon between 2 and 10 years (Figure 1). We estimate AUCt and Cτ and
also Ct in a version of the data where we artificially censor the outcome at the current prediction
horizon t.

For illustration purposes we now interpret the estimates in Figure 1 without consideration of their
uncertainty. In Section 4, we provide an example based on simulated data where we can compute the true
values. For instance, the estimate of AUCt at t = 8 years suggests that the standardized blood clotting
time does not help to discriminate the 8-year outcome, as the value is very close to the benchmark 50%
(coin flip). However, according to overall Cτ and Ct the discrimination ability of the standardized blood
clotting time discriminates better than the benchmark for all prediction horizons.

3. DISCRIMINATION MEASURES

Suppose we observe the continuous time to an event T and a d-dimensional vector of baseline covariates
Z . For a fixed prediction horizon t < τ where τ is the maximum follow-up time, which is smaller than or
equal to the study duration, the aim is to discriminate the cumulative risk of the event before time t based
on information in Z . Denote by P the joint law of (T , Z) and by (T1, Z1) and (T2, Z2) two independent
and identically distributed replicates of (T , Z). For any function R : Rd → R, the population parameter,
which is estimated by the c-index, is given in its truncated version (Heagerty and Zheng, 2005; Uno and
others, 2011; Gerds and others, 2013) by

Cτ (R) = P(R(Z1) > R(Z2)|T1 < T2, T1 ≤ τ) + 0.5 P(R(Z1) = R(Z2)|T1 < T2, T1 ≤ τ).

Because of the finite maximum follow-up time τ , only this truncated version of the c-index is identifiable
without assuming not testable assumptions (Uno and others, 2011). Note that in much of the applied
research, c-index is reported without explicit reference to τ . A typical way to use the c-index is when
R(Z) is a linear predictor, that is R(Z) = Z ′β, or a monotone function of such a linear predictor (Harrell
and others, 1996; Heagerty and Zheng, 2005; Uno and others, 2011). Note that we allow for ties in the
predicted risks and add a value of 0.5 to the concordance index in this case. This is in accordance with the
more general definition of a probabilistic index (Thas and others, 2012).

On the other hand, the so called cumulative-dynamic time-dependent area under the ROC curve (AUC)
(Heagerty and others, 2000; Heagerty and Zheng, 2005; Chambless and Diao, 2006; Uno and others,
2007; Blanche and others, 2013) is defined for all t ≤ τ by

AUCt(R) = P(R(Z1) > R(Z2)|T1 ≤ t, T2 > t) + 0.5 P(R(Z1) = R(Z2)|T1 ≤ t, T2 > t).

Any estimate of P(T ≤ t|Z) can be interpreted as the t-year predicted risk and is a Z-measurable random
variable that can be assessed by both discrimination measures. The difference between these two discrim-
ination measures is that the Harrell-type concordance index rank correlates predictions with the actual
event times whereas the time-dependent AUC rank correlates predictions with the binary event status at
time t.
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3.1. Minimal requirement for discrimination measures

Consider a setting where the aim is to evaluate the discriminative ability of a t-year prediction rule based
on a discrimination measure. We require that the true t-year risk:

Ft(Z) = P(T ≤ t|Z)

achieves the maximal discrimination value. Note that the set of all functions R : Rd → R evaluated at Z
in the following definition includes any estimate of Ft(Z).

DEFINITION 1 The discrimination measure D is proper for evaluating t-year risk predictions if for all
R : Rd → R, D(R) ≤ D(Ft).

We show that D = AUCt is proper according to Definition 1 but that without untestable assumptions
D = Cτ is not proper. The minimal requirement means that no prediction model using the information Z
should have a higher discriminative value than the true data generating risk function.

3.2. Harrell’s c-index

The result of the following theorem states a sufficient condition under which the minimal requirement
(Definition 1) is satisfied for the c-index. We emphasize that the condition depends on both the function
R, which usually relates to a working prediction model, and the true conditional survival function S : t �→
1−P(T ≤ t|Z). Hence, the condition cannot be checked solely by choosing the working prediction model
carefully, as illustrated in Section 4.

THEOREM 3.1 Let λ(s|Z) denote the true conditional hazard at time s that is

λ(s|Z) = d

ds
(− log{1 − P(T ≤ s|Z)}).

If there exists R∗ : Rd → R such that for all s ∈ [0, τ ] and all z1, z2 the following ranking condition holds:

R∗(z1) > R∗(z2) ⇔ λ(s|Z1 = z1) > λ(s|Z2 = z2)

then R∗ achieves the maximal c-index:

∀R : Rd → R, Cτ (R) ≤ Cτ (R
∗).

In this case, the true t-year risk function Ft : Z �→ P(T ≤ t|Z) also attains the maximal discrimination:
Cτ (R∗) = Cτ (Ft) for all t ≤ τ .

Obvious cases in which the sufficient condition is satisfied include those for which the true data
generating model follows a Cox model: λ(s|Z = z) = λ0(s) exp(z′β). Cases in which the sufficient
condition is not satisfied can occur when the true data generating model is a Cox model with time
dependent covariate effects: λ(s|Z = z) = λ0(s) exp(z′β(s)).
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Proof : At time s ∈ [0, t] the so-called incident-dynamic area under the curve (Heagerty and Zheng, 2005)
is given by

AUCI/D

s (R) = P(R(Z1) > R(Z2)|T1 = s, T2 > s) + 0.5P(R(Z1) = R(Z2)|T1 = s, T2 > s).

The following result is due to Heagerty and Zheng (2005, Section 2.4). Denote by ST (s) = P(T > s) and
fT (s) = − d

ds ST (s) the marginal survival and density function of T , respectively. For any R : Rd → R

Cτ (R) =
∫ τ

0
AUCI/D

s (R) ωτ (s)ds, (3.1)

where ωτ (s) = fT (s)ST (s)/P(T1 < T2, T1 ≤ τ).
By extending the arguments of McIntosh and Pepe (2002) to the time-dependent setting, see also

Lemma 3.2 of Section 3.3 below, it follows that the incident-dynamic area under the curve is maximized
by the true conditional hazard function λs : Z �→ λ(s|Z):

∀R : Rd → R, AUCI/D

s (R) ≤ AUCI/D

s (λs).

From the presumption of the theorem it follows that R∗ also attains this maximal value:

∀R : Rd → R, AUCI/D

s (R) ≤ AUCI/D

s (R∗).

Since ωτ (s) is greater than zero and does not depend on R, and since AUCI/D

s (R∗) > 0 for all s ∈ [0, τ ]
we deduce from equation (3.1) that

∀R : Rd → R Cτ (R) ≤ Cτ (R
∗).

The last statement of the theorem follows from the fact that under the ranking condition we have

{
for all s ∈ [0, τ ] λ(s|Z = z1) < λ(s|Z = z2)

}
⇔ Ft(z1) < Ft(z2).

The direction ⇒ is obvious from the relationship

Ft(z) = 1 − exp
(

−
∫ t

0
λ(s|Z = z)ds

)
.

For ⇐ assume that Ft(z1) < Ft(z2). This can only happen if there exists s ∈ [0, t] such that λ(s|Z =
z1) < λ(s|Z = z2) and the claim follows since the ranking condition of the theorem implies that for all
s, t ∈ [0, τ ] and all z1, z2

λ(s|Z = z1) < λ(s|Z = z2) ⇔ λ(t|Z = z1) < λ(t|Z = z2).

3.3. Time-dependent AUC

The t-year area under the ROC curve fulfills our minimal requirement (Definition 1). As mentioned in
Zheng and others (2006) this follows directly from the results of McIntosh and Pepe (2002) and of
Eguchi and Copas (2002). The following result is due to McIntosh and Pepe (2002) suitably adapted
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to the time-dependent setting and given for the sake of completeness. It includes a statement about the
incident-dynamic AUC which has been used in the proof of Theorem 3.1 above.

LEMMA 3.2 For all s ≥ 0 and t ∈ [0, τ ],

∀R : Rd → R, AUCt(R) ≤ AUCt(Ft) and AUCI/D

s (R) ≤ AUCI/D

s (λs),

where Ft : Z �→ P(T ≤ t|Z) and λs : Z �→ λ(s|Z).

Proof : In what follows, the case t > s = 0 gives the result AUCt(R) ≤ AUCt(Ft). The case t = s ≥ 0
the result AUCI/D

s (R) ≤ AUCI/D

s (λs). For fixed t and s with t ≥ s ≥ 0 we condition on the event
{T ≥ s} and consider the null hypothesis H0 : T > t such that the alternative hypothesis is H1 = H0 :
s ≤ T ≤ t.

For any α ∈]0, 1[, the likelihood ratio test at level α is defined as follows. We reject H0 if LRs,t(Z) > cα ,
where LRs,t(Z) = fZ |s≤T≤t(Z)

/
fZ |T>t(Z), with fZ |s≤T≤t and fZ |T>t which denote the conditional densities of

Z given s ≤ T ≤ t and given T > t, and with cα such that P
(
LRs,t(Z) > cα|T > t

) = α. The Neyman–
Pearson lemma states that among all Z-measurable test statistics the likelihood ratio test LRs,t(Z) has the
highest power. The power of the likelihood ratio test is P

(
LRs,t(Z) > cα|s ≤ T ≤ t

)
. By definition the

ROC curve of the random variable LRs,t(Z) is the graph of the false positive rate FPs,t(α) = P
(
LRs,t(Z) >

cα|T > t
)

versus the true positive rate TPs,t(α) = P
(
LRs,t(Z) > cα|s ≤ T ≤ t

)
obtained by varying the

threshold α in the interval [0, 1]. Therefore LRs,t(Z) maximizes the height of the ROC curve for all α, i.e.,
all along the curve, it also maximizes the area under the ROC curve

∫ 1
0 TPs,t

(
FP−1

s,t (α)
)
dα. In the case t >

s = 0, AUCt(LRs,t) = ∫ 1
0 TPs,t

(
FP−1

s,t (α)
)
dα and it remains to show that there is a one-to-one relationship

between Ft(Z) and LRs,t(Z). Similarly, in the case t = s ≥ 0, AUCI/D

s (LRs,t) = ∫ 1
0 TPs,t

(
FP−1

s,t (α)
)
dα and

it remains to show a one-to-one relationship between λs(Z) and LRs,t(Z).
The two one-to-one relationships follow from the Bayes theorem:

Os,t LRs,t(Z)

Os,t LRs,t(Z) + 1
=

{
Ft(Z) when t > s = 0
λs(Z) when t = s ≥ 0

where λ(s) = d
ds (− log{1 − P(T ≤ s)}) denotes the marginal hazard rate at time s and where we define

Os,t = P(s ≤ T ≤ t)
/{

1 − P(s ≤ T ≤ t)
}

if t > s = 0 and Os,t = λ(s)
/{

1 − λ(s)
}

if t = s ≥ 0.

4. ILLUSTRATIVE EXAMPLE

Figure 2 shows a constructed example where the true data generating function Ft does not maximize the
c-index. That is, there exists a function R such that Cτ (R) > Cτ (Ft). In this example, Z is 1D and follows
a normal distribution with mean 0 and standard deviation 3. We also fix t = 1 and τ = 1.2. The functions
shown in Figure 2 are

s �→ λ(s|Z) = exp(Z)sexp(Z)−1

s �→ Fs(Z) = 1 − exp(−sexp(Z))

for five selected values that Z can take. The five values correspond to the 0.25, 0.4, 0.5, 0.6, and 0.75
quantiles of the distribution of Z . Thus, T given Z follows a Weibull distribution with shape parameter
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Fig. 2. Illustration of a setting in which the c-index is not appropriate to evaluate t-year predicted risks.

exp(Z) and scale parameter 1. It is shown that the marker Z discriminates the underlying risks at all
time points except for t, where here t = 1. Obviously the true risk at t = 1 does not depend on Z , i.e.,
F1(Z) = 1−exp(−1), and hence Cτ (Ft) = 50%. However, the c-index for the identity function RI : Z �→ Z
is computed by Monte-Carlo simulation as Cτ (RI ) = 61.9%, which is higher than Cτ (Ft) = 50%, and
hence the c-index is not proper. Note that also the c-index estimated in the artificially censored data at
time t is not proper: Ct(RI ) = 67.9%.

The reason this can happen is that the condition of Theorem 3.1 is violated in this case. To see this,
choose for example Z1 = 0.76 and Z2 = 0. Since the curve s �→ λ(s|Z = 0.76) crosses the horizontal line
y = λ(t|Z = 0) = 1 inside the interval [0, τ ] it is not possible to construct a map R∗ : Rd → R such that
for all s ∈ [0, τ ]

R∗(0.76) > R∗(0) ⇔ λ(s|Z1 = 0.76) > λ(s|Z2 = 0).

In the remainder of this section, we illustrate that this problem cannot be avoided by carefully check-
ing that the prediction model under consideration satisfies the ranking condition of Theorem 3.1. More
specifically we now show that when a misspecified prediction model satisfies the ranking condition but
the true distribution does not, then it is possible that the misspecified model achieves a misleadingly high
c-index. In the setting of Figure 2 we consider the simple Cox regression model: λ(t|Z) = λ0(t) exp(Z ′β).
We assume that this model has been fitted using a sample of data generated in this setting and we also
assume that the estimated value β̂ is positive. Because of the one-to-one relationship between the pre-
dicted risk at any time t, that is F̂t(Z) = 1 − Ŝ0(t)exp(Z β̂), and the covariate Z , this Cox model also
has a c-index Cτ (F̂t) = 61.9%. Hence an obviously misspecified model would score higher than the
true risk.

5. CONCLUSIONS AND DISCUSSION

We have shown that there is a problem with Harrell’s c-index in the context of t-year risk predictions.
Our theorem shows that the c-index is maximized by the true risk (our minimal requirement) if the
underlying survival distribution satisfies a specific condition. However, in any application this condition
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may or may not be satisfied, and this cannot be fully known or tested. If the condition is not satisfied,
then it is possible that the true data generating risk model does not achieve the maximal c-index. Figure 2
shows an example of such a situation. In this situation, the c-index can declare that a model based on
the marker has decent discriminative ability whereas the true t-year risks are the same for all marker
values.

Simple risk prediction models can be derived from a Cox regression analysis, and it is commonly agreed
that such models are useful. However, from a clinical point of view, it is often more realistic to suspect
time-dependent effects especially when follow-up periods are long (Martinussen and Scheike, 2006).
Because our minimal requirement is not generally fulfilled in this very common setting, our findings may
raise serious concerns about the use of the c-index to evaluate t-year risk predictions even in the simple case
where Cox prediction model is used. Testing the proportional hazards assumptions is not straightforward
and goodness of fit tests often have limited power. Therefore it will generally be unclear if it is ok to use
c-index, but we recommend to use AUC because then one does not have to worry about the proportional
hazards assumption.

It is worth noting that in our example the t-year area under the ROC curve has value 50% for both
the t-year predicted risks by the Cox model and for the true t-year risks. More generally, since the time-
dependent area under ROC curve does not need any condition on the underlying survival distribution to
fulfill our minimal requirement, we recommend to use it instead of the c-index when the aim is to evaluate
t-year risk predictions.

Our criticism of the c-index holds only for situations in which the aim is to predict the risk of an event
for a given time horizon. The c-index may still be valuable when the aim is to evaluate a correlation
between the continuous event time and a prediction of (the order of) the event times.

In conclusion, we have shown that the c-index is not a proper scoring rule to evaluate t-year pre-
dicted risks. We have provided examples where the model with the more accurate t-year predicted
probabilities does not have the higher c-index. We have mathematically derived a condition in which
this cannot happen. However, since the condition is not satisfied in general, we can no longer recom-
mend use of the c-index when evaluating the performance of a model that predicts t-year predicted
probabilities. We suggest that analysts use the time-dependent area under the ROC curve instead of the
c-index.
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APPENDIX

For the sole purpose of illustration, Section 2 uses the data sets detailed in Table 2. For Section 2.1,
in each data set Cox regression models were estimated adjusted for the risk factors shown in Table 2.
Based on the Cox regression models, we predict the 5-year outcome risk and the calculate the inverse
probability of censoring weighted (IPCW) estimate of Cτ (Uno and others, 2011; Gerds and others,
2013) and AUCt (Uno and others, 2007; Blanche and others, 2013). For simplicity, we use the mar-
ginal Kaplan–Meier method to estimate the censoring weights and circumvent issues with competing
risks by studying the combined endpoints. For Section 2.2, we fit a simple Cox regression model
adjusted only for standardized blood clotting time and predict the outcome risk for prediction horizons
between 2 and 10 years with a 6 months interval. The R-code and data of all results are available at
https://github.com/tagteam/webappendix-cindex-not-proper.
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Table 2. Details of data sets and Cox regression models.The risk factors entered additively into the linear
predictor. For the pbc analysis the variables bilirubin, standardized blood clotting time and albumin
were log-transformed

Data set References Outcome Risk factors

pbc Therneau and Grambsch (2000) Transplant-free survival Edema, age, bilirubin, standardized
blood clotting time, albumin

follic Pintilie (2006) Relapse-free survival Age, hemoglobin, clinical stage,
chemotherapy

GBSG2 Schumacher and others (1994) Recurrence-free survival Hormone therapy, age, menopause sta-
tus, tumor size, tumor grade, number
of positive lymph nodes, progesterone
receptor, estrogen receptor

cost Jørgensen and others (1996) All-cause mortality Age, sex, hypertension, ischemic heart
disease, previous stroke, cholesterol,
atrial fibrillation, Scandinavian Stroke
Score

recc Lee and others (2016) Recurrence-free survival Post-operative nomogram
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