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Teaching yourself about structural racism will improve
your machine learning
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SUMMARY

In this commentary, we put forth the following argument: Anyone conducting machine learning in a
health-related domain should educate themselves about structural racism. We argue that structural racism
is a critical body of knowledge needed for generalizability in almost all domains of health research.

Keywords: Causal inference; Directed acyclic graphs; Machine learning; Structural racism.

1. MOTIVATION

In this commentary, we put forth the following argument: anyone conducting machine learning in a
health-related domain should educate themselves about structural racism. As Domingos and others have
argued, “Every learner must embody some knowledge or assumptions beyond the data it is given in order
to generalize beyond it” (Domingos, 2012). We argue here that structural racism is a critical body of
knowledge needed for generalizability in almost all domains of health research. We believe that this is
especially true when inference relies on algorithms (“learners”) to choose statistical models.

We make the recommendation to incorporate structural racism based on our experiences as epidemiol-
ogists. Epidemiologists are fundamentally interested in causing changes that result in improved individual
and population health and that reduce health disparities (Glass and others, 2013). Quantifying statistical
associations are central to these objectives, yet they are not sufficient. As we observe the challenges facing
applied machine learning, we see echoes of debates that epidemiology has encountered. For instance, epi-
demiology’s disease screening literature has imparted the intuition that even highly sensitive and specific
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screening algorithms can produce more false positives (analogous to the high “false discovery rate” in
machine learning terminology) than true positives when an outcome is rare.

In particular, we are inspired by our field’s 1980s- and 1990s-era debates about “black box epidemiol-
ogy” (Weed, 1998). In many respects, this debate mirrors debates in machine learning about the trade-offs
between improved prediction versus greater model interpretability (Seligman and others, 2018). The earlier
epidemiology debate contrasted the use of multivariable-adjusted regression models to identify behavioral
risk factors for cancer incidence to target in prevention efforts (“black box”) versus research elucidating
biological pathways of cancer development, particularly at the level of molecular biology (“mechanistic”)
(Weed, 1998). However, the “mechanistic” side’s focus on molecular mechanisms ignored all the parts of
the causal structure that were “above” the molecular level. A key insight of this debate was that, even a
mechanistically oriented research orientation has its blind spots. Specifically, the integration of sociopo-
litical forces with a consideration of biology and behavior was missing in early debates in the field (Weed,
1998). The need to integrate factors from across the full breadth of the causal structure is likely even more
crucial when making causal inference.

2. WHY STRUCTURAL RACISM IS CRITICAL KNOWLEDGE

Structural racism refers to “the totality of ways in which societies foster [racial] discrimination, via
mutually reinforcing [inequitable] systems...(e.g., in housing, education, employment, earnings, benefits,
credit, media, health care, criminal justice, etc.) that in turn reinforce discriminatory beliefs, values, and
distribution of resources,” reflected in history, culture, and interconnected institutions (Bailey and others,
2017). Below we present two reasons why expanding one’s knowledge base of structural racism will
improve the quality of work produced by machine learning applications to health.

First, even when racial categorization is not a topic of interest in an analysis, structural racism will shape
associations of health-related processes. For instance, in a U.S. context, the sociodemographic variable
White/Black race is a variable that is frequently available in health-related datasets and often highly
predictive of health outcomes. For instance, Seligman and others (2018) attempted to predict body mass
index (BMI), blood pressure, and waist circumference in a population of 15,784 longitudinally assessed
participants using four machine learning methods (linear regression, penalized regressions, random forests,
and neural networks). With access to 458 variables, “Black/African-American Race” was one of the top
five variables selected by all four machine learning models Seligman and others (2018). In non-U.S.
contexts, other markers of social stratification, such as caste, ethnicity, religion, social class, country of
birth, home village, gender, or sexual identity, will be similarly predictive in health processes that involves
human agency and social organization. An analyst striving to produce the most predictive and illuminating
models ignores structural racism (and other axes of inequality) at his or her own peril. Ignoring structural
racism is a decision to ignore structures that give rise to many and varied associations with health.

A second motivation for educating oneself about structural racism is the common occurrence of “algo-
rithmic bias.” When “race-neutral” approaches are employed in model development, prediction will tend
to be poorer for racial minority populations. Greater error rates, and even failure of algorithms to per-
form at all, for racial minorities have been widely reported. Examples include facial recognition software
that misidentifies gender and even species when presented with dark-skinned women of African descent
(Buolamwini and Gebru, 2016) and proprietary formulas used in criminal sentencing that misclassify
defendants as high risk for recidivism at a greater rate for Black versus White defendants (Rudin and oth-
ers, 2018). Two explanations for differentially poorer model performance can be addressed by collecting
more data: too few observations of members of racial minority groups and unrepresentative sampling that
can differentially limit generalizability (Kreatsoulas and Subramanian, 2018).

However, an additional cause of algorithmic bias is not well appreciated and cannot be overcome
simply by adding more of the same kind of data to a learner. The problem is the data generation process
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itself. The data generation process “[is] an inherently subjective enterprise in which a discipline’s norms
and conventions help to reinforce existing racial (and other) hierarchies” (Ford and Airhihenbuwa, 2010).
As explicated by the Public Health Critical Race Praxis, without an explicit focus on social equity, the
concerns of the most privileged members of society are overrepresented in data and research (Ford and
Airhihenbuwa, 2010). One empirical demonstration of this phenomenon is Tehranifar and others’ (2009)
investigation of racial disparities in survival ranked by the degree of knowledge that had been gen-
erated about a cancer. Ranked from “nonamenble” (little knowledge, uniformly high mortality rates) to
“mostly amenable” (well-studied, high survival), “the hazard ratios (95% confidence intervals) for African
Americans versus Whites from nonamenable, partly amenable, and mostly amenable cancers were 1.05
(1.03–1.07), 1.38 (1.34–1.41), and 1.41 (1.37–1.46), respectively” (Tehranifar and others, 2009). Absent
much knowledge about prevention or treatment, Blacks and Whites had similar mortality outcomes. The
kind of knowledge that was produced disproportionately benefited the health of the White populations.
One factor is the ability of more privileged groups to access knowledge and leverage financial and med-
ical resources (Phelan and others, 2010). But a more fundamental factor is the research enterprise itself
tends to collect more data and advance more quickly on problems that disproportionately affect those in
society with more power and resources. For instance, over the past decades, medical treatment for the
“triple-negative” subtype of breast cancer that disproportionately affects Black women has advanced much
more slowly than for the hormone-receptor positive subtypes that are disproportionately diagnosed among
White women in the Unites States (Foulkes and others, 2010). Similarly, in the case of multiple myeloma
wherein Black patients make up 20% of all people diagnosed, in a review of 21 clinical trials in patients
with multiple myeloma, the median proportion of Black patients enrolled was only 4.5% (Bhatnagar and
others, 2017).

One solution to algorithmic bias is to follow Doug Weed’s suggestion from the “black box” epidemi-
ology debates: devote special attention to causal structures that act at different levels. A tool that we find
valuable for this effort are directed acyclic graphs, or DAGs. In a DAG, arrows between nodes represent our
beliefs about the presence of causal relationships among factors under study. D-separation, a set of rules
for drawing and analyzing the relationships in the DAG (http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html),
results in concrete guidance for model building and interpretation. For instance, DAG analysis can iden-
tify biases, such as uncontrolled confounding (“omitted variable bias”), unaddressed in an analysis or
even biases introduced when problematic variables are included in the adjustment set (e.g., instruments
or mediators) (Keil and others, 2018; Hernán and others, 2001), which is not the same as, but related to,
the concept of bias from “overfitting” (Seligman and others, 2018).

3. EMPIRICAL EXAMPLE: ALGORITHMS AND LUNG FUNCTION

Here we present an example from the pulmonary health literature. Lung function is typically assessed
using a tool called a spirometer (Braun, 2015). Internationally, most commercially available spirometers
require the operator to “select the race of an individual, as well as indicate their age, sex/gender and
height. These data are fed into an algorithm that “corrects” for each factor, based on the assumption that
normal levels of lung function differ by age, sex, height, and race. The first formulas were produced in
the United States in the 1920s, “during a period when eugenic policies rooted in hereditarianism were
popular” (Braun, 2015). The formulas have been updated over time, most recently based on data from
the 1988–1994 NHANES exam (Braun, 2015). Today, for example, in the United States, compared to a
“Caucasian” population, correction factors for individuals labeled “black” range from 10% to 15%, on
the assumption that Black people have constitutionally poorer lung function; for people labeled “Asian,”
correction factors are between 4% and 6% (Braun, 2015).

Figure 1 shows a DAG depicting how the spirometer manufacturers and most lung function researchers
tacitly conceptualize the relationship between race and normal lung function. In addition, White workers
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Fig. 1. Directed acyclic graph (DAG) depicting naive conceptualization of causal relationships among race,
occupational exposures, and lung function.

Fig. 2. Directed acyclic graph (DAG) of relationships among race, occupational exposures, and lung function,
incorporating structural racism and theories from the Public Health Critical Race Praxis.

are centered in this conceptualization (Ford and Airhihenbuwa, 2010). Their lung function is considered to
be the norm from which non-White people deviate. Race is being conceptualized here as a characteristic
of a person that independently and innately depresses lung function. In addition, this DAG encodes the
prediction that the effect of harmful occupational exposure on lung function would differ for Black and
White people. Therefore, it would makes sense to correct for race when predicting lung function based
on occupational exposures. The result is that a given level of poor lung function would be considered
abnormally low for a White person but normal for a Black person. The implications are profound: Black
and Asian people must exhibit lower levels of actual lung function than White people to cross clinical
thresholds for qualifying for therapeutic services or disability benefits. Further, the model predictions
could easily justify allowing greater levels of exposures to occupational hazards for Black workers who
do not exhibit the depressed levels of lung function associated with harm.

Figure 2 presents a similar DAG informed by knowledge of structural racism. This DAG explicitly
incorporates possible operator bias, interrogates the source of the “race” variable and its meaning (e.g.,
self-reported forced choice among categories, operator perception). Further, the DAG makes the data
generation process and variations in data quality more explicit. Finally, by acknowledging that observed
associations between race and lung function could be entirely explained by racial disparities in living and
working conditions, the DAG animates the analyst to collect or include additional, more proximally causal,
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and likely more statistically predictive, variables, such as living conditions, for which race is operating
as a surrogate. Crucially, incorporating more proximal and predictive variables into models, rather than
relying on race variables to act as proxies, will improve transportability of algorithms across contexts.

4. CONCLUSION

“The fundamental goal of machine learning is to generalize beyond the algorithm training set” (Kreatsoulas
and Subramanian, 2018). In particular, when applied to health and health care, even models intended only
for prediction will have causal impacts. Model results will be used for decision-making about the allocation
of health care, access to social welfare and disability systems, and acceptable limits of medical exposures
for vulnerable populations. We have argued that grounding one’s work in an understanding of structural
racism will improve model accuracy and help avoid the pitfalls of limited application to racial minority
populations, algorithmic bias, limited transportability and reinforcing racial inequities.
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