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SUMMARY

In phase I clinical trials, experimental drugs are administered to healthy volunteers in order to establish
their safety and to explore the relationship between the dose taken and the concentration found in plasma.
Each volunteer receives a series of increasing single doses. In this paper a Bayesian decision procedure
is developed for choosing the doses to give in the next round of the study, taking into account both
prior information and the responses observed so far. The procedure seeks the optimal doses for learning
about the dose–concentration relationship, subject to a constraint which reduces the risk of administering
dangerously high doses.

Individual volunteers receive more than one dose, and the pharmacokinetic responses observed are,
after logarithmic transformation, treated as approximately normally distributed. Thus data analysis can
be achieved by fitting linear mixed models. By expressing prior information as ‘pseudo-data’, and
by maximizing over posterior distributions rather than taking expectations, a procedure which can be
implemented using standard mixed model software is derived. Comparisons are made with existing
approaches to the conduct of these studies, and the new method is illustrated using real and simulated
data.
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1. DOSE-ESCALATION STUDIES

The safety and tolerability of all but the most toxic new drugs are investigated in phase I healthy
volunteer studies, sometimes known as ‘first-into-man studies’, prior to experimental administration to
patients. Details of the designs of such studies vary, and one commonly used procedure will be described
in Section 2. Current practice uses simple statistical methods. Formal procedures of decision theory,
Bayesian methodology or even mixed effects modelling have not yet received wide application. Volunteers
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are often treated in cohorts, each receiving several different pre-specified doses in ascending order. Based
on the results observed at a given time, the investigator decides whether to continue dosing an individual
subject, and whether to continue the trial. If all goes well, the trial proceeds until all planned doses
have been investigated. References to some of the work which has sought to introduce novel statistical
procedures to phase I studies include an application of Bayesian methodology (Racine-Poon and Dubois,
1989), and an account of frequentist design and analysis (Boon and Roes, 1999).

In a first-into-man study, many observations are taken. We focus on pharmacokinetic variables
derived from the curve relating the concentration of the drug in plasma to the time since administration
(Chow and Liu, 1999). Commonly used summaries such as the area under the curve (AUC) and the
maximum concentration (Cmax) are often modelled by the normal distribution, after a logarithmic
transformation (Westlake, 1988). It is desirable to avoid excessive drug concentrations, as reflected by
large values of AUC or Cmax, although knowledge of suitable upper limits is often vague.

In this paper, the study is conducted according to a Bayesian sequential design, which is derived
through the application of Bayesian decision theory (Berger, 1985; Lindley, 1971). We maximize the
information about the dose–concentration curve subject to a safety constraint limiting the permissible
range of doses to be used. As data accumulate, the permissible range will extend to higher doses. Criteria
for the amount of information required can be used to determine stopping, although stopping rules are not
explored here. The formal procedure described concerns only pharmacokinetic data, although in practice
safety information would be an important part of the decision making process.

Prior information concerning the parameters of the dose–response relationship is needed before the
procedure can begin. This can be formulated from pre-clinical data and expert opinion, and can be
constrained so that the initial dosing of the first cohort proceeds as in conventional designs, and so
that escalation does not proceed too quickly or too slowly. Two strategies are adopted to overcome
computational difficulties, and thus to make the methods available for immediate implementation using
standard software. Prior opinion is expressed, in part, as ‘pseudo-data’ and posterior modal estimates are
used to determine parameter values.

The majority of recent statistical literature on dose-escalation studies has been written in the context of
oncology. The drugs under investigation are highly toxic, and so the population studied comprises patients
who have a potential to benefit from treatment. It is rare for patients to be treated with more than one
dose, and (in the statistical accounts at least) responses are usually binary: toxicity or no toxicity. The best
known formal procedure is the continual reassessment method (CRM) (O’Quigley et al., 1990; Chevret,
1993). This can be expressed as a Bayesian decision procedure in which the difference between the dose
to be administered and some ideal dose is minimized. O’Quigley and Shen (1996) explore a version of the
CRM in which likelihood methods are used to estimate parameters: in the language of this paper, posterior
modal estimates are used. Faries (1994) and Goodman et al. (1995) criticize the CRM on the grounds that
it can recommend large doses too early. They introduce modifications, which play a similar role to the
more formal constraint to the permissible range of doses suggested here. A similar constraint to that used
here was introduced for trials yielding single binary responses by Babb et al. (1998). Bayesian decision
procedures which generalize the CRM are described in Whitehead and Williamson (1998), and less formal
procedures using posterior distributions for guidance have been described by Gatsonis and Greenhouse
(1992). Although the details of dose-escalation in oncology differ from those underlying healthy volunteer
studies, the principles of the papers cited above have motivated the approach described in this paper. An
alternative approach, in the context of oncology, has been taken by Simon et al. (1997).

Several earlier authors have considered dose-finding procedures in which subject responses are
quantitative, and assumed to follow a normal distribution. Usually, the objective has been to find the
highest dose such that the probability of a response exceeding some pre-defined limit is controlled.
Eichhorn and Zacks (1973, 1981) consider Bayesian schemes, although the variances of responses are
assumed to be known. Robinson (1978) and Shih (1989) allow this variance to be unknown, but do not
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Table 1. The dosing schedule for the first cohort in a
conventional dose-escalation study

Period Subject 1 Subject 2 Subject 3 Subject 4
1 d1 d1 d1 Placebo
2 d2 d2 placebo d1
3 d3 placebo d2 d2
4 placebo d3 d3 d3

use a Bayesian approach. We are unaware of references to the application of formal decision theory
to studies yielding repeated quantitative responses. The International Conference on Harmonization (of
drug regulation) guideline on dose–response information (ICH, 1994) makes it clear that experience
with designs estimating individual dose–response curves, and their analysis, is limited (section IB), and
encourage openness towards novel Bayesian approaches (section IV 6).

In the next section, conventional designs for dose-escalation studies will be described, and straightfor-
ward methods of analysis outlined. A Bayesian approach to such an analysis is introduced in Section 3,
and in Section 4 it is used in the formulation of a decision-theoretic procedure for choosing doses.
Section 5 contains illustrations of the new procedure, and Section 6 is a discussion of the use of the
new procedure in practice together with possible extensions. Further illustrations of how the procedure
would be implemented in practice and of the computational details are included in Patterson et al. (1999).

2. CONVENTIONAL APPROACHES TO THE DESIGN AND ANALYSIS OF DOSE-ESCALATION STUDIES

The clinical objectives for dose-escalation studies of a new drug in healthy volunteers are usually the
assessment of safety and tolerability following rising single oral doses and the characterization of the
pharmacokinetic profile. Dose escalation has to proceed in a way that protects the safety of the volunteers.
A design commonly used within SmithKline Beecham for a first-into-man study is a placebo-controlled,
dose-rising, four-period crossover study of two to six cohorts of four healthy volunteers. In the first
cohort, each volunteer receives three active doses in an ascending order and a placebo dose, inserted
in a random position in the sequence, as illustrated in Table 1. The doses are denoted by d1, d2, . . . , where
d1 < d2 < · · · . Administration of the doses is separated by a wash-out period. The placebo is administered
to each subject so that any adverse effects following administration of active drug can be put into context,
and to introduce an element of blindness.

The pharmacokinetic data for each volunteer are expressed in terms of the concentrations of active
drug substance in the plasma against time after administration. The study may be terminated or the dosing
regimen altered if volunteers exceed some pre-defined exposure level or if an unacceptable adverse event
profile is seen. The maximum exposure level is defined prior to the start of the study based on the toxicity
profile for the compound observed in the most sensitive animal species.

If it is deemed safe to continue with the dose escalation, then the next cohort of volunteers will receive
three active doses (d3, d4, d5) and placebo arranged in a similar pattern to the first cohort. The lowest dose
used in the second cohort is the highest dose used in the previous one. This procedure continues until all
planned doses have been administered, or the study is terminated due to an unacceptable adverse event
profile or to values of AUC or Cmax in excess of the set limits. The starting and top doses in first-into-man
studies are usually fixed based on pre-clinical and toxicology data for that drug (Boxembaum and DiLea,
1995).

These studies can take a long time to complete. Each cohort usually takes a month to complete the
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Table 2. Results from a dose-escalation study showing actual doses admin-
istered and AUC values recorded

Cohort Period Actual dose, AUC
Subject 1 Subject 2 Subject 3 Subject 4

1 1 2, * 2, * 2, * placebo
2 5, 4.25 5, 3.93 placebo 2, *
3 10, 10.52 placebo 5, 6.38 5, 3.98
4 placebo 10, 8.18 10, 13.20 10, 8.22

Subject 5 Subject 6 Subject 7 Subject 8
2 1 10, 10.04 10, 8.38 10, 8.29 placebo

2 25, 24.64 25, 22.87 placebo 10, 12.17
3 40, 45.35 placebo 25, 20.30 25, 19.07
4 placebo 40, 35.01 40, 31.57 40, 42.33

Subject 9 Subject 10 Subject 11 Subject 12
3 1 40, 44.67 40, 46.27 40, 68.20 placebo

2 60, 56.41 60, 66.57 placebo 40, 49.62
3 80, 74.96 placebo 50, 78.68 50, 54.45
4 placebo 80, 73.56 60, 67.72 80, 61.16

dosing schedule, and there may be up to six cohorts of volunteers. Furthermore, information is not always
gathered at the most appropriate doses. Often, the majority of the information is gathered at very low
doses, with few volunteers receiving the higher doses likely to be used when developing the drug further.
There are no formal guidelines for determining dose escalation, which proceeds by informal evaluation
of the data observed so far. The results are generally summarized descriptively and graphically and not
analysed formally.

Although formal analysis of dose-escalation data is not usually performed, straightforward and
appropriate methods exist. These will now be described, and will then be built upon in the construction of
Bayesian decision procedures. We consider the natural logarithm of either AUC or Cmax, which will be
denoted by y. The linear mixed model (Laird and Ware, 1982) for the response yi j , for the j th observation
on the i th subject, is

yi j = θ1 + θ2�i j + si + εi j . (2.1)

Placebo administrations are ignored in this analysis, as there will be no drug detected in plasma, thus �i j

is the logarithm of the j th active dose received by the i th subject, and j runs from 1 to 3. The term si is
the random effect relating to the i th subject. The si and εi j are mutually independent, normally distributed
random variables with mean zero, and variances τ 2 and σ 2 respectively. The linear relationship described
in (2.1) corresponds to a power relationship on the original scale. While a random slope term might make
scientific sense, the data set will generally be too small to warrant its inclusion.

A SmithKline Beecham data set is presented in Table 2 and displayed in Figure 1. Logarithmic
transformation of both AUC and dose reveals a linear relationship with roughly constant scatter. Results
are shown for the eight doses 2, 5, 10, 25, 40, 50, 60 and 80 mg. For safety reasons, subjects were not
to be dosed again if their AUC exceeded 100 µg h mL−1. The trial illustrates the flexible nature of many
such exploratory studies. When administration of the 40 mg dose to subjects in cohort 3 gave AUC values
sufficiently high to cause concern to the investigators, the 50 mg dose was added to the original dose
schedule in order to be more cautious.
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Fig. 1. The relationship between AUC and dose in a dose-escalation study conducted by SmithKline Beecham: (a) on
untransformed scales (b) after logarithmic transformation, and showing the fitted model. The dotted lines in (a) and (b)
represent 95% confidence limits for a new subject.

In order to illustrate the use of model (2.1), it has been fitted to these data. An immediate problem
concerns the approach to non-quantifiable concentrations corresponding to low doses. Here, the results
from an initial cohort involving the doses 0.05, 0.5 and 2 mg which yielded no measurable plasma
concentrations at all have all been ignored, and further non-quantifiable concentrations corresponding to
use of the 2 mg dose in cohort 1 (denoted by asterisks in Table 2) are treated as missing. Model (2.1) is an
approximate representation of the dose–response relationship, and the data provide no reassurance that the
linearity implied extends to the doses 0.05 and 0.5: our approach is to fit a model that claims validity only
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for doses between 2 and 80 mg. If the non-observable concentrations at dose 2 are replaced by fixed values
such as 1 µg h mL−1, or by partial observations of the AUC which are available, then these imputed values
prove to be very influential and lead to very small estimates of the between-subject variance τ 2 which are
inconsistent with other SmithKline Beecham datasets that we have analysed. Multiple imputation methods
may provide an alternative form of analysis, but we have not investigated such an approach. From a
SAS PROC MIXED analysis (Littell et al., 1996), maximum likelihood estimates of the parameters in
model (2.1) are θ̂1 = −0.031, θ̂2 = 1.008, σ̂ 2 = 0.022 and τ̂ 2 = 0.021. The fitted relationship is shown
in Figure 1.

3. A BAYESIAN ANALYSIS OF DOSE-ESCALATION DATA

The objective of this paper is to present designs for first-into-man studies derived as Bayesian decision
procedures. As a prerequisite, this section is devoted to the Bayesian analysis of the resulting data, which
could be performed at any stage during the study.

Model (2.1) of Section 2 will be adopted, and the parameters θ and ν will be treated as random, where
θ is the vector made up of the slope and intercept; θ′ = (θ1, θ2), and ν is the within subject precision,
ν = σ−2. In order to avoid complication, the correlation ρ between two responses on the same subject
will be treated as fixed and known. In Bayesian terms, this amounts to the imposition of a prior with
zero variance. A value of ρ = 0.6 was found to be consistent with most of the data sets studied, and has
been imposed throughout this work. The implications of this choice, and of the principle of fixing ρ, are
discussed in Section 6. As ρ = τ 2/(σ 2 + τ 2), this strategy avoids the need to seek distributions to describe
the variation of τ 2. A normal-gamma prior distribution is used to express prior information on θ and ν, as
this is easy to fit and is also conjugate (Bernardo and Smith, 1994, section 5.2).

Let y denote the vector of responses with elements y11, y12, y13, y21, y22, y23, . . . and s
denote the vector of subject effects with elements s1, s2, . . . . The design matrix X has rows
(1, �11), (1, �12), (1, �13), (1, �21), (1, �22), (1, �23), . . . , and a matrix U is defined as having a 1 in the
i th column of rows (3i − 2), (3i − 1) and 3i, i = 1, 2, . . . , and zeros elsewhere. The identity matrix is
denoted by I. In matrix form, the Bayesian model has the following hierarchical structure:

y|s, θ, ν ∼ N(Xθ + Us, ν−1I),

s|θ, ν ∼ N

(
0,

ρ

ν(1 − ρ)
I
)

,

θ|ν ∼ N(m, (νQ)−1), (3.1)

ν ∼ Ga(α, β),

where N denotes a normal distribution, Ga a gamma distribution, and the values of m, Q, α and β are
chosen to represent prior knowledge.

Expert opinion is used to derive an informative prior distribution. A technical reason for doing this
rather than relying on non-informative priors is to obtain a proper Bayesian predictive distribution, before
the study has commenced. Less formally, in the absence of any prior information, it would be impossible
to identify a safe starting dose. Usually clinical pharmacologists will have relevant data from animal
experiments and other investigations to draw on in formulating a prior distribution.

A prior distribution for θ, conditional on ν, will be formed by combining a non-informative prior with
some imaginary responses y0 of volunteers at dose levels corresponding to a design matrix X0. The matrix
U0 contains the pseudo subject random effects. Combining the first two elements of model (3.1) gives

y0|θ, ν ∼ N

(
X0θ, ν−1

(
I + ρ

1 − ρ
U0UT

0

))
, (3.2)
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as τ 2 = ν−1ρ/(1 − ρ). The posterior distribution formed by combining these pseudo-data with a non-
informative prior for θ given ν is used as a prior. This prior has density proportional to the density of y0
given θ and ν expressed in (3.2). It follows that

θ|y0, ν ∼ N((XT
0 P0X0)

−1XT
0 P0y0, (νXT

0 P0X0)
−1), (3.3)

where P0 = [I + {ρ/(1 − ρ)}U0UT
0 ]−1. This provides values to be used for m and Q in the third part of

model (3.1).
Note that the mean of this distribution is equal to the usual maximum likelihood estimates based on y0

for intercept and slope; the variance is just the variance of these estimates. In the simplest case, assumed
here, imagine that the pseudo-data consist of just two representative responses on a single subject: ya

corresponding to log-dose a, and yb corresponding to log-dose b. Then

P0 = 1

1 + ρ

(
1 −ρ

−ρ 1

)

and it follows that

θ|y0, ν ∼ N


 1

(b − a)

(
bya−ayb

−(ya−yb)

)
,

1

ν(b − a)2


a2 + b2 − 2ρab

1 − ρ
−(a + b)

−(a + b) 2





 . (3.4)

The parameters α and β of the gamma prior for ν are more difficult to choose. However, as will be
seen in Section 4, constraints may be imposed on the prior distributions which enable suitable values for
α and β to be determined from considerations that are familiar to clinical investigators.

An advantage of the use of pseudo-data to define prior distributions is that posterior distributions of
a relatively simple form are obtained. First consider how study data on the i th subject change our belief
about that person’s subject effect si (conditional on θ and ν). Suppose that ni observations have already
been made on this subject. Let ȳi be the mean response observed and �̄i the mean log-dose administered.
Then it can be shown that the mean of the distribution of si is shifted from zero and its variance is
decreased:

si |θ, ν, ȳi ∼ N

(
wi (ȳi − θ1 − θ2�̄i ),

wi

νni

)
(3.5)

where

wi = niρ

1 + (ni − 1)ρ
.

Given real data on several subjects, each of the subject effects has, independently, a distribution of the
form given in (3.5). The posterior distribution for θ conditional on ν is given by (3.3), with y0, X0, U0
and P0 replaced by y∗, X∗, U∗, and P∗ representing a combination of the pseudo-data with the real data.

The posterior for ν is well known to be ν is well known to be

ν ∼ Ga

(
α + n

2
, β + yT∗ P∗y∗ − yT∗ P∗X∗(XT∗ P∗X∗)−1XT∗ P∗y∗

2

)
, (3.6)

where n is the number of real observations. The second term in the expression for the second parameter
of the gamma distribution in (3.6) reduces to zero when based only on the prior pseudo-data.

The posterior modal estimates θ̂ and σ̂ 2 for θ and σ are given by

θ̂ = (XT∗ P∗X∗)−1XT∗ P∗y∗
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and

σ̂ 2 = 2β + yT∗ P∗y∗ − yT∗ P∗X∗(XT∗ P∗X∗)−1XT∗ P∗y∗
2α + n

.

These estimates are related to maximum likelihood estimates θ∗ and σ 2∗ obtained from an analysis of
pseudo- and real data combined according to θ̂ = θ∗ and σ̂ 2 = {2β + (n + 2)σ 2∗ }/(2α + n), allowing
their calculation from any standard mixed model software in which ρ = τ 2/(σ 2 + τ 2) can be fixed.

4. CONSTRAINED OPTIMAL DOSE-ESCALATION

In this section, Bayesian decision theory is applied to derive a dose-escalation scheme which is
optimal, in the sense of maximizing some gain function within certain safety constraints. As in the
conventional design, it is assumed that cohorts of four volunteers are observed, each volunteer receiving
three active doses and a placebo. The scheduling of the placebo dose is predetermined, with the
(4c − j + 1)th subject, who is in the cth cohort, receiving placebo in the j th period c = 1, 2, . . . ;
j = 1, . . . , 4 (as in Table 1 for c = 1). Doses are chosen from amongst a predetermined set d1 < · · · < dk .

It is assumed that the doses given in period j for the cth cohort are administered simultaneously. The
decision problem consists of using the prior information, and the real data from previous cohorts and from
previous periods within the current cohort, to determine the three doses to be administered during the next
period. The general principles of such Bayesian decision procedures have been discussed by Whitehead
(1997).

In this paper, two optimality criteria will be explored, both being operated within the same safety
constraint. The first option, which will be referred to as maxsafe, simply treats each subject at the highest
dose permitted by the safety constraint. This will have the effect of gathering information efficiently about
both the maximum dose which can be safely administered and about the response to that dose, and it is
similar to the strategy used in Eichhorn and Zacks (1973). However, this criterion has not formally been
expressed as a gain function. The second criterion, which will be referred to as optsafe, is D-optimality
and corresponds to an objective of estimating the parameters θ1 and θ2 as precisely as possible. The
optsafe criterion will now be studied in some detail, and then the safety constraint will be explored. The
practical choice of an optimality criterion is discussed further in Section 6.

For D-optimality, the optimal choice of doses is that which minimises the determinant of the variance–
covariance matrix of their joint posterior distribution based on pseudo- and real data, or equivalently
maximizes the determinant of ν XT∗ P∗X∗. Hence the gain function can be identified with det (ν XT∗
P∗X∗). Now

XT∗ P∗X∗ = XT∗ X∗ −
∑

i

(
wi ni wi ni �̄i

wi ni �̄i wi ni �̄
2
i

)

=




1 − ρ

ρ

∑
i

wi
1 − ρ

ρ

∑
i

wi �̄i

1 − ρ

ρ

∑
i

wi �̄i
∑
i

∑
j

(�i j − �̄i )
2 + 1 − ρ

ρ

∑
i

wi �̄
2
i
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and

det(XT∗ P∗X∗)

=
(

1 − ρ

ρ

)2 (∑
i

wi

) ∑
i

wi


�̄i −

∑
i

wi �̄i

∑
i

wi




2

+ 1 − ρ

ρ

(∑
i

wi

) ∑
i

∑
j

(�i j − �̄i )
2, (4.1)

where all sums are over pseudo- and real observations.
This determinant can be seen to depend on two components: a weighted between-subject sum of

squares of log-doses, and a within-subject sum of squares of log-doses. Thus, it is desirable to have both
contrasting patterns of doses between subjects and a wide spread of doses within each individual subject. If
D-optimality is used without a safety constraint, then one or more subjects will typically be allocated very
high doses in order to achieve the latter contrast, even at relatively early stages of a trial. This is unlikely
to be acceptable in practice, where dose escalation has usually proceeded in a gradual manner. Caution is
needed to prevent subjects from being exposed to excessive dose concentrations. When less information
is available, greater caution is necessary. The strategy adopted here is to operate the sequential D-optimal
design within the confines of a safety constraint.

Suppose a limiting level L of response (log AUC or log Cmax) has been specified: larger values than
this are considered undesirable and should be avoided. In terms of this ‘safety cutoff’, a reasonable
criterion for using a candidate dose d f for the i th subject can be based on a Bayesian predictive
probability:

Pr(yi f > L) � c0 (4.2)

where yi f is the future response corresponding to dose d f , and the probability accounts for the uncertainty
of the unknown parameters inherent in the current posterior distributions. If the dose d f satisfies (4.2), then
it can be administered. The dose which gives equality in (4.2) will be denoted by d f *, and is considered
to be the maximum safe dose. Now the distribution of yi f , given that the subject effect si , θ and ν are
known, is

yi f |si , θ, ν ∼ N(θ1 + θ2� f + si , ν
−1)

where � f = log d f .
Successively integrating out the posterior densities of si given θ and ν, and θ given ν, we obtain

yi f |ν ∼ N(θ̂1 + θ̂2� f + ŝi , ν
−1(Ri + Vi f ))

where

Ri = 1 + wi/ni ,

Vi f = (1 − wi , � f − wi �̄i )(X T∗ P∗ X∗)−1(1 − wi , � f − wi �̄i )
T

= ν var(θ1 + θ2� f + wi (ȳi − θ1 − θ2�̄i )|ν),

ȳi and �i are the means of the responses and log-doses already observed on the i th subject, and ŝi =
wi (ȳi − θ̂1 − θ̂2�̄i ) is the predicted value of the random subject effect. Further integrating out the gamma
distribution for ν leads to the predictive distribution for forecasting a future observation. This is a t-
distribution (parametrized in terms of location, precision and degrees of freedom):

yi f ∼ t ( θ̂1 + θ̂2� f + ŝi , {(Ri + Vi f )σ̂
2}−1, n + 2α).
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The predictive distribution provides the safety criterion (4.2) which a dose d f must satisfy before it
can be considered suitable to use next. Then, for those combinations of doses for the next period that are
allowable, the one which maximizes det(XT∗ P∗X∗) will be the optsafe selection. Often, but not always,
this will be a combination of the highest doses that are considered safe.

As mentioned in Section 3, the safety constraint can be used to facilitate the choice of α and β.
Suppose that it is only just safe to start dosing (on new, previously untested subjects) at dose d1, and that
it is only just unsafe to use dose d2:

Pr(y11 > L) = c1 and Pr(y12 > L) = c2, (4.3)

where c1 � c0 < c2.
These two requirements may be solved to obtain values for α and β. In examples, we have set c0 and

c1 equal to 0.05, and found that the value 0.067 for c2 leads to sensible escalation schemes. The choice of
these constraints is discussed further in Section 6.

The study may be conducted until a fixed number of cohorts has been observed, in which case its main
advantage will be the concentration of experimentation at higher, more interesting, doses. Alternatively,
the study might proceed until the highest dose dk is reached, and this might happen sooner using the
proposed scheme. Stopping rules could be devised based on a required value of det(XT∗ P∗X∗) or by
tracking d∗

f until its rate of increase slows down.

5. ILLUSTRATIONS OF THE PROCEDURE

This section presents two illustrations based on the results from the SmithKline Beecham study
presented in Table 2 and discussed in Section 2. These are based on the maxsafe and optsafe criteria
respectively: in both, a complete run of the new procedure is simulated in order to demonstrate its
advantages.

In the simulations, the doses 0.05 and 0.5 which led to non-quantifiable plasma concentrations in the
actual study have not been included, but the dose of 50 mg which was introduced during the study has.
For these illustrations, a prior distribution has been retrospectively selected, based on values of AUC of
5 µg h mL−1 and 60 µg h mL−1 for the two doses, 5 mg and 60 mg respectively. The limiting AUC
value of 100 µg h mL−1, consistent with the actual stopping criteria described above, was used so that
L = log 100, and the value of c0 in constraint (4.2) was set at 0.05. It was assumed that the risk of the
response to the lowest dose (2 mg) exceeding the limiting AUC value should also be 0.05, and that the
risk for second lowest dose (5 mg) should be 0.067, giving c1 = 0.05 and c2 = 0.067 in (4.3).

Tables 3 and 4 show the progress of simulated studies, based on maxsafe and optsafe respectively,
and Figure 2 shows some of the prior and posterior densities associated with Table 3. Responses were
simulated according to the model which was fitted to the actual study (the maximum likelihood estimates
were presented at the end of Section 2 and are given in the first row of Table 5). In the model used to
simulate the data, the value of ρ was chosen to be 0.488, consistently with the fitted model, although the
escalation method adopts the universally imposed value of 0.6 as in practice ρ would be unknown to the
investigators. Three responses were simulated for each subject at each of the available doses and then,
as the run progressed, the relevant values were input as responses for the purposes of the dose-escalation
procedure. The same full potential data set was used in the runs leading to Tables 3 and 4 so that when
a subject receives the same dose in the same period both tables record the same response: this approach
was adopted in order to enhance comparability.

The results illustrate how, after giving the first subjects in the first period the bottom dose, some doses
are then skipped, thereby achieving the desired acceleration of dose-escalation. The top dose of 80 mg
is never used, but 50 and 60 mg are demanded frequently. The optsafe criterion dictates that the bottom
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Table 3. A simulated dose-escalation study based on the maxsafe criterion

Cohort Period Dose, AUC d∗
f

Subject 1 Subject 2 Subject 3 Subject 4
1 1 2, 1.57 2, 1.92 2, 2.07 placebo 25.52

2 25, 20.95 25, 23.53 placebo 25, 22.09 42.48
3 50, 39.87 placebo 40, 51.59 50, 63.52 44.44
4 placebo 50, 47.97 40, 51.68 50, 48.54 49.11

Subject 5 Subject 6 Subject 7 Subject 8
2 1 40, 38.45 40, 48.68 40, 53.34 placebo 50.36

2 60, 62.56 50, 56.58 placebo 50, 58.78 52.66
3 60, 67.30 placebo 50, 57.11 50, 59.46 54.57
4 placebo 50, 50.44 50, 55.43 50, 51.38 56.70

Subject 9 Subject 10 Subject 11 Subject 12
3 1 50, 58.40 50, 54.64 50, 46.74 placebo 58.38

2 60, 74.39 60, 55.05 placebo 50, 59.27 59.21
3 60, 80.96 placebo 60, 71.54 60, 69.07 59.26
4 placebo 60, 65.45 60, 61.31 60, 57.91 60.25

Table 4. A simulated dose-escalation study based on the optsafe criterion

Cohort Period Dose, AUC d∗
f

Subject 1 Subject 2 Subject 3 Subject 4
1 1 2, 1.57 2, 1.92 2, 2.07 placebo 25.52

2 25, 20.95 25, 23.53 placebo 25, 22.09 42.48
3 50, 39.87 placebo 40, 51.59 2, 2.48 46.08
4 placebo 50, 47.97 50, 64.71 50, 48.54 50.40

Subject 5 Subject 6 Subject 7 Subject 8
2 1 50, 48.14 50, 60.95 50, 66.79 placebo 51.17

2 2, 2.03 2, 2.21 placebo 2, 2.29 53.57
3 60, 67.30 placebo 2, 2.23 50, 59.46 55.00
4 placebo 2, 1.97 2, 2.16 2, 2.01 56.59

Subject 9 Subject 10 Subject 11 Subject 12
3 1 50, 58.40 50, 54.64 50, 46.74 placebo 58.36

2 2, 2.42 2, 1.79 placebo 2, 2.31 59.00
3 60, 80.96 placebo 2, 2.32 50, 57.47 59.31
4 placebo 60, 65.45 60, 61.31 60, 57.91 60.58

dose will regularly be required (even when most of the available doses are believed safe), thus breaking
the current convention of non-decreasing dosing.

Now, according to the model being used for simulation, a future response on a new subject i has
distribution yi f ∼ N(−0.031 + 1.008� f , 0.043). It is easy to deduce from (4.2) that the true ‘maximally
tolerated’ dose d∗

f is 71. Thus the avoidance in the simulated runs of the 80 mg dose is appropriate. The
estimate of d∗

f based on the simulated data rises to a value of about 60 in each of the tables, and would be
expected to continue to rise slowly towards 71 if new cohorts were to be treated.

Table 5 shows, in addition to the model used for the simulation, maximum likelihood estimates
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f(w) 1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

f(w) 1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

− 3 − 2 − 1 0 1 2 3 4 5 6 7 w

− 3 − 2 − 1 0 1 2 3 4 5 6 7 w

f(w) 1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

f(w) 1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

− 3 − 2 − 1 0 1 2 3 4 5 6 7 w

− 3 − 2 − 1 0 1 2 3 4 5 6 7 w

0.99 0.98 0.97 0.96 0.94 0.89 0.77 0.53 0.27 0.13          0.07 p(w) 1 1 1 1 0.99 0.98 0.89 0.54 0.14 0.03 0.01 p(w)

1 1 1 1 1 1 0.97 0.6 0.07 0 0 p(w) 1 1 1 1 1 1 0.99 0.65 0.03 0 0 p(w)

(b)   Following Period 1(a)    Prior Density

(c)   Following Period 2 (d)   Following Period 4

Fig. 2. Prior and posterior densities for log(AUC) for the simulated example of Table 3. The figures relate to the
log(AUC) of a new, untested subject, administered a dose of 60 mg. The log(AUC) is denoted by w, and p(w)

denotes the subjective probability that log(AUC) exceeds w. Normal approximations to the true densities are shown
for the situations (a) prior to observation of data, (b) after period 1 of cohort 1, (c) after period 2 of cohort 1 and
(d) after period 4 of cohort 1.

Table 5. Maximum likelihood estimates (standard errors)

θ1 θ2 σ 2 τ 2 d∗
f

Model fitted to data
in Table 2 (and used
for simulation)

−0.031 (0.139) 1.008 (0.043) 0.022 0.021 71

Model fitted to data
in Table 3 (maxsafe)

−0.093 (0.082) 1.044 (0.021) 0.010 0.007 73

Model fitted to data
in Table 4 (optsafe)

0.033 (0.043) 1.008 (0.012) 0.010 0.009 75

resulting from fitting model (2.1) to the datasets shown in Tables 3 and 4. The optsafe criterion has led
to smaller standard errors for the estimates of θ1 and θ2, in accordance with its objective. Both σ 2 and
τ 2 happen to be underestimated in the fitted models: recall that these are analyses of just two small and
closely related datasets, so that they should be expected to be similar and not to be particularly precise.
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6. DISCUSSION

A computer program which performs the calculations described here is available from the corre-
sponding author (JW). Within SmithKline Beecham this program is being used to allow investigators
who conduct first-into-man studies to become familiar with the new method, and to influence its further
development.

The purpose of the procedure described in this paper is to recommend the next round of doses to
be given to the current cohort of volunteers. In practice, the decision as to whether to accept these
recommendations will lie with the investigating clinician. Recommendations might be overruled because
of safety data, or other outcomes not modelled by the procedure. Alternatively, the clinician’s experience
may indicate that different doses are appropriate. An advantage of the procedure is that it can learn from
the results of administering any doses. As users become familiar with the procedure it is expected that it
will be overruled less frequently, and that persistent discrepancies between recommendations and practice
will lead to a fine tuning of the options used in the procedure.

The procedure described escalates doses most quickly early on, and then slows down. When the
constraints c1 and c2 in (4.3) are set close to one another, early escalation is indeed fast; when they
are further apart it becomes very slow in later cohorts. The choice of c1 and c2 can be aided by performing
simulated runs in order to observe the likely rate of escalation and its deceleration. This use of frequentist
properties as an aid to the choice of a Bayesian prior is in the spirit of the ‘stylized Bayesian’ approach
described by Fisher (1996). Relative to the conventional procedure, simulated runs (not reported here)
have indicated that appropriate settings of c1 and c2 lead to faster escalation early on, and slower escalation
later. There do not appear to be settings which reproduce the conventional dosing patterns completely.
This would seem to indicate that the conventional procedure begins cautiously but takes too much
reassurance from early low AUC values, becoming rather cavalier in later choices of dose. Furthermore,
the conventional procedure never returns to low doses in order to improve estimation. It might be possible
to reproduce conventional dose-escalation patterns via a progressive raising of the permitted limit L , and
thus to identify the conditions under which it is optimal.

The simulation results of Section 5, and further simulations not presented here, indicate that the
optsafe procedure, by increasing the frequency of observation at the lowest dose, improves the precision
of estimation of both slope and intercept. It must be stressed that while this overall result is certainly true
when the underlying model is valid, it is unlikely to be robust to departures from linearity. In practice, the
calls from the optsafe criterion for administration of a low dose might be tempered by realism concerning
the assumption of linearity, leading to choice of a compromise dose which is low but in the region of
therapeutic interest rather than being the lowest available. It is apparent that the estimation d∗

f itself is
achieved with similar accuracy using the two criteria.

Throughout this paper, the simplifying assumption that ρ = 0.6 has been made. Of course other fixed
values could be imposed. Ideally, ρ should be treated as unknown in the same way as all of the other model
parameters. To do so would introduce major complications, both in eliciting prior opinion concerning its
value and in fitting the ensuing models. In principle, it would also be ideal to allow for uncertainty in the
assumptions of linearity and of normality and for the often arbitrary selection of a limiting level L of log
AUC: proceeding too far down this road leads to an expression of such uncertainty that escalation can
hardly take place!

The principles underlying the procedure are open to flexible interpretation, and so various components
can easily be varied. The modelling of the responses yi j described in equation (2.1) could be amended in
various ways. Instead of the subject effect being expressed as a random intercept, it could be included as
a random slope: indeed both random terms could be included. However, we note that in our own fitting of
models to pharmacokinetic data, random slopes have not been found to improve the model significantly.
Covariates relating to the volunteers can be easily introduced, as could a factor relating to period effects.
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Complex procedures, perhaps based on multiple imputation or on exact treatment of censored values,
could be used to overcome the problem of non-observable pharmacokinetic responses. However, the desire
to allow for the many potential influences on outcome must be tempered by the realization that the data
available are very few, especially in the early cohorts. It will seldom be desirable to use models which are
much more sophisticated than (2.1).

Other simple modifications include the use of criteria other than maxsafe or optsafe. In particular, the
optimal estimation of the upper part of the dose–response relationship might be an improvement on the
more general optsafe criterion. The procedure as a whole could be applied with other pharmacokinetic
endpoints (e.g. maximal concentration, half-life) and/or pharmacodynamic responses, such as blood pres-
sure or pulse, serving as the yi j . For pharmacodynamic data, the placebo doses also have corresponding
responses to be taken into account. Generalization to multivariate responses would be more difficult.
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