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SUMMARY

We introduce a method of parameter estimation for a random effects cure rate model. We also propose
a methodology that allows us to account for nonignorable missing covariates in this class of models. The
proposed method corrects for possible bias introduced by complete case analysis when missing data are
not missing completely at random and is motivated by data from a pair of melanoma studies conducted
by the Eastern Cooperative Oncology Group in which clustering by cohort or time of study entry was
suspected. In addition, these models allow estimation of cure rates, which is desirable when we do not
wish to assume that all subjects remain at risk of death or relapse from disease after sufficient follow-up.
We develop an EM algorithm for the model and provide an efficient Gibbs sampling scheme for carrying
out the E-step of the algorithm.

Keywords: Cure rate model; Gibbs sampling; Missing covariates; Monte Carlo EM algorithm; Nonignorable missing
data; Random effects; Survival analysis.

1. INTRODUCTION

Because of improvements in the treatment of cancer, cure rate models have become increasingly
popular in the analysis of data from cancer clinical trials. For certain cancers, including breast cancer,
leukemia, melanoma, and prostate cancer, a substantial proportion of patients may now be cured by
treatment. Traditional methods of survival analysis, including the Cox (1972) regression model, assume
that no patients are ‘cured’ but that all remain at risk of death or relapse. These models are concerned
with survival only and do not address the possibility of disease cure. However, estimation of a treatment-
specific cure rate provides valuable information that is not only of use to the investigator but is of primary
interest to the patient at the time of diagnosis.

Analysis of two melanoma clinical trials heightened our interest in cure rate models. Melanoma
incidence rates are increasing faster than those for any other solid tumor. While education and greater
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Fig. 1. Population survival functions for melanoma data.

awareness have led to a cure rate of up to 85% for early stage disease, later stage disease can be lethal, with
relapse and mortality rates of 60–75% for high-risk patients. The Eastern Cooperative Oncology Group
(ECOG) carried out clinical trial E1684 to assess the effect of high-dose interferon as post-operative
chemotherapy for patients with high-risk melanoma. This trial showed a substantial treatment benefit due
to interferon and led to US FDA approval of this regimen, but because this benefit was much larger than
anticipated and was accompanied by substantial side effects, ECOG decided to carry out a confirmatory
trial, E1690. No significant benefit of treatment was found in the confirmatory trial.

These clinical trials were initially analyzed using standard survival methods that did not allow
estimation of cure rates. While the probability of cure for high-risk melanoma is much lower than the cure
rates seen for early stage disease, estimation of these fractions was of great interest to the investigators. In
addition, investigators suspected that advances in treatment and care (e.g. improved surgical techniques)
on both treatment arms were prolonging survival as the studies progressed. We introduce a random effect
in the cure rate model to account for a possible cohort or time of entry effect. Further complicating the
analysis is the fact that several tumor characteristics related to survival were missing for a substantial
number of patients. The goals of our analysis were to account properly for the missing data (and to
attempt to assess whether the missing data were not MCAR, implying that a complete case analysis could
be biased), to estimate cure rates, and to incorporate a random effect for cohort. More details and our
complete analysis are given in Section 4.

Consider the survival functions given in Figure 1. This figure shows estimated population survival
curves by treatment group for the Cox (1972) proportional hazards model and a cure rate model fit to our
melanoma data. We see that although the two models provide similar survival estimates early in the study,
the Cox model does a poor job estimating the tails of the survival curve due to the lack of events later in
the study. The cure rate model provides smoother survival estimates in the tail, as these estimates are not
as sensitive to the lack of events at later times. In addition, the cure rate model enables us to estimate the
survival curves for the group of patients not ‘cured’ by the treatment, a quantity not available from the
Cox model. These survival curves would apply specifically to those patients still at risk of failure, while
the population survival curves presented in Figure 1 apply to ‘cured’ and ‘non-cured’ patients alike. This
issue is discussed in more detail in the analysis of the melanoma data given in Section 4.
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As previously mentioned, the positive probability of cure is not the only factor complicating the
analysis. Event times are frequently not independent, as events may be correlated because certain
subgroups share common traits, such as cage or litter effects in animal studies, cohort or institutional
effects in clinical trials, or measurements of repeated events within subjects. By introducing random
effects for these subgroups, we are able to obtain proper variance estimates by accounting for the
homogeneity of subjects within subgroups.

Even well-planned clinical trials and observational studies frequently have large fractions of missing
covariate data. The most popular method for dealing with missing covariates is a complete case analysis,
which analyzes only those subjects with complete data and discards those with missing covariate values.
This method of analysis is the default method despite the knowledge that this analysis makes strong
(and generally unverifiable) assumptions about the missing data. Large fractions of missing data lead to
inefficient parameter estimates and may introduce serious biases into a complete case analysis, biases that
may be especially severe when the missing covariates are nonignorable. Several authors have addressed
the problem of missing data in the Cox regression model (Lin and Ying, 1993; Paik, 1997; Paik and Tsai,
1997; Lipsitz and Ibrahim, 1998; Chen and Little, 1999; Herring and Ibrahim, 2001), but they do not
consider survival data with the cure rate structure and do not allow missing covariates to be nonignorable.
Chen and Ibrahim (2001) recently addressed missing at random covariates in cure rate models but do not
allow for nonignorable missing data or random effects.

We propose a method for estimating the parameters of a semi-parametric survival model with a cure
fraction. Our model incorporates random effects and accounts for nonignorable missing covariates. Like
the models of Chen et al. (1999) and Chen and Ibrahim (2001), the hazard for the entire population has
the proportional hazards structure, even when covariates are included. The random effects are introduced
as part of the linear predictor, a formulation similar to the one commonly used in generalized linear mixed
models, and the random effects may come from a large family of distributions.

The rest of this paper is organized as follows. In Section 2 we propose a Monte Carlo EM algorithm
for obtaining parameter estimates when all covariates are observed. Then we extend the methodology to
account for nonignorable missing covariates, and we obtain standard errors using a multiple imputation
method (Goetghebeur and Ryan, 2000) in Section 3. We present our analysis of the melanoma data in
Section 4 along with a detailed sensitivity analysis of our modeling assumptions and conclude in Section 5
with a discussion of the analysis and issues worthy of further consideration.

2. COMPLETE DATA RANDOM EFFECTS CURE RATE MODEL

We adapt the cure rate model proposed by Chen et al. (1999) to accommodate correlated event times
and nonignorable missing covariates. This model is related to the standard cure rate model, addressed in
the literature by many authors including Berkson and Gage (1952); Ewell and Ibrahim (1997); Farewell
(1982, 1986); Goldman (1984); Gray and Tsiatis (1989); Greenhouse and Wolfe (1984); Halpern and
Brown (1987a,b); Kuk and Chen (1992); Laska and Meisner (1992); Maller and Zhou (1996); Sposto et
al. (1992); Stangl and Greenhouse (1998); Taylor (1995), and Yamaguchi (1992). Our formulation of the
cure rate model, as opposed to the standard cure rate model, retains a proportional hazards structure for the
entire population in the presence of covariates, giving the model an attractive interpretation and biological
motivation described below.

We extend the model of Chen et al. (1999) to clustered observations. To our knowledge, no other
authors have addressed random effects cure rate models with missing data. Let Nhi denote the number
of metastasis-competent tumor cells after the initial cancer treatment for the i th patient in the hth group,
where Nhi ∼ Poisson (θhi ). These unobserved cell counts are treated as latent variables in the model. Let
Zhi j denote the random promotion time for the j th carcinogenic cell, j = 1, . . . , Nhi , and assume that for
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a given group h and number of cells Nhi , the variables Zhi j are i.i.d. with common distribution function
F(t). The time to cancer relapse is the minimum promotion time over all the metastasis-competent cells
and may be represented by the random variable Thi = min{Zhi j , 1 � j � Nhi }. Let yh = (yh1, . . . , yhnh )

be the observed event times for the hth cluster, where nh is the number of subjects in the hth cluster,
h = 1, . . . , H , and denote the corresponding failure or censoring indicators by νh = (νh1, . . . , νhnh ). Let
xh = (xh1, . . . , xhnh )

′ be an nh × p matrix of fixed covariates for the subjects in the hth cluster and let
wh = (wh1, . . . , whnh )

′ be an nh ×q matrix of covariates that are multiplied by the q ×1 vector of random
effects bh . For random intercept models, wh will simply indicate cluster membership. For convenience we
let the i.i.d. random effects follow a multivariate normal distribution; that is, bh ∼ Nq(0, �). Although it
is not necessary to choose a multivariate normal distribution for the random effects, the Gibbs sampling
procedure is greatly simplified if we restrict our choice to distributions that are log-concave.

The population survival function is given by Sp(t) = P (cancer free at time t) = exp(−θhi F(t)),
where θhi = exp(x ′

hiβ + w′
hi bh). Note that Sp(t) is not a proper survival function as Sp(∞) =

exp(−θhi ) �= 0. The quantity Sp(∞) = exp(−θhi ) = exp(− exp(x ′
hiβ + w′

hi bh)) is interpreted as the
cure fraction and represents the proportion of patients who are ‘cured’. As θhi → ∞, the cure fraction
tends to 0, while as θhi → 0, the cure fraction tends to 1. We consider a piecewise exponential model
for F(t), partitioning the time axis as follows. Choosing sK greater than the maximum event time, we
construct the K intervals {(0, s1], (s1, s2], . . . , (sK−1, sK ]}. Assuming a constant hazard λk in the kth
interval, we write F(t) as

F∗(t) = 1 − exp

{
−λk(t − sk−1) −

k−1∑
g=1

λg(sg − sg−1)

}
, (2.1)

and S∗(t) = 1 − F∗(t). When K = 1, F∗(t) is simply the cdf of the exponential distribution. For smaller
K , we get a more parametric model for F∗(t); for larger K , we get a more nonparametric shape. We
recommend evaluating several values of K to ensure the model is not too sensitive to the specific value of
K that is chosen.

Let γ = (β, λ, �). The complete data are Dcomp = (Dhi,comp, h = 1, . . . , H, i = 1, . . . , nh), where
Dhi,comp = (yhi , νhi , Nhi , xhi , whi , bh). The complete data log-likelihood is written

l(γ | Dcomp) =
H∑

h=1

nh∑
i=1

νhi log(Nhi f ∗(yhi | λ)) + (Nhi − νhi ) log(S∗(yhi | λ))

+
H∑

h=1

nh∑
i=1

Nhi (x ′
hiβ + w′

hi bh) − log(Nhi !) − exp(x ′
hiβ + w′

hi bh)

+
H∑

h=1

−q

2
log(2π) − 1

2
log(det(�)) − 1

2
(b′

h�−1bh)

=
H∑

h=1

nh∑
i=1

νhi log(Nhi ) + νhi log(λkhi ) + Nhi log(S∗(yhi | λ))

+
H∑

h=1

nh∑
i=1

Nhi (x ′
hiβ + w′

hi bh) − log(Nhi !) − exp(x ′
hiβ + w′

hi bh)

+
H∑

h=1

−q

2
log(2π) − 1

2
log(det(�)) − 1

2
(b′

h�−1bh). (2.2)

We obtain f ∗ and S∗ using (2.1). More detail about f ∗ and S∗ is provided in the Appendix.
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To obtain parameter estimates with no missing covariate data, we implement an EM algorithm and
take the conditional expectation, given the observed data, of the log-likelihood in (2.2) with respect to the
unobserved random effects and the latent cell counts Nhi . This involves sampling the random effects at
each EM iteration and then estimating the other parameters while treating the sampled random effects as
fixed. Let γ (l) = (β(l), λ(l), �(l)) at the lth iteration of the EM algorithm. The E-step at the (l + 1)th EM
iteration is given by

E[l(γ | Dcomp) | xhi , γ
(l)] =

H∑
h=1

nh∑
i=1

∫
bh ,Nhi

p(bh, Nhi | xhi , γ
(l)){νhi log(Nhi )

+ νhi log(λkhi ) + Nhi log(S∗(yhi | λ(l)))} dbh dNhi

+
H∑

h=1

nh∑
i=1

∫
bh ,Nhi

p(bh, Nhi | xhi , γ
(l)){Nhi (x ′

hiβ + w′
hi bh) − log(Nhi !)

− exp(x ′
hiβ + w′

hi bh)} dbh dNhi +
H∑

h=1

∫
bh ,Nhi

p(bh, Nhi | xhi , γ
(l))

×
{

− q

2
log(2π) − 1

2
log(det(�)) − 1

2
(b′

h�−1bh)

}
dbh dNhi , (2.3)

where p(bh, Nhi | xhi , γ
(l)) is the joint density of the random effects and latent count variables conditional

on the data. We outline the evaluation of the E-step using Monte Carlo EM in the Appendix. When
covariates are missing, estimation becomes more complicated, as we see in the next section. Variance
estimation for both the complete data and missing data cases is outlined in the following section as well.

3. RANDOM EFFECTS CURE RATE MODEL WITH MISSING DATA

To obtain valid parameter estimates when covariates are missing, it is necessary to make additional
assumptions about the data regardless of whether one plans to conduct a complete case analysis or a more
sophisticated analysis. A complete case analysis, except in very special cases, generally requires that data
are missing completely at random (MCAR). If MCAR is not the correct missing data mechanism, then a
complete case analysis may be biased. One way to obtain valid inference with non-MCAR missing data
mechanisms is to specify correctly the distribution of covariates that are not completely observed and
possibly also the non-MCAR missing data mechanism. We stress that although the investigator is never
absolutely certain that these distributions have been specified correctly except in very special situations, it
is also true that investigators can rarely be absolutely certain that data are truly MCAR. This underscores
the necessity of presenting a detailed sensitivity analysis along with any statistical results. When the
data are missing at random (MAR), we specify the distribution of the missing covariates themselves, and
when the covariates are nonignorable, we model the missing data mechanism in addition to the covariate
distribution. Although these assumptions go beyond those typical in analyses when all covariates are
observed, we cannot proceed with only the standard assumptions and pay no price for having missing data.
Our additional model assumptions, needed to obtain unbiased estimates when data are not MCAR, are
clearly specified, and the sensitivity of parameter estimates to the modeling assumptions may be checked
by varying the covariate and missing data models in a sensitivity analysis, such as the one presented in
Section 4.
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3.1 Specification of the covariate distribution

When some of the covariates have missing values, we will specify a parametric distribution for xmis
and estimate its parameters from the data, viewing these as nuisance parameters not of inferential
interest. Because parameter estimation may become too computationally intensive and unstable with many
nuisance parameters, we will need to employ strategies to reduce the number of nuisance parameters in
the specification of the covariate distribution as suggested by Lipsitz and Ibrahim (1996) and Ibrahim
et al. (1999b), who propose modeling the joint distribution of the missing covariates as a product of
one-dimensional conditional distributions.

Let xhi be independent and identically distributed random covariate vectors with density p(xhi |α),
where α is distinct from γ = (β, λ, �). Following Lipsitz and Ibrahim (1996), we model the joint
distribution of the covariates as a product of one-dimensional conditional distributions. For ease of
expression, suppose that xhi = (xhi1, . . . , xhip), where (xhi1, . . . , xhir ) are missing for at least one
subject, and xhi,obs = (xhi,r+1, . . . , xhip) are observed for all subjects. Then we write the joint distribution
of the r -dimensional covariate vector (xhi1, . . . , xhir ) as

p(xhi1, . . . , xhir |α) = p(xhir |xhi1, . . . , xhi,r−1, xhi,obs, αr )

× p(xhi,r−1|xhi1, . . . , xhi,r−2, xhi,obs, αr−1) · · · p(xhi1|xhi,obs, α1), (3.4)

where α j is a vector of location and scale parameters for the j th conditional distribution, the α j are
distinct, and α = (α1, . . . , αr ). It is important to note that (3.4) implies that a model must be specified
only for those covariates that are not completely observed. When one or more covariates are completely
observed for all subjects, then those covariates xhi,obs may be used as fixed regressor variables when
the joint distribution of (xhi1, . . . , xhir ) is specified. This is helpful in limiting the number of nuisance
parameters that must be estimated. Although any covariate density may be specified, certain densities,
such as those in the exponential family, simplify the required Gibbs sampling procedure.

We present the following practical guidelines for modeling the covariate distribution:

(1) When a covariate is completely observed, we need not specify its distribution.
(2) When the missing covariates are all dichotomous, we propose modeling their joint distribution

using a sequence of logistic regression models. Define u j−1 = (xmis, j−1, . . . , xmis,1, xobs). Then
we specify a sequence of logistic regressions for each p(xmis, j | u j−1, α j ).

(3) If the missing covariates are categorical with multiple levels or are counts, models such as
multinomial logistic regression models, cumulative logit models, or Poisson regression models may
be used.

(4) When the missing covariates are continuous and take values on the real line, we may specify a joint
multivariate normal distribution. Another possibility is to use a sequence of linear regressions for
each p(xmis, j | u j−1, α j ). For strictly positive xmis, j , we may use a log transform and then specify
a normal distribution for the transformed covariates.

(5) With missing mixed covariates, we specify the distribution of the continuous covariates first, and
then we specify the distribution of the categorical covariates conditional on the continuous covari-
ates. Suppose, for example, that we have two missing covariates xmis = (xmis,1, xmis,2), where xmis,1
is continuous and xmis,2 is categorical. Then our convention for specifying the joint distribution
for the missing covariates is given by p(xmis | xobs, α) = p(xmis,2 | xmis,1, xobs, α2) p(xmis,1 |
xobs, α1). So we might specify a normal distribution for xmis,1 and use a logistic regression model
for p(xmis,2 | xmis,1, xobs, α2). We note that the estimates of parameters in the cure rate model
are quite robust to various orders or conventions of conditioning, so that the opposite convention
(specifying the distribution of discrete covariates first, and then specifying the distribution of the
continuous covariates conditional on the discrete covariates) is equally appropriate.
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3.2 Specification of the missing data mechanism

Ibrahim et al. (1999a) outline a general procedure for the specification of the model for the missing data
mechanism. Using their proposal, we suggest modeling the missing data mechanism with a sequence
of one-dimensional conditional distributions. This is an approach similar to that described for the
specification of the covariate distribution. Let Rhi j indicate whether or not the j th covariate xhi j is
observed for subject i in cluster h. In addition, we assume that the first r missing covariates are
nonignorable. Then we propose the model

p(Rhi1, . . . , Rhir | xhi , φ) = p(Rhir | Rhi1, . . . , Rhi,r−1, xhi , φr )

× p(Rhi,r−1 | Rhi1, . . . , Rhi,r−2, xhi , φr−1) × · · · × p(Rhi1 | xhi , φ1),

(3.5)

where φ j is a vector of parameters for the j th conditional distribution and φ = (φ1, . . . , φr ). Because
each Rhi j is dichotomous, a sequence of logistic regressions may be used for (3.5). As discussed
in Ibrahim et al. (1999b), this specification greatly reduces the number of nuisance parameters that
must be estimated and closely approximates a joint log-linear model for the missing data indica-
tors.

An important consideration in the modeling of the missing data mechanism is that certain spec-
ifications may lead to inestimable parameters. The issue of estimability often arises in nonignorable
response models, and care should be taken to choose a parsimonious model for the missing data
mechanism. We note that the missing data mechanism need only be specified for those missing
covariates that are believed to be nonignorable and that it is not necessary to specify the missing
data mechanism for MAR or MCAR covariates. The one-dimensional conditional specification also
facilitates efficient sampling from the conditional distribution of the missing covariates given the
observed data, which is necessary in the E-step. Using logistic regressions for each one-dimensional
conditional in (3.5) ensures that each Rhi j is log-concave in φ j and therefore guarantees that (3.5)
is log-concave in φ. This greatly eases the computations required in the E-step of the algo-
rithm.

Along with the results of a primary analysis, a detailed sensitivity analysis of both the missing
data mechanism and covariate distribution should be presented. In this manner we are able to check
whether the parameter estimates of interest (i.e. the parameters of the cure rate model) depend heavily
on the assumptions made about the covariate distribution and missing data mechanism. It is well known
that misspecification of the missing data mechanism in particular (such as presenting a complete case
analysis, which assumes MCAR missing data, when data are in fact nonignorable) can lead to misleading
parameter estimates and conclusions. We suggest estimating a variety of models for the missing data
mechanism that include models under MCAR, MAR, and nonignorable scenarios. We stress that the
sensitivity analysis cannot be used to test a certain missing data mechanism or the adequacy of the
covariate distribution. However, robustness in the parameters of the cure rate model is reassuring,
and widely varying parameter estimates would suggest caution in the interpretation of results from
any analysis. In any case, the investigator’s knowledge of the subject matter at hand should be the
primary guide to choosing the most reasonable models for the covariate distribution and missing data
mechanism.
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3.3 Estimation with missing data

When some covariates are missing, the full data log-likelihood corresponding to (2.2), incorporating the
covariate distribution and (if needed) the missing data mechanism, is written

l(γ | D) =
H∑

h=1

nh∑
i=1

νhi log(Nhi ) + νhi log(λkhi ) + Nhi log(S∗(yhi | λ))

+
H∑

h=1

nh∑
i=1

Nhi (x ′
hiβ + w′

hi bh) − log(Nhi !) − exp(x ′
hiβ + w′

hi bh)

+
H∑

h=1

−q

2
log(2π) − 1

2
log(det(�)) − 1

2
(b′

h�−1bh)

+
H∑

h=1

nh∑
i=1

log(p(xhi,mis | xhi,obs, α)) + log(p(Rhi | xhi , φ)), (3.6)

where now γ = (β, λ, �, α, φ). As in the complete covariate case, we implement an EM algorithm
and take the expectation of the log-likelihood with respect to the unobserved random effects, missing
covariates, and latent variables. Thus the E-step with missing covariates is given by

E[l(γ | D) | xhi , γ
(l)] =

H∑
h=1

nh∑
i=1

∫
xmis,b,N

p(xhi,mis, bh, Nhi | xhi,obs, γ
(l))

× {νhi log(Nhi ) + νhi log(λkhi ) + Nhi log(S∗(yhi | λ(l)))} dxhi,mis dbh dNhi

+
H∑

h=1

nh∑
i=1

∫
xmis,b,N

p(xhi,mis, bh, Nhi | xhi,obs, γ
(l))

× {Nhi (x ′
hiβ + w′

hi bh) − log(Nhi !) − exp(x ′
hiβ + w′

hi bh)} dxhi,mis dbh dNhi

+
H∑

h=1

∫
xmis,b,N

p(xhi,mis, bh, Nhi | xhi,obs, γ
(l))

×
{

− q

2
log(2π) − 1

2
log(det(�)) − 1

2
(b′

h�−1bh)

}
dxhi,mis dbh dNhi

+
H∑

h=1

nh∑
i=1

∫
xmis,b,N

p(xhi,mis, bh, Nhi | xhi,obs, γ
(l))

× {log(p(xhi,mis | xhi,obs, α)) + log(p(Rhi | xhi , φ))} dxhi,mis dbh dNhi , (3.7)

where p(xhi,mis, bh, Nhi | xhi , γ
(l)) is the density of the random effects, missing covariates, and latent

count variables conditional on the observed data. Computational details are given in the Appendix.

3.4 Variance estimation

Variance estimation for the parameters of interest is complicated by several factors. Because the estimates
are obtained from an EM algorithm, one possibility is to use Louis’s (1982) method to calculate the
observed information matrix. However, the dimension of λ and the other nuisance parameters may
be large, and the variance estimates may be unstable. In addition, some error is introduced by Gibbs
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sampling (Geman and Geman, 1984). A simple variance estimator with good small-sample properties
was recently introduced by Goetghebeur and Ryan (2000). Following Rubin and Schenker (1991), they
propose imputing data (in this case, the imputed data would be sampled random effects and sampled
values of the unobserved covariates) and obtaining naive point estimates and variance estimates for the
parameters of interest. Then the variance of the EM estimator is obtained as a weighted sum of the mean
of the imputation variances and the empirical variance of the imputation point estimates, with weights 1
and 1 + 1

m , respectively, where m is the number of imputations used. The variance estimation proceeds as
follows.

(1) Run the proposed EM algorithm until convergence, where γ̂ represents the parameter estimates at
convergence.

(2) Fixing the parameter estimates at γ̂ , impute one value for each of the missing covariates. Impute
one random effect for each cluster.

(3) Obtain parameter estimates and their variances based on the information matrix.
(4) Repeat steps 2 and 3 m times.
(5) Obtain the final variance estimate as the sum of the mean of the imputation variances and (1 + 1

m )

times the empirical variance of the imputation point estimates.

4. ANALYSIS OF MELANOMA DATA

We consider data from two phase III clinical trials, E1684 (Kirkwood et al., 1996) and E1690
(Kirkwood et al., 1999), conducted by ECOG. Before these trials, no adjuvant chemotherapy had been
shown to have a significant impact on the survival of melanoma patients after surgery. Interferon Alpha-2b
is a post-operative chemotherapy treatment used for other cancers that was believed to have the potential
to make a significant impact on survival in high-risk melanoma patients as well. We consider the effect of
this treatment on relapse-free survival, defined as the time from randomization until recurrence of cancer
or death. Because the treatment effect seen in E1684 was larger than anticipated and was accompanied
by substantial side effects due to the high dosage, ECOG began a confirmatory trial, E1690, to check
the results of E1684 and to study the effect of a lower dosage of interferon. This trial was designed for
the same patient population as E1684, and the high-dose interferon and observation arms in this trial
were identical to those of E1684. In addition, E1690 contained a low-dose interferon arm that will not be
incorporated in this analysis.

Although these data were initially analyzed using a log-rank test and the Cox (1972) regression model,
these methods do not address the fact that some fraction of patients are no longer at risk of death or relapse
due to melanoma after sufficient follow-up. This effect can be seen as a plateau effect in the Kaplan–Meier
plots given in Figure 1, where clearly S(∞) is greater than zero. In each Kaplan–Meier plot in Figure 1,
the survival curves do not approach zero but tend to stabilize in the range of 20% for observation and 40%
for interferon. This effect may be further examined by looking at survival plots from a cure rate model with
treatment as a covariate. These survival plots are also shown in Figure 1. The cure rate model provides
a better estimate of the survival function in the tails (and hence the cure rate) than the Kaplan–Meier
estimate, which may be sensitive at late event times where data are sparse.

In both studies, high-dose interferon led to greater patient survival, though statistical significance was
achieved only in E1684. Investigators believed that steady improvements in the treatment and care of
high-risk melanoma patients produced a cohort or time-of-entry effect in the study despite the fact that
patients received exactly the same therapies over time. In order to account for this possibility, we introduce
a random effect for time interval of entry onto the studies. We have 57 clusters, each containing a cohort
of patients entering the study during roughly a two month time period. The cluster sizes range from four
to 25 patients. To model the hazard λ, we assumed a constant hazard λk in each of the five intervals

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/3/3/387/306623 by guest on 24 April 2024



396 A. H. HERRING AND J. G. IBRAHIM

{(0.0, 0.5), (0.5, 1.0), (1.0, 2.5), (2.5, 5.0), (5.0, 10.0)}. In addition to the treatment effect (x1), several
prognostic factors were identified as important predictors of survival. These include the age (x2) of the
patient, the Breslow thickness (x3) or depth of the tumor in mm, the size (x4) or area of the tumor in
cm2, and the type (x5) of tumor (superficial spreading or not). Treatment and age were observed for all
patients, but Breslow thickness, size, and tumor type were missing for some subjects so that 27.8% of
the patients had missing covariate data. Logarithms of age, Breslow thickness, and size were used in all
analyses to achieve approximate normality in the distributions of the continuous covariates, which were
also standardized to have mean zero and variance one.

We consider models that allow the missing data of Breslow thickness (x3), tumor size (x4), and tumor
type (x5) to be nonignorable. Let Rhi3, Rhi4, and Rhi5 be the missing data indicators of Breslow thickness,
size, and type respectively, and let Rhi = (Rhi3, Rhi4, Rhi5). Using (3.5), we model the missing data
mechanism as

p(Rhi | xhi , yhi , φ) = p(Rhi5 | xhi5, yhi , φ1)p(Rhi4 | xhi4, yhi , φ2)p(Rhi3 | xhi3, yhi , φ3),

h = 1, . . . , 57, i = 1, . . . , nh . We model the binary missing data indicators using logistic regression
models of the form

p(Rhi5 | xhi5, yhi , φ1) = exp(φ10 + φ11xhi5 + φ12 log(yhi ) + φ13xhi5 × log(yhi ))

1 + exp(φ10 + φ11xhi5 + φ12 log(yhi ) + φ13xhi5 × log(yhi ))
,

p(Rhi4 | xhi4, yhi , φ2) = exp(φ20 + φ21xhi4 + φ22 log(yhi ) + φ23xhi4 × log(yhi ))

1 + exp(φ20 + φ21xhi4 + φ22 log(yhi ) + φ23xhi4 × log(yhi ))
,

p(Rhi3 | xhi3, yhi , φ3) = exp(φ30 + φ31xhi3 + φ32 log(yhi ) + φ33xhi3 × log(yhi ))

1 + exp(φ30 + φ31xhi3 + φ32 log(yhi ) + φ33xhi3 × log(yhi ))
, (4.8)

where φ1= (φ10, φ11, φ12, φ13)
′, φ2 = (φ20, φ21, φ22, φ23)

′, and φ3 = (φ30, φ31, φ32, φ33)
′. This

specification allows the probability of observing of one covariate to depend on the possibly unobserved
value of that covariate itself and the observed event time. Other missing data mechanisms are considered
in the sensitivity analysis presented in Table 4.

Because these three covariates are missing, we must also specify their joint distribution. Using (3.4),
we model the covariate distribution as

p(xhi3, xhi4, xhi5 | xhi2, α) = p(xhi5 | xhi2, xhi3, xhi4, α1)p(xhi4 | xhi2, xhi3, α2)p(xhi3 | xhi2, α3),

(4.9)

h = 1, . . . , 57, i = 1, . . . , nh . Because treatment and age, (x1, x2), are always observed, they need not be
modeled and are conditioned upon throughout the analysis as usual. We model tumor type, a dichotomous
covariate, using a logistic regression model of the form

p(xhi5 | xhi2, xhi3, xhi4, α1) = exp(α10 + α11xhi2 + α12xhi3 + α13xhi4)

1 + exp(α10 + α11xhi2 + α12xhi3 + α13xhi4)
,

where α1 = (α10, α11, α12, α13)
′. We then model the continuous covariates Breslow thickness and size as

normal random variables. We take [xhi4 | xhi2, xhi3, α2] ∼ N (α20 +α21xhi2 +α22xhi3, α23), where α2 =
(α20, α21, α22, α23). Then we take [xhi3 | xhi2, α3] ∼ N (α30+α31xhi2, α32), where α3 = (α30, α31, α32).
Because of the computational intensity of the procedure, we take a burn-in of 200 Gibbs samples and use
200 samples for each missing covariate and random effect in the analysis. The convergence criterion was
that the squared distance be less than 10−4 between the lth and (l + 20)th EM iterations.

We present the results of this analysis in Table 1. We compare these not only to the results from a
complete case analysis discarding all the missing subjects but also to the results from an analysis that
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assumes the missing covariates are not nonignorable but MAR instead. For the MAR analysis, we use
the same covariate distribution described for the nonignorable analysis and given in (4.9) but leave the
missing data mechanism unspecified. We see that the complete case analysis, which is valid when the
missing covariates are MCAR, finds no significant treatment benefit. Both the MAR and nonignorable
EM analyses show that interferon is significantly better than observation. The MAR and nonignorable
EM analyses show that advanced age and larger tumor size are detrimental towards disease-free survival
and that Breslow thickness and tumor type do not have any significant effect.

It is also of interest to estimate the cure rates under the three models. Recall that the cure rate is given
by exp(− exp(x′β+w′b)). If we fix the values of Breslow thickness, tumor size, and age at 0 (their average
transformed values) and consider a cluster with bh = 0, we obtain the cure rate estimates presented in
Table 2. The complete case cure rates appear to be overly optimistic, estimating cure rates of roughly
40% for both treatments with not much difference between treatments. The MAR and nonignorable
EM analyses yield similar estimates of the cure rates that are both somewhat lower than those in the
complete case analysis. These models also show a larger difference due to treatment. According to the EM
models, the cure rates for patients on interferon are roughly 10% higher than the cure rates for patients on
observation.

We estimate median survival in the uncured from the relationship S∗(t) = exp(−θ F̂(t))−exp(−θ)
1−exp(−θ)

, where

F̂(t) = 1 − exp(−λk(t − sk−1) − ∑k−1
g=1 λk(sk − sk−1)), sk−1 < t � sk , and θ = exp(x ′β + w′b). When

we look at the estimated median survival times for the uncured patients in the study given in Table 3,
we see again that the complete case estimates are optimistic, with estimates of median survival that are
greater than the EM estimates. Using the EM analysis, we see a greater difference due to treatment than in
the complete case analysis. Using the EM model that assumes the missing data are nonignorable, median
survival for uncured patients on interferon is roughly one month longer than for patients on observation.
In all models, there does not appear to be an effect of tumor type on median survival. Estimates of median
survival from a standard Cox model would be contaminated by the inclusion of those patients who have
been ‘cured’ by surgery along with the ‘uncured’ patients.

It is important to address the sensitivity of the modeling scheme to both the specification of the missing
data mechanism and the specification of the covariate distribution. With this in mind, we conducted
sensitivity analyses of both aspects of the model. We report the sensitivity analysis for the missing data
mechanism in Table 4. For the sensitivity analysis of the missing data mechanism, we used the same
covariate distribution, p(xhi5 | xhi2, xhi3, xhi4, α1)p(xhi4 | xhi2, xhi3, α2)p(xhi3 | xhi2, α3), in (4.9) and
varied the missing data mechanism. We consider several different parametrizations for the missing data
mechanism.

• MD1: mechanism left unspecified (MAR);

• MD2: p(R4 | x4, y, φ2) (Breslow thickness and type MAR but size may be nonignorable);

• MD3: p(R4 | x4, y, φ2) p(R3 | x3, y, φ3) (type MAR but Breslow thickness and size may be
nonignorable);

• MD4: p(R5 | x5, y, φ1) p(R4 | x4, y, φ2) p(R3 | x3, y, φ3) (Breslow thickness, size, and type may
be nonignorable; same as mechanism given in (4.8));

• MD5: p(R5 | x5, y, R3, R4, φ1) p(R4 | x4, y, R3, φ2) p(R3 | x3, y, φ3) (Breslow thickness, size,
and type may be nonignorable, and missing data indicators may be correlated).

In Table 4 we see that the model is generally robust to variations in the specification of the missing data
mechanism. The estimates of the treatment effect are virtually identical in all five models considered, and
the models all agree that interferon has a significant benefit. In addition, all models agree that advanced
age and larger tumor size are related to poor outcomes and that tumor type has no significant effect. The
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Table 1. Results for melanoma data

CC MAR NI
Cure rate model

Intercept 0.14 (0.07) 0.21 (0.06)a 0.25 (0.06)a

Trt −0.12 (0.09) −0.28 (0.07)a −0.28 (0.07)a

Age 0.05 (0.04) 0.09 (0.04)a 0.08 (0.04)a

Breslow 0.00 (0.05) 0.02 (0.04) 0.06 (0.04)
Size 0.06 (0.04) 0.08 (0.04)a 0.08 (0.03)a

Type 0.08 (0.10) 0.06 (0.09) −0.02 (0.08)

Random effects sigma
σ 0.18 (0.02) 0.11 (0.01) 0.10 (0.01)

Covariate distribution
Breslow

Intercept – 0.00 (0.04) 0.08 (0.04)
Age – 0.08 (0.04) 0.07 (0.04)
σbres – 0.99 (0.05) 1.05 (0.06)

Size
Intercept – −0.01 (0.04) −0.25 (0.04)
Age – 0.12 (0.04) 0.15 (0.04)
Breslow – 0.19 (0.04) 0.18 (0.04)
σsi ze – 0.96 (0.05) 1.07 (0.06)

Type
Intercept – −0.73 (0.10) −0.58 (0.10)
Age – −0.11 (0.10) −0.12 (0.09)
Breslow – −1.05 (0.11) −0.96 (0.10)
Size – 0.28 (0.10) 0.16 (0.09)

Hazard
Time (years)

0.00–0.50 0.55 (0.05) 0.61 (0.05) 0.61 (0.05)
0.50–1.00 0.59 (0.07) 0.63 (0.06) 0.63 (0.06)
1.00–2.50 0.53 (0.06) 0.50 (0.05) 0.50 (0.05)
2.50–5.00 0.44 (0.08) 0.49 (0.08) 0.49 (0.08)
5.00–10.00 0.43 (0.22) 0.54 (0.24) 0.54 (0.24)

Missing data mechanism
Breslow

Intercept – – 6.21 (1.17)
Breslow – – −2.90 (0.67)
Time – – −1.73 (0.65)
Bres∗time – – 1.22 (0.35)

Size
Intercept – – 2.70 (0.28)
Size – – 1.63 (0.23)
Time – – 0.04 (0.19)
Size∗time – – 0.04 (0.16)

Type
Intercept – – 2.30 (0.20)
Type – – −0.46 (0.37)
Time – – 0.30 (0.13)
Type∗time – – −0.62 (0.24)

a p < 0.05 in cure rate model.
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Table 2. Cure rates, calculated for subjects with average values of Breslow

thickness, size, and age, and random effect estimate b̂ = 0

Superficial spreading tumors Other tumors
Model Interferon (%) Observation (%) Interferon (%) Observation (%)
Complete case 40 36 42 38
MAR 37 27 39 29
Nonignorable 39 28 38 28

Table 3. Median survival (in years) for the uncured, calculated for
subjects with average values of Breslow thickness, size, and age, and

random effect estimate b̂ = 0

Superficial spreading tumors Other tumors
Model Interferon Observation Interferon Observation
Complete case 0.82 0.78 0.84 0.80
MAR 0.78 0.68 0.80 0.72
Nonignorable 0.79 0.71 0.79 0.70

Table 4. Sensitivity analysis for melanoma missing data mechanism. The model used in the primary
analysis is denoted CD3-MD4

Estimate (SE)
Model Intercept Treatment Age Breslow Size Type
CD3-MD1 0.21 (0.06)a −0.28 (0.07)a 0.09 (0.04)a 0.02 (0.04) 0.08 (0.04)a 0.06 (0.09)
CD3-MD2 0.23 (0.06)a −0.28 (0.07)a 0.08 (0.04)a 0.02 (0.04) 0.09 (0.03)a 0.06 (0.08)
CD3-MD3 0.20 (0.06)a −0.27 (0.07)a 0.08 (0.04)a 0.08 (0.04)a 0.08 (0.03)a 0.11 (0.08)
CD3-MD4 0.25 (0.06)a −0.28 (0.07)a 0.08 (0.04)a 0.06 (0.04) 0.08 (0.03)a −0.02 (0.08)
CD3-MD5 0.25 (0.06)a −0.28 (0.07)a 0.08 (0.04)a 0.00 (0.04) 0.09 (0.03)a 0.01 (0.08)

a p < 0.05.

estimate of the coefficient of Breslow thickness does vary depending on the missing data mechanism, so
we judge the effect of Breslow thickness with caution. Due to the similarity of the MAR and nonignorable
models, we feel there is evidence that the covariates are MAR and that an analysis using MD1, which
allows us to leave the missing data mechanism unspecified, is appropriate. The results of our sensitivity
analysis for the missing data mechanism highlight the importance of trying a variety of models rather than
choosing one model for the missing data mechanism and ignoring the need for a sensitivity analysis.

In addition, we conducted a sensitivity analysis of the covariate distributions. In this case, we used
the missing data mechanism p(R5 | x3, y, φ1) p(R4 | x4, y, φ2) P(R3 | x5, y, φ3), given in (4.8), and
we varied the covariate parametrizations while still using logistic regression for tumor type and linear
regression for Breslow thickness and tumor size. The results of this sensitivity analysis are presented in
Table 5. The following covariate parametrizations were considered in this sensitivity analysis:

• CD1: p(x5 | α1) p(x4 | α2) p(x3 | α1) (smallest possible model for Breslow thickness, size, and
type);

• CD2: p(x5 | x3, x4, α1) p(x4 | x3, α2) p(x3 | α1);

• CD3: p(x5 | x2, x3, x4, α1) p(x4 | x2, x3, α2) p(x3 | x2, α1) (described in (4.9) and used in primary
analysis as well as sensitivity analysis of missing data mechanism);
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Table 5. Sensitivity analysis for melanoma covariate distribution. The model used in the primary
analysis is denoted CD3-MD4

Estimate (SE)
Model Intercept Treatment Age Breslow Size Type
CD1-MD4 0.30 (0.06)a −0.29 (0.07)a 0.08 (0.04)a 0.01 (0.04) 0.07 (0.04)b −0.15 (0.08)b

CD2-MD4 0.24 (0.06)a −0.28 (0.07)a 0.08 (0.04)a 0.06 (0.04) 0.10 (0.04)a −0.01 (0.09)
CD3-MD4 0.25 (0.06)a −0.28 (0.07)a 0.08 (0.04)a 0.06 (0.04) 0.08 (0.03)a −0.02 (0.08)
CD4-MD4 0.23 (0.06)a −0.27 (0.07)a 0.08 (0.04)a 0.07 (0.04)b 0.08 (0.03)a 0.03 (0.09)

a p < 0.05, b p < 0.10.

• CD4: p(x5 | x1, x2, x3, x4, α1) p(x4 | x1, x2, x3, α2) p(x3 | x1, x2, α1).

With respect to inference about the treatment effect, the models all agree that treatment is beneficial and
have treatment effect estimates that are almost exactly the same. However, it appears that CD1-MD4, the
smallest possible covariate model, is not sufficient to model the covariate distribution. In fact, with this
model we see a significant improvement in survival for superficial spreading tumors. This effect is not
seen in any other models fit to the data. So one should exercise caution in the specification of the covariate
distribution and try several models in order to ensure that the distribution is appropriately modeled.

5. DISCUSSION

We propose a method of estimation in cure rate models with random effects. In addition, we give
an extension of the model that allows us to obtain unbiased parameter estimates in the presence of
possibly nonignorable (or MAR) missing covariates. The methodology introduced is computationally
feasible and is used in the analysis of two ECOG melanoma clinical trials. The proposed analysis (1)
attempts to characterize the type and impact of missing tumor characteristics, providing some evidence
that the missing data may not be MCAR, (2) shows evidence of a cohort or time of entry effect,
and (3) allows estimation of the probability of cure for these high-risk patients. A detailed sensitivity
analysis was conducted to assess the dependence of the results obtained on the modeling assumptions. We
evaluated models that assumed the missing data were MCAR, MAR, or nonignorable. As a whole, this
particular analysis was not very sensitive to parametric assumptions about the missing data mechanism
or distributions of the missing covariates when we assumed the missing data were MAR or nonignorable.
However, we stress the importance of conducting a sensitivity analysis whenever one accounts for missing
data. The results of our analysis lead us to conclude that the missing data are most likely not nonignorable
but in fact are most likely MAR and therefore that a complete case analysis is most likely not appropriate
for this particular dataset and would, in this case, lead the investigators to conclusions different from those
obtained in the MAR and nonignorable models.

One issue that warrants further consideration is accurate estimation of the cure rate. The estimates
can be unstable when follow-up is insufficient or when too few events occur, and in such cases the
model itself may not be identifiable. Chen et al. (1999) develop a Bayesian model with informative prior
distributions that allows better estimation of cure rates in such settings. This model could be adapted for
the random effects cure rate structure proposed here. Although the cure rate estimates were relatively
robust in the various sensitivity analyses for the melanoma data, these estimates did vary slightly along
with the parameter estimates in these analyses.

In addition, one might argue against the incorporation of the random effect in the analysis. Although
incorporating a random effect makes the analysis more difficult and time-consuming, the missing data and
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positive probability of cure in the melanoma trials ensure that even an analysis without random effects will
be non-standard. The small standard error of the random effects σ in Table 1 show that the cohort effect,
while not large, is significant, and the corresponding cluster-specific cure rate estimates do vary based on
cohort of entry. We also note that incorporating random effects in this manner makes parameter estimates
conditional on cohort membership, so that they may not be interpreted marginally.
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APPENDIX: TECHNICAL DETAILS

Formulae for f ∗ and S∗

Suppose λkhi is the estimate of λ in the interval (skhi −1, skhi ] containing the event time yhi . (We provide
a formula for estimating λ after describing the Monte Carlo EM estimation scheme.) Then from (2.1),
we have f ∗(yhi | λ) = λkhi exp

{ − [
λkhi (yhi − skhi −1) + ∑khi −1

g=1 λg(sg − sg−1)
]}

and S∗(yhi | λ) =
exp

{ − [
λkhi (yhi − skhi −1) + ∑khi −1

g=1 λg(sg − sg−1)
]}

.

Monte Carlo EM for complete data estimation

To evaluate the E-step with no missing covariates given in (2.3), we will use the Monte Carlo EM
algorithm of Wei and Tanner (1990). We write the joint density of the random effects and latent counts con-
ditional on the observed data as p(bh, Nhi | xhi , γ

(l)) = p(Nhi | xhi , bh, γ (l))p(bh | xhi , γ
(l)). It can be

shown that [Nhi | xhi , bh, γ (l)] ∼ Vhi + νhi , where Vhi ∼ Poisson
(
S∗(yhi | λ(l)) exp(x ′

hiβ
(l) + w′

hi bh)
)
,

and

p(bh | xhi , γ
(l)) ∝ p(bh | �(l))

nh∏
i=1

(exp(x ′
hiβ

(l) + w′
hi bh) f ∗(yhi | λ(l)))νhi

× exp(− exp(x ′
hiβ

(l) + w′
hi bh)[1 − S∗(yhi | λ(l))]). (A.1)

We note that the density in (A.1) has an attractive form for Gibbs sampling. As long as p(bh | �)

is log-concave, then p(bh | xhi , γ
(l)) is also log-concave. This enables us to use the adaptive rejection

algorithm of Gilks and Wild (1992) in our sampling scheme when we sample the unobserved random
effects.

Suppose that for the hth cluster, we take a sample of size mh , (b(1)
h , b(2)

h , . . . , b(mh)
h ) from p(bh |

xhi , γ
(l)) using the Gibbs sampler. Noting that the terms log(Nhi ) and log(Nhi !) are constants with respect

to the estimation of γ , we see that the log-likelihood is essentially linear in Nhi , and thus the E-step may
be simplified by replacing Nhi with its conditional expectation. This expectation, which depends on b( j)

h ,

the j th sampled value of bh , is given by N (l+1)
hi j = E(Nhi | b( j)

h , γ (l)) = S∗(yhi | λ(l)) exp(x ′
hiβ

(l) +
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w′
hi b

( j)
h ) + νhi . Thus, we obtain the E-step

Q(γ | γ (l)) =
H∑

h=1

1

mh

mh∑
j=1

nh∑
i=1

N (l+1)
hi j (x ′

hiβ + w′
hi b

( j)
h ) − exp(x ′

hiβ + w′
hi b

( j)
h )

+
H∑

h=1

1

mh

mh∑
j=1

nh∑
i=1

νhi log(λkhi ) + N (l+1)
hi j log(S∗(yhi | λ(l)))

+
H∑

h=1

1

mh

mh∑
j=1

−q

2
log(2π) − 1

2
log(det(�)) − 1

2
(b( j)′

h �−1b( j)
h ),

where the terms log(Nhi ) and log(Nhi !), constants with respect to the estimation of γ , have been dropped.
Note that we can break down the E-step as Q(γ | γ (l)) = Q(1)(β | γ (l))+ Q(2)(λ | γ (l))+ Q(3)(� | γ (l)),
where we may use Newton–Raphson to obtain β(l+1), the maximizer of Q(1)(β | γ (l)). The estimate of
�lt+1) is straightforward to calculate, and λ

(l+1)
k is given by

λ
(l+1)
k =




∑
sk−1<yhi �sk

νhi




×



∑
sk−1<yhi �sk

[
1

mh

mh∑
j=1

N (l+1)
hi j

]
(yhi − sk−1) +

∑
yhi >sk

[
1

mh

mh∑
j=1

N (l+1)
hi j

]
(sk − sk−1)




−1

,

for k = 1, . . . , K . We see that the estimate of λ exists as long as at least one event occurs in each interval
(sk−1, sk].

Monte Carlo EM when some covariates are missing

To evaluate the E-step in (3.7) with missing covariates, consider p(xhi,mis, bh, Nhi | xhi , γ
(l)) =

p(Nhi | xhi , bh, γ (l))p(xhi,mis, bh | xhi,obs, γ
(l)), where [Nhi | xhi , bh, γ (l)] ∼ Vhi + νhi and Vhi ∼

Poisson(S∗(l)(yhi | λ(l)) exp(x ′
hiβ

(l) + w′
hi bh)). In addition,

p(xhi,mis, bh | xhi,obs, γ
(l)) ∝ p(bh | �(l)) ×

{
nh∏

i=1

p(Rhi | xhi , φ
(l))p(xhi,mis | xhi,obs, α

(l))

(exp(x ′
hiβ

(l) + w′
hi bh) f ∗(yhi | λ(l)))νhi exp(− exp(x ′

hiβ
(l) + w′

hi bh)[1 − S∗(yhi | λ(l))])
}

. (A.2)

To evaluate (3.7), we use the Monte Carlo EM algorithm of Wei and Tanner (1990) in much the same
manner as with complete covariate data. Samples will be obtained from [xhi,mis, bi | xhi,obs, γ

(l)] using
the Gibbs sampler (Gelfand and Smith, 1990) along with the adaptive rejection algorithm of Gilks and
Wild (1992). The quantity in (A.2) has an attractive form for sampling because it is log-concave provided
that we choose log-concave densities for p(bh | �), p(xhi,mis | xhi,obs, α), and p(Rhi | xhi , φ).

For each subject, let (x ( j)
hi , b( j)

h ), j = 1, . . . , mh contain the j th sampled values of random effects and

the missing covariates, with x ( j)
hi = (xhi,obs, x ( j)

hi,mis). Then we have N (l+1)
hi j = E(Nhi | x ( j)

hi , b( j)
h , γ (l)) =
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S∗(yhi | λ(l)) exp(x ( j)′
hi β(l) + w′

hi b
( j)
h ) + νhi , which leads to the E-step

Q(γ | γ (l)) =
H∑

h=1

1

mh

mh∑
j=1

nh∑
i=1

N (l+1)
hi j (x ( j)′

hi β + w′
hi b

( j)
h ) − exp(x ( j)′

hi β + w′
hi b

( j)
h )

+
H∑

h=1

1

mh

mh∑
j=1

nh∑
i=1

νhi log(λkhi ) + N (l+1)
hi j log(S∗(yhi | λ(l)))

+
H∑

h=1

1

mh

mh∑
j=1

nh∑
i=1

log(p(x ( j)
hi,mis | α)) + log(p(Rhi | x ( j)

hi , φ))

+
H∑

h=1

1

mh

mh∑
j=1

−q

2
log(2π) − 1

2
log(det(�)) − 1

2
(b( j)′

h �−1b( j)
h ).

We break down the E-step as Q(γ | γ (l)) = Q(1)(β | γ (l)) + Q(2)(λ | γ (l)) + Q(3)(� | γ (l)) + Q(4)(α |
γ (l))+ Q(5)(φ | γ (l)), and we may use Newton–Raphson to obtain β(l+1), α(l+1), and φ(l+1). We estimate
λ

(l+1)
k and �(l+1) as before.

To summarize, the proposed EM algorithm proceeds as follows:

• obtain an initial estimate of γ , say γ (0) = (β(0), λ(0), �(0), α(0), φ(0)). In the absence of any prior
information regarding the structure of �, one may take �(0) = Iq×q as a starting value;

• sample the random effects, bh , and the missing covariates, xhi,mis;

• compute the conditional expectations N (l)
hi j ;

• at the (l + 1)th EM iteration, update the parameter estimates to obtain γ (l+1);

• iterate until convergence.
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