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SUMMARY

In the research of public health, psychology, and social sciences, many research questions investigate
the relationship between a categorical outcome variable and continuous predictor variables. The focus
of this paper is to develop a model to build this relationship when both the categorical outcome and the
predictor variables are latent (i.e. not observable directly). This model extends the latent class regression
model so that it can include regression on latent predictors. Maximum likelihood estimation is used and
two numerical methods for performing it are described: the Monte Carlo expectation and maximization
algorithm and Gaussian quadrature followed by quasi-Newton algorithm. A simulation study is carried
out to examine the behavior of the model under different scenarios. A data example involving adolescent
health is used for demonstration where the latent classes of eating disorders risk are predicted by the latent
factor body satisfaction.
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1. INTRODUCTION

In the research of public health, psychology, and social sciences, it is very common to have variables or
constructs that cannot be measured directly by a single observable variable but instead are hypothesized
to be the driving force underlying a series of observed variables.

As a motivating example, we consider a study from behavioral public health that is interested in
predictors of eating disorders in adolescent girls. As part of a large comprehensive study of adolescent
nutrition and obesity (Project EAT, Neumark-Sztainer et al., 2002), which collected self-report survey data
from students in 7th and 10th grade at 31 Twin Cities schools in the 1998–1999 school year, one research
question was whether a personal trait related to a girl’s body satisfaction could predict her eating disorder
risk class. Neither body satisfaction nor eating disorder risk can be measured directly (without error) with
a single self-report questionnaire item but both can be considered as latent variables underlying a series
of questionnaire items all of which may be measuring the latent variables with error. Body satisfaction
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146 J. GUO ET AL.

is hypothesized by the researchers to be a continuous latent variable measured by a battery of self-report
Likert items related to satisfaction with different parts of one’s body (e.g. hips, shoulders, waist, etc.).
The outcome variable of interest, eating disorders risk class, is hypothesized to be a categorical latent
variable representing different types of eating disorder risk related to girls engaging in purging vs. those
engaging in restriction behaviors. A checklist of nine unhealthy weight control behaviors was asked on the
questionnaire. No absolute classification rule based on the checklist of nine behaviors exists, but given a
girl’s particular (unobserved) eating disorder risk, the researchers would expect certain behaviors to show
up more than others. Thus, as hypothesized, the researchers are interested in a regression of a categorical
latent variable (eating disorder risk) on a continuous latent variable (body satisfaction) while controlling
for other observed covariates.

A long literature exists and is evolving for latent variable models and methods (for a brief history, see
Bartholomew and Knott, 1999). Categorical latent variable models, i.e. latent class analysis (Lazarsfeld
and Henry, 1968; Clogg, 1995; Hagenaars and McCutcheon, 2002), are common in the health science
literature including, e.g. Uebersax and Grove (1990), measuring distinct diagnostic categories given pres-
ence/absence of several symptoms; Flaherty (2002), measuring smoking initiation; and Croudace et al.
(2003), studying typologies for nocturnal enuresis. Continuous latent variable models, i.e. factor analysis
or general latent factor (trait) analysis (Lawley and Maxwell, 1971; Moustaki and Knott, 2000), are nu-
merous in health science applications where hypothesized continuous latent factors are used, e.g. Bowling
(1997), measuring quality of life; Neumark-Sztainer et al. (2003a,b), utilizing social cognitive theory of
health behaviors; and Lee et al. (2003), measuring attitudes toward drinking alcohol.

But to directly address the research question relating eating disorder risk and body satisfaction where
a latent class variable is regressed on a latent factor, we need a model for incorporating both types of latent
variables simultaneously and a method for estimating the conditional distribution of the categorical latent
class variable given the continuous latent factor. In Section 2, we propose this new model where both the
categorical response and continuous predictors are latent variables. In Section 3, the maximum likelihood
method is considered and two different computational algorithms are proposed. In particular, the Monte
Carlo expectation and maximization (MCEM) algorithm is demonstrated with flexible assumptions of the
distribution of the latent factors, and the Gaussian quadrature approximation followed by quasi-Newton
maximization method is proposed for the case when the latent factors are normally distributed (available
in SAS PROC NLMIXED). In Section 4, we apply this model to the Project EAT data to analyze the
relationship between eating disorder risk class and body satisfaction adjusted for other observed covariates
and carry out the model assumption checking. In Section 5, a simulation study examining the behavior of
the model with respect to sample size and the measurement reliability for the latent variables is shown,
as well as a simulation study mimicking the data example setup to examine computational issues in this
realistic situation. Discussion and future work are given in Section 6.

2. LATENT CLASS REGRESSION ON LATENT FACTORS MODEL

Suppose we have a data set with n independent individuals. For individual i(i = 1, . . . , n), let Xi =
(Xi1, . . . , Xi P )T be a P-dimensional observed vector with continuous elements used to measure a
Q-dimensional continuous latent variable fi . Let ci be a categorical latent variable with K categories
and Yi = (Yi1, . . . , Yi J )T be a J -dimensional observed vector with binary elements, which is used to
measure ci . The primary model of interest will be the conditional distribution of ci given fi and possi-
bly additional observed covariates Wi , where Wi represents R-dimensional observed covariates. Figure 1
(model D) provides a diagram representing the proposed model for all the observed and latent variables.
Similar in spirit to the latent class regression model (model C in Figure 1) (Dayton and Macready, 1988;
Bandeen-Roche et al., 1997), the model introduced in this paper considers latent class regression but the
regressors include latent variables as well as observed variables.
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Latent class regression on latent factors 147

Fig. 1. Model diagram.

One of the fundamental assumptions of this new model is that Yi is conditionally independent of Xi

given the latent variables ci and fi . This means that the model assumes that Yi and Xi are only related
because the variables they are measuring are related. This is a natural assumption when modeling re-
lationships between variables measured with error, i.e. we want to model the relationship between the
underlying variables, not the ones with error. Furthermore, we assume that Yi is conditionally indepen-
dent of fi given ci and Wi and likewise, Xi is conditionally independent of ci given fi and Wi . Finally,
we assume that the observed covariates only influence the model through their influence on the latent
variables, i.e. we assume that Wi is conditionally independent of Yi and Xi given ci and fi . In theory,
this last assumption could be weakened to allow for covariates to directly influence the observed variables
rather than indirectly through the latent variables. But generally it is of interest to examine the effect that
covariates have on the variables of interest, i.e. the latent variables, rather than their influence on the mea-
surement itself. Hence, we introduce the following model for the joint distribution of the observed data
Yi and Xi ,

f (Yi , Xi |Wi ) =
K∑

k=1

∫
f (Yi |ci = k) f (Xi |fi ) f (ci = k|fi , Wi ) f (fi |Wi ) dfi , (2.1)

with specific parametric models specified as follows

f (Yi |ci = k) =
J∏

j=1

π
Yi j
j |k (1 − π j |k)1−Yi j , (2.2)

f (Xi |fi ) ∼ Np

((
λλλ0
0

)
+

(
���
I

)
fi , ���

)
, (2.3)

f (ci = k|fi , Wi ) = πk(fi , Wi ) = exp(αk + fi
T βββk + Wi

T γγγ k)∑K
k=1 exp(αk + fi

T βββk + Wi
T γγγ k)

, (2.4)

f (fi |Wi ) ∼ F(���Wi ,			). (2.5)

A latent class model with conditional independence of measurement within class (Clogg, 1981,1995;
McLachlan and Peel, 2000) is assumed for the relationship between Yi and ci (model B in Figure 1)
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with π j |k = Pr(Yi j = 1|ci = k) representing the probability that Yi j = 1 when the ith individual is in
the latent class k. A confirmatory factor analysis model is used for the relationship between Xi and fi

(model A in Figure 1) in the errors-in-variables parameterization (see e.g. Fuller, 1987; Jöreskog and
Sorborm, 1996), where I is a Q × Q identity matrix, 0 is a Q-dimensional vector of zeros, and λλλ0 and ���
are known or unknown scalars. We specify Xi = (λλλ′

0, 0′)′ + (���′, I)′fi + εεεi , where the random error εεεi is
a P-dimensional vector with E(εεεi ) = 0, Var(εεεi ) = ���, and εεεi is assumed independent of fi . Furthermore,
��� is assumed to be diagonal, which implies along with the assumption that εεεi and fi are independent,
that any correlations found between the elements in the observed vector Xi are due to their relationship
with common fi and not due to some spurious correlation between εεεi . Note that like the latent class
regression model (model C in Figure 1), we use the generalized logit link for the probabilities of the
latent classes, i.e. log( πk (fi ,Wi )

πK (fi ,Wi )
) = αk + fi

T βββk + Wi
T γγγ k , where αK = 0, βββK = (0, 0, . . . , 0)T , and

γγγ K = (0, 0, . . . , 0)T , indicating class K as the reference class. The parameter βββk is a Q-dimensional
vector and γγγ k a R-dimensional vector relating the latent factors and observed covariates (respectively) to
the odds of being in a particular latent class versus the reference class adjusted for one another. Finally,
some Q-dimensional distribution F for latent factors is specified where ��� is a Q × R matrix of scalars
such that E(fi |Wi ) = ���Wi and 			 represents other unknown parameters specifying the distribution.

All estimations of the model (2.1)–(2.5) will be based on the number of factors Q and then the number
of classes K being fixed and known. While for many real problems, the Q and K will be considered given
based on subject matter theory, it is useful to consider how to choose them based on data or at least to give
some guidance. A common technique for choosing the number of factors in the exploratory model (i.e.
where the elements of ��� are freely estimated) is to examine a scree plot of the correlation matrix of X. The
number of factors can be chosen to be the number of eigenvalues before the elbow in the plot. Similarly,
it is common in latent class analysis to fit models with different numbers of classes and compare them by
Bayesian information criterion (BIC) values and choose the model with the smallest BIC (Collins et al.,
1993). These techniques will be used for the data example in Section 4.

3. MAXIMUM LIKELIHOOD ESTIMATION

Given the parametric model (2.1)–(2.5) and the i.i.d. data (Yi , Xi ), for i = 1, . . . , n, estimation of the
model parameters can proceed via the maximum likelihood method. Let Zi = (Yi , Xi ), di = (ci , fi ), and
θθθ = ({π j |k}, λλλ0,���,���, {αk, βββk, γγγ k}, ���,			) be the vector of parameters relating Zi with di and Wi . Thus,
the likelihood function for the model (2.1)–(2.5) can be written as

Lo =
n∏

i=1

f (Zi |Wi ; θθθ) =
n∏

i=1

∫
f (Zi , di |Wi ; θθθ) ddi , (3.1)

where the notation for the integral over di is taken very generally to include the continuous integral for
fi and the summation over ci . This likelihood function is hard to maximize due to the integration of the
latent variables for which there is no closed-form solution. Hence, two numerical methods for performing
the full maximum likelihood are described in this section: MCEM algorithm and Gaussian quadrature
followed by quasi-Newton algorithm.

3.1 MCEM algorithm

It is natural to consider the latent variables, di , as missing data and implement the expectation and
maximization (EM) algorithm for maximizing (3.1). Since it is hard to maximize the observed data like-
lihood Lo directly, we construct the complete data likelihood and apply the EM algorithm to maximize it.
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The complete data likelihood is

Lc =
n∏

i=1

f (Zi , di |Wi ; θθθ).

The MCEM algorithm will iterate between the E-step and M-step until the parameter estimates con-
verge according to some criteria. We monitor the convergence of the EM algorithm by plotting θθθ l vs. the
iteration l.

Standard error estimates of the parameter estimates from MCEM can be obtained by inverting the
information matrix of the log likelihood function based on the observed data. We apply Louis’ formula
(Louis, 1982)

IZ(θθθ) = Ed

(
−∂2Lc(Z, d|W; θθθ)

∂θθθ∂θθθT

)
− Vard

(
∂Lc(Z, d|W; θθθ)

∂θθθ

)
,

evaluated at the maximum likelihood estimate θ̂θθ .
Details of the MCEM algorithm are described in Appendix A.

3.2 Gaussian quadrature with quasi-Newton algorithm

We note that the MCEM algorithm introduced above is flexible with regard to the assumptions of the dis-
tribution of the latent factors. That is, it was not necessary to assume fi as normally distributed. Consider
again the likelihood function associated with the latent class regressed on latent factors model. Because
the latent classes are discrete, it can be written as

Lo =
n∏

i=1

K∑
k=1

∫
f (Yi |ci = k) f (Xi |fi ) f (ci = k|fi , Wi ) f (fi |Wi ) dfi .

We note that the observed data likelihood is a function of the integral of the latent factors fi . In the
special case when the fi is normally distributed, this can be approximated by adaptive Gaussian quadrature
method (Golub and Welsch, 1969, or Table 25.10 of Abramowitz and Stegun, 1972). Then given a closed-
form approximation to the integral involving the normal factors fi , the observed likelihood can then be
approximated in a closed form. With the closed-form approximation for the likelihood, the maximization
of it can be carried out through a quasi-Newton algorithm.

In fact, this method of Gaussian quadrature approximation followed by quasi-Newton maximization
can be implemented using the ‘general’ likelihood function in PROC NLMIXED in SAS. Appendix B
gives the code demonstrating how this can be done.

Although detailed investigation of the computational speed and accuracy of this method as compared
to MCEM is beyond the scope of the current paper, the estimation for the example considered herein
takes five times longer using MCEM. It should also be noted that for increasing numbers of factors, the
integration in both methods may be computationally prohibitive.

4. EXAMPLE

Continuing with the Project EAT data set described in Section 1, for each individual i (i = 1, . . . , 1905),
let Xi = (Xi1, . . . , Xi5)

T indicate the five items measuring body satisfaction (i.e. ‘How satisfied are you
with your: body shape, waist, hips, thigh, stomach?’). Each element was measured on a 5-point Likert
scale where the anchors were 1 = ‘very dissatisfied’ and 5 = ‘very satisfied.’ Despite the discrete nature
of these Likert responses, we will treat Xi as a continuous variable in this data analysis and center each
element to mean zero. Furthermore, let Yi = (Yi1, . . . , Yi9)

T be the nine dichotomous questionnaire items
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150 J. GUO ET AL.

indicating the self-reported use of unhealthy weight control behaviors within the past year (i.e. ‘Have you
done any of the following things in order to lose weight or keep from gaining weight during the past year:
fasting, eating very little food, taking diet pills, making myself vomit, using laxatives, using diuretics,
using food substitute, skipping meals, smoking more cigarettes?’).

4.1 Exploratory data analysis

Assume that underlying the observed responses Yi (i = 1, . . . , 1905) is a latent class variable ci with
categories representing different typologies of eating disorders risk. In practice, we will not know the
‘correct’ number of latent classes in the model. The number of latent classes K needs to be investigated
before fitting the relationship between latent variables. Here, we present the exploratory latent class analy-
sis of the nine observed indicators asking which unhealthy weight control behaviors had been used within
the past year. Table 1 shows the estimated latent class model parameters and associated BIC values. The
3-class model shows the best BIC fit value. Examining the {π j |k} for the 3-class model leads to a class of
girls who are basically not doing any of the behaviors (59.0%), a class doing just the restricting behaviors
(i.e. eating very little and skipping meals) (35.1%), and a high-risk class having a high probability of
doing everything (5.9%).

Now, we explore the observed body satisfaction variables Xi as measurements of a latent factor fi .
The researchers hypothesize that these questions are measuring one dimension of body satisfaction. The
correlations between the variables in Xi range between 0.57 and 0.77. The eigenvalues of the correlation
matrix are (3.682, 0.485, 0.373, 0.262, 0.197), which indicates that one dimension is well described by
these variables, providing empirical support for the one-factor model. Thus, we will consider the body
satisfaction, a one-dimensional continuous latent factor fi underlying the observed Xi .

As a further data exploration, we consider nine separate logistic regressions of the nine different
binary outcomes in Y on the body satisfaction score (i.e. f̂i in Section 4.3), obtained from the factor anal-
ysis model for X, and three other covariates, age, body mass index (BMI), and social economic status
(SES). Note, age was self-reported, BMI was collected by a trained staff member, and SES was measured
by self-reported highest parental education level. The parameter estimates and 95% confidence intervals
for the nine separate regressions are shown in Table 2. We note that in all cases, the body satisfaction
score is significantly negatively related with the unhealthy weight control behavior outcomes but that the

Table 1. Estimated π j |k (probability of saying yes to the variable j given that the individual is in latent
class k) under latent class models with different K values

To control weight Marginal 2-Class 3-Class 4-Class

0 1 0 1 2 0 1 2 3

Fasted 17.7 2.4 39.8 2.2 32.0 65.2 1.8 14.4 67.9 52.8
Ate little 43.5 8.7 93.5 7.3 89.6 97.7 1.3 73.2 100.0 95.8
Diet pills 6.3 1.2 13.6 1.2 7.2 37.9 0.8 6.3 14.3 56.0
Vomit 6.0 0.1 14.5 0.2 6.3 46.3 0.0 3.3 21.3 56.6
Laxatives 1.6 0.2 3.7 0.2 0.0 18.8 0.2 0.0 2.7 39.3
Diuretics 1.2 0.0 2.8 0.0 0.1 11.4 0.0 0.1 0.8 28.9
Food substitutes 8.9 2.1 18.8 2.0 13.5 37.6 1.5 8.9 24.4 49.5
Skipped meals 44.0 11.3 91.0 9.3 89.8 89.4 3.5 73.2 100.0 75.3
Smoked more cigs 9.2 2.5 19.0 2.4 12.8 42.3 2.0 7.9 28.5 41.7

Percent in each class 100 58.9 41.1 59.0 35.1 5.9 47.7 34.0 16.4 1.9

BIC 9843.2 9780.4 9815.6
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Table 2. Logistic regressions for nine binary outcomes on body satisfaction score, age, BMI, and SES
(expected value is the mean of the coefficient estimates from 100 simulated data sets; see section 5.2)

Response Predictor Estimate 95% CI Expected value

Fasted Body satisfaction score −0.5521 (−0.6769, −0.4300) −0.6318
Age 0.1634 (0.0847, 0.2437) 0.1314
BMI −0.0100 (−0.0402, 0.0193) 0.0109
SES −0.0117 (−0.1047, 0.0813) −0.0248

Ate little Body satisfaction score −0.6873 (−0.7901, −0.5868) −0.7597
Age 0.1110 (0.0491, 0.1734) 0.1011
BMI 0.0443 (0.0195, 0.0694) 0.0490
SES −0.1631 (−0.2385, −0.0881) −0.1520

Diet pills Body satisfaction score −0.7411 (−0.9480, −0.5423) −0.5630
Age 0.1322 (0.0082, 0.2607) 0.1189
BMI 0.0420 (0.0006, 0.0813) 0.0099
SES −0.0773 (−0.2267, 0.0710) −0.0193

Vomit Body satisfaction score −0.9045 (−1.1231, −0.6954) −0.7275
Age 0.0205 (−0.1010, 0.1451) 0.1921†
BMI −0.0179 (−0.0657, 0.0269) −0.0048
SES −0.0017 (−0.1514, 0.1480) 0.0303

Laxative Body satisfaction score −0.6543 (−1.0500, −0.2876) −0.7519
Age 0.1601 (−0.0739, 0.4124) 0.2277
BMI 0.0587 (−0.0154, 0.1244) −0.0184†
SES −0.1524 (−0.4440, 0.1301) 0.0923

Diuretics Body satisfaction score −0.4932 (−0.9254, −0.0831) −0.5908
Age −0.0697 (−0.3265, 0.1971) 0.1691
BMI −0.0029 (−0.1097, 0.0868) −0.0149
SES −0.2052 (−0.5433, 0.1191) 0.0124

Food substitute Body satisfaction score −0.5988 (−0.7682, −0.4339) −0.5257
Age 0.0250 (−0.0761, 0.1281) 0.1057
BMI 0.0182 (−0.0199, 0.0545) 0.0091
SES 0.1798 (0.0554, 0.3060) −0.0191†

Skipped meals Body satisfaction score −0.7733 (−0.8791, −0.6702) −0.7360
Age 0.0938 (0.0314, 0.1566) 0.0966
BMI 0.0405 (0.0154, 0.0658) 0.0545
SES −0.1307 (−0.2067,−0.0551) −0.1602

Smoked Body satisfaction score −0.6413 (−0.8095, −0.4781) −0.5279
Age 0.2764 (0.1670, 0.3901) 0.1300†
BMI −0.0224 (−0.0629, 0.0160) 0.0034
SES −0.0868 (−0.2110, 0.0367) −0.0001

†The expected values are out of the 95% CIs of the observed coefficients.

other covariates vary in their significance with different outcomes. While the values in Table 2 provide
a means for examining the association of each type of behavior with some measure related to body sat-
isfaction (despite the measurement error in the body satisfaction score not being taken into account), the
research question of interest was not related to any one particular unhealthy weight control behavior. On
the contrary, the research question was how ‘groupings’ or ‘clusters’ of these behaviors were related to
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body satisfaction (and other covariates). These ‘groupings’ will thus be modeled via a latent class model
as described above and regressed on a latent factor model for the body satisfaction variables along with
other covariates.

4.2 Model fitting

For many latent variable models, the log likelihood is relatively flat and may have more than one local
maximum (McHugh, 1956; Habermann, 1977). Choosing good starting values for the parameters in model
(2.1)–(2.5) is important. Assuming fi is normally distributed as N (0,			), the starting values for λλλ0, ���, 			,
and ��� are chosen as their estimates from the latent factor model for Xi . For {π j |k}, we use their estimates
from the latent class model for Yi as the starting values. For αk , βββk , and γγγ k values, we obtain the predicted
values ĉi and f̂i for ci and fi (explained below) from the two measurement models, respectively, and then
fit the generalized logit model for ĉi on f̂i and Wi to obtain the parameter estimates. They are used as
starting values for αk , βββk , and γγγ k values. Under the normality assumptions of the distributions of Xi |fi

and fi , the best unbiased predictor of fi is E(fi |Xi ) = 			( ���
I )T (( ���

I )			( ���
I )T + ���)−1(Xi − ( λλλ0

0
)). We

plug the parameter estimates λ̂λλ0, �̂��, 	̂		, and �̂��, which are obtained from the latent factor model, into
this conditional expectation to get its estimate, i.e. f̂i . Similarly, from the latent class model, we can
estimate the probability that subject i is in one latent class or another. The posterior probability of subject

i belonging to latent class k is Pr(ci = k|Yi ) = πk
∏J

j=1 π
Yi j
j |k (1−π j |k )1−Yi j

f (Yi )
by Bayes theorem. The parameter

estimates from the latent class model can be plugged in and we can classify subject i to a latent class for
which the posterior probability is greatest, i.e. ĉi = {k: max(Pr(ci = k|Yi ), k = 1, . . . , K )}.

Consider the parametric model (2.1)–(2.5), where P = 5, Q = 1, J = 9, and K = 2, 3, 4 for the
example data set. Note that although the 3-latent class outcome model was chosen based on exploratory
data analysis, the 2- and 4-class cases are shown as comparison for the full latent class regression on latent
factor model. Covariates included in the model and treated to be measured without error, i.e. the Wi , were
age, BMI, and SES. Table 3 shows the parameter estimates for different models, the standard errors of
estimates, and the P-values for each parameter where the ‘low’ eating disorders risk class is treated as the
reference class 0. The BIC values indicate that the model with 3-class outcome fits the data better than the
others.

The parameter estimates for {π j |k} (not shown) are very similar to the corresponding estimates from
the simple latent class model (Table 1). This similarity is due to the separation in model (2.1)–(2.5)
between the parameters in the measurement models from those in the structural or ‘regression’ part of
the model. Furthermore, the estimates for the factor loadings range between 0.8921 and 1.0356, and the
estimated variance of body satisfaction is 1.2691, which are similar to the results of just fitting the one-
factor model to the X. The intercepts (αk’s) represent the log odds of being in class k rather than class 0
for a girl with body satisfaction, age, BMI, and SES at 0. The estimates of the log ORs for class 1 (β1 =
−0.7442) and class 2 (β2 = −1.5400) are negative and statistically significant, which are interpreted as
the effect of a 1-unit increase in body satisfaction on the log odds of being in class k (k = 1, 2) rather than
class 0 adjusted for the other covariates. It makes sense that these are negative since as a girl’s satisfaction
with body increases, she would be less likely to be in one of the high eating disorders risk classes. In
addition, it is found that as age increases there is a significantly higher likelihood to be in the eating
disorder risk class 2 rather than risk class 0, whereas age did not distinguish class 1 from class 0; higher
BMI girls and lower SES girls are significantly more likely to be in class 1 but not more likely to be in
class 2 than class 0.

Additionally, for the 3-class situation, tests of the contrasts for the slopes between classes 1 and 2
show that there is significant difference between the two classes, which indicates that body satisfaction,
age, BMI, and SES provide enough information to distinguish between the two classes. For the 4-class
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Table 3. Estimation results for Project EAT data

Model Class Parameter Estimate Standard error P-value Contrast P-value

2-Class, Class 1 Intercept α1 −1.5993 0.4048 <0.0001
BIC: 18116 Body satisfaction β1 −0.9685 0.0689 <0.0001

Age γ11 0.1395 0.0377 0.0002
BMI γ21 0.0477 0.0159 0.0028
SES γ31 −0.1779 0.0454 <0.0001

3-Class, Class 1 Intercept α1 −1.6389 0.4608 0.0004 Class 1 vs. 2
BIC: 18044 Body satisfaction β1 −0.7442 0.0836 <0.0001 β1 vs. β2 <0.0001

Age γ11 0.0389 0.0456 0.3933 γ11 vs. γ12 0.0003
BMI γ21 0.0900 0.0194 <0.0001 γ21 vs. γ22 0.0407
SES γ31 −0.2828 0.0538 <0.0001 γ31 vs. γ32 0.0041

Class 2 Intercept α2 −1.7009 0.7279 <0.0001
Body satisfaction β2 −1.5400 0.1378 <0.0001
Age γ12 0.3299 0.0714 <0.0001
BMI γ22 0.0375 0.0254 0.1395
SES γ32 −0.0382 0.0785 0.6270

4-Class, Class 1 Intercept α1 −1.7463 0.5250 0.0009
BIC: 18056 Body satisfaction β1 −0.6952 0.1019 <0.0001

Age γ11 −0.0218 0.0541 0.6987
BMI γ21 0.1134 0.0245 <0.0001
SES γ31 −0.3252 0.0644 <0.0001

Class 2 Intercept α2 −3.3758 0.8353 <0.0001 Class 2 vs. 3
Body satisfaction β2 −1.3453 0.1850 <0.0001 β2 vs. β3 0.4756
Age γ12 0.3723 0.0900 <0.0001 γ12 vs. γ13 0.2200
BMI γ22 0.03616 0.0304 0.2349 γ22 vs. γ23 0.4559
SES γ32 −0.0550 0.0904 0.5425 γ32 vs. γ33 0.2627

Class 3 Intercept α3 −4.9110 1.3661 0.0003
Body satisfaction β3 −1.6891 0.3653 <.0001
Age γ13 0.0929 0.1703 0.5857
BMI γ23 0.0899 0.0555 0.1044
SES γ33 −0.3004 0.1761 0.0882

case, the contrasts between classes 2 and 3 indicate that all the four predictors cannot distinguish the two
classes (Table 3) which provides evidence against the 4-class model in addition to the worse BIC.

4.3 Model checking

In the development of model (2.1), two implicit assumptions are

f (Yi |ci , fi , Wi ) = f (Yi |ci ), (4.1)

f (Xi |ci , fi , Wi ) = f (Xi |fi ). (4.2)

These assumptions can be referred to as nondifferential measurement assumptions (Carroll et al., 1995).
Diagnostics for assessing nondifferential measurement have been proposed in situations where the viola-
tion is caused by an observed variable, but here our assumptions involve things we cannot observe. So, we
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propose checking the assumption (4.1) where f̂i replaces fi and likewise checking assumption (4.2) where
ĉi replaces ci .

In order to check assumption (4.1) for the Project EAT data with the model including three latent
classes regressed one latent factor and covariates, we follow the idea of the diagnostic approach for latent
class regression model proposed by Bandeen-Roche et al. (1997). First, we fit the latent class regression
model for Yi on f̂i and Wi to get the estimated probabilities (θ̂i1, θ̂i2, θ̂i3) of being in each of the three
classes and randomly assign subject i to a class with probabilities (θ̂i1, θ̂i2, θ̂i3). Within each estimated
class, we summarize the 29 possible observed patterns describing unhealthy weight control behaviors
self-report pattern. Because of sparseness of some patterns in the observed data, we merge some patterns
together to construct new nominal response variables. Then we regress the resulting polytomous response
patterns on the factor score and the observed covariates using a generalized logit link, separately for each
class. If assumption (4.1) holds, we would expect no effect of the body satisfaction score, age, BMI, and
SES on the new nominal variable within each class.

For assumption (4.2), it can be shown that the assumption can be written in terms of the measurement
errors in the factor analysis model, i.e. f (εεεi |ci , fi , Wi ) = f (εεεi |fi ). Furthermore, under the assumption
that εεεi is independent of fi in the factor analysis model, it can be simplified as f (εεεi |ci , Wi ) = f (εεεi ). So,
checking assumption (4.2) is equivalent to checking whether the measurement errors in the latent factor
analysis model differ depending on the latent classes and the observed covariates (age, BMI, and SES).

To check this, the residuals from the factor analysis model ε̂εεi = Xi − (
λ̂λλ0
0

) − (
�̂��
I

)
f̂i and ĉi are used.

We fit the multivariate linear regression model for ε̂εεi on ĉi and Wi . If assumption (4.2) holds, we would
expect no effect of the eating disorder risk class and the three observed covariates on the residuals from
body satisfaction factor model.

Table 4 presents the results for checking assumption (4.1). We merge the patterns in each estimated
class according to the number of unhealthy weight control behaviors and create a new polytomous vari-
able, i.e. response group. In each estimated class, one response group is set as the reference group and the
log ORs of the body satisfaction score, age, BMI, and SES are fixed as 0; we find that for the other two re-
sponse groups, almost all log OR estimates obtained from the generalized logit model are not significantly
different from 0, which implies that there is no significant effect of body satisfaction score, age, BMI, and
SES on unhealthy weight control behavior patterns given a particular class. For assumption (4.2), the F
tests (Wilks lambda) for each covariate (ĉ, age, BMI, and SES) are significant (P < 0.001) for testing
whether these four covariates affect the multivariate residuals. Thus, there is evidence that assumption
(4.2) may be violated.

Table 4. Model assumption (4.1) checking for Project EAT data

Class Response Group Factor P-value Age P-value BMI P-value SES P-value
group size score

0 0 Behavior 829 0 0 0 0
1 Behavior 113 −0.4836 0.1609 0.2034 0.2611 −0.1255 0.1832 −0.1229 0.5582
2–3 Behaviors 13 0.0054 0.9664 0.0947 0.1334 0.0537 0.0352 −0.0425 0.5738

1 0–1 Behavior 172 0 0 0 0
2 Behaviors 303 −0.0063 0.9585 0.1274 0.0518 −0.0229 0.3268 0.0643 0.4397
3–5 Behaviors 192 −0.0521 0.6367 0.0160 0.7841 −0.0309 0.1459 0.0803 0.2874

2 2–3 Behaviors 108 0 0 0 0
4 Behaviors 94 0.0624 0.7420 −0.0572 0.6017 0.0091 0.8516 0.0145 0.9017
5–9 Behaviors 81 0.2076 0.2510 −0.1133 0.2807 0.0557 0.1166 0.0660 0.5610
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5. SIMULATION STUDIES

In this section, we present two simulation studies. The first is designed to examine the behavior of the
estimators given data generated from model (2.1)–(2.5) under scenarios with different amounts of mea-
surement error, that is, with differing strength of relationship between the observed and latent variables
as well as different sample sizes. The second generates data mimicking the motivating data example and
compares results from the ‘true’ model with those obtained from the observed data. In addition, compu-
tational issues are examined comparing the original and a much smaller sample size.

5.1 Simulation examining influence of reliability

We first investigate the effect that sample size and reliability of the measurement for both fi and ci have
on the inference for the structural parameters in model (2.1)–(2.5). Reliability refers to the amount of
measurement error there is in the latent class model and latent factor model. Consider the model with
P = 4 dimensional observed Xi variable measuring Q = 1 latent factor and J = 5 dimensional observed
Yi variable measuring K = 2 latent classes. Furthermore, assume that the underlying factor fi is normally
distributed. Specifically, consider

fi
i.i.d.∼ N (0, 1),

εi
i.i.d.∼ N4(0, 0.5I4×4),⎛

⎜⎜⎝
Xi1
Xi2
Xi3
Xi4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

λ11
λ12
λ13
λ14

⎞
⎟⎟⎠ fi + εi,

ci | fi ∼ Bernoulli(logit−1(0.5 + 1 × fi )),

Yi j |ci ∼ Bernoulli(π j |k), k = 1, 2, j = 1, . . . , 5.

(5.1)

Consider two different sets of factor loadings for the latent factor. First, we generate the data with
(λ11, λ12, λ13, λ14)

T = (0.4, 0.4, 0.5, 0.6)T , which implies that each of the four variables in Xi has low
reliability (<0.6) for measuring fi and then we choose (λ11, λ12, λ13, λ14)

T = (1.5, 1.6, 1.0, 1.7)T so that
each has high reliability (>0.9) for measuring fi . Furthermore, we consider two different sets of values
for π j |1 and π j |2, where j = 1, . . . , 5, which describe the way that the observed data Yi j are related to
the latent classes. One case considers where π j |1 = 0.1 and π j |2 = 0.8 for all j . This implies that when a
person is in class 1, he has a low probability, i.e. 0.1, of responding ‘yes’ to each of the five questions, and
when being in class 2, he has a high probability, i.e. 0.8, of responding ‘yes’ to each of the five questions.
We refer to this as the parallel probabilities case since the probabilities for each response Yi j in two latent
classes are the same with big differences. The other case we consider is where three of the five observed
variables have π j |1 = 0.1 and π j |2 = 0.8 ( j = 1, 2, 3) but the other two variables (i.e. j = 4, 5) have
π j |1 = 0.2 and π j |2 = 0.3. Note that the probabilities of being 1 for the three corresponding elements of
Yi are quite different (0.1 vs. 0.8) and the other two are similar (0.2 vs. 0.3). We refer to this as the non-
parallel case and would expect it to be a less precise measurement model for ci . Finally, we consider two
sample sizes, n = 200 and 2000. So, in total we have 2×2×2 = 8 different scenarios. For each scenario,
we generate 1000 data sets; to each of the simulated data sets in each of the eight different scenarios,
we perform maximum likelihood as described in Section 3. Specifically, because the factor is normally
distributed, the adaptive Gauss quadrature method for approximating the observed data likelihood and
quasi-Newton optimization as the optimization technique is implemented via PROC NLMIXED in SAS.
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Table 5. Simulation results

{π j |1} Sample True Reliability for measuring f
{π j |2} size value Low (<0.6) High (>0.9)

Mean Standard Coverage Mean Standard Coverage
error probability error probability

α Parallel 200 0.5 0.5103 0.1897 0.9560 0.5067 0.1826 0.9570
2000 0.5 0.5005 0.0589 0.9390 0.5002 0.0571 0.9370

Nonparallel 200 0.5 0.5186 0.2559 0.9310 0.5129 0.2482 0.9290
2000 0.5 0.5002 0.0746 0.9540 0.4998 0.0720 0.9480

β Parallel 200 1 1.0360 0.2820 0.9450 1.0186 0.2191 0.9510
2000 1 1.0028 0.0823 0.9520 1.0016 0.0666 0.9430

Nonparallel 200 1 1.0482 0.3148 0.9420 1.0296 0.2491 0.9530
2000 1 1.0033 0.0867 0.9570 1.0019 0.0705 0.9530

The simulation results are shown in Table 5. From this table, we find that as expected when the
sample size increases from 200 to 2000, the bias and the standard errors are decreasing. We see that in all
scenarios for both α (the intercept) and β (the slope), the high reliability for f case shows smaller standard
errors than the respective low reliability case. Likewise, since the parallel case can be considered more
precise than the nonparallel case, we find smaller standard errors for both α and β for the parallel case as
compared to the nonparallel case. What is more interesting is the relative impact of each of these has on
the estimates of α and β. The impact that the reliability for f has on the efficiency of β is greater than
the impact it has on α. On the other hand, the impact that the parallel vs. nonparallel has on the efficiency
of α is much more substantial than that on β. This suggests that the slope of the relationship between c
and f is more sensitive to the model for f , whereas the intercept is more sensitive to the model for c.
The coverage probability in Table 5 is the number of 95% confidence intervals obtained for each data set
based on estimates and standard error estimates from PROC NLMIXED that covered the true value over
1000. In all scenarios, the coverage probabilities are close to 95%.

5.2 Simulation mimicking Project EAT data

While the 3-class model converged and provided estimates and standard error for the Project EAT data, it
is of interest to examine for possible computational difficulties which may arise in this realistic setup. A
simulation study is carried out where 100 data sets are simulated with 1905 observations per data set from
the 3-class estimated model, in which the age, BMI, and SES are kept the same as in the data example.
We fit the latent class regression on latent factors model with true number of classes and factors to each
data set using PROC NLMIXED. Similarly, we also do the simulation study for 100 data sets with 200
observations per set. Table 6 shows the simulation results. From these results, as expected, we find the
bias of the parameter estimates and the standard errors decrease when the sample size increases. For the
scenario with 1905 observations per data set, the structural parameters (α, βββ, and γγγ values) estimates are
quite stable with the mean of the estimates and the standard errors very close to the corresponding ones
estimated from the data example. But for the smaller sample size scenario, the estimates were not as well
behaved. For 11 data sets, the standard error of the estimates was not provided by NLMIXED due to most
π̂ j |k values on the boundary. The CPU time for fitting one data set of size n = 1905 was between 24 and
30 min, while for the small data set (n = 200) the CPU time was between 4 and 7 min.
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Table 6. Simulation results from Project EAT estimated model

Parameter True value Sample size Mean Standard error

α1 −1.6388 200 −1.8092 1.3602
1905 −1.6179 0.4194

β1 −0.7442 200 −0.8331 0.2698
1905 −0.7535 0.0778

γ11 0.0389 200 0.0589 0.1497
1905 0.0412 0.0415

γ21 0.0900 200 0.0953 0.0633
1905 0.0895 0.0159

γ31 −0.2828 200 −0.3626 0.2010
1905 −0.2912 0.0512

α2 −4.0254 200 −4.6713 2.6490
1905 −3.9036 0.7324

β2 −1.5400 200 −1.8328 0.5262
1905 −1.5631 0.1323

γ12 0.3299 200 0.4307 0.2915
1905 0.3428 0.0706

γ22 0.0376 200 0.0271 0.1049
1905 0.0286 0.0266

γ32 −0.0382 200 −0.0771 0.3028
1905 −0.0463 0.0777

Using the simulated data with n = 1905 per set, we also fit the nine logistic regressions for the nine
simulated outcome behaviors on the body satisfaction score, age, BMI, and SES, similar to what was done
in the exploratory analysis in Section 4.1. The expected values of regression coefficients are estimated
by the average of the estimates over 100 data sets, which are shown in the fourth column of Table 2.
All nine expected values of coefficients associated with the body satisfaction are in the 95% confidence
intervals of the observed coefficients, which suggests that the estimated latent class regressed on latent
factor model reasonably captures relationships in the data between the individual unhealthy weight control
variables and the individual body satisfaction variables. Furthermore, we notice that some expected values
associated with the observed covariates (age, BMI, and SES) are out of corresponding 95% confidence
intervals. This suggests that the model may not be adequately capturing a few relationships between the
observed covariates and the individual unhealthy weight control behavior or body satisfaction variables
perhaps due to differential measurement.

6. DISCUSSION

This paper proposes a new model for fitting the relationship between a latent class outcome and latent
factor predictors. It is demonstrated that maximum likelihood estimation is possible by the MCEM algo-
rithm, or in the case where the factors are normally distributed and Q is small by Gaussian quadrature
and quasi-Newton. The model presented in this paper is a natural extension of the latent class regression
model and more generally is an extension of structural equation modeling. Structural equation modeling
focuses on the relationships among latent variables, but almost exclusively continuous latent variables.
Here, we present a method for examining the relationship among latent variables that are of mixed types.
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Previous models including both continuous and categorical latent variables have been considered in
the literature. Muthen and Shedden (1999) considered a model where continuous latent factors are the
random coefficients in a growth model and are regressed on latent classes underlying a different set of
observed variables. Both their model and the one proposed in (2.1)–(2.5) can be considered subclasses of
a more general model

f (Yi , Xi |Wi ) =
K∑

k=1

∫
f (Yi |ci = k) f (Xi |fi ) f (ci = k, fi |Wi ) dfi . (6.1)

By modeling f (ci , fi |Wi ) ≡ f (fi |ci , Wi ) f (ci |Wi ) with a normal mixture, the model becomes (as intro-
duced in Muthen and Shedden, 1999) an extension of the Gaussian finite mixture model. By modeling the
joint distribution f (ci , fi |Wi ) ≡ f (ci |fi , Wi ) f (fi |Wi ) with a generalized logit for f (ci |fi , Wi ) and some
parametric distribution for f (fi |Wi ), we obtain the latent class regression on latent factor model presented
in this paper. Note that graphically the difference in the two models amounts to changing the direction of
the arrow between c and f in Figure 1. By contrast, the difference in computing the maximum likelihood
estimates for the two models is substantial. Recall, in Section 3, that as a result of conditioning on the
continuous latent factor in model (2.1)–(2.5), it is necessary to integrate with respect to that factor in the
likelihood and that this requires some form of numerical integration. On the other hand, the Gaussian
finite mixture model which results from focusing on the conditional distribution in the other direction, i.e.
f (fi |ci , Wi ), has a straightforward closed-form (no integration) likelihood. Which model to choose will
depend on what the research question is interested in as an outcome vs. predictor.

Similar to a common practice in structural equation modeling, we recommend that the latent class
regressed on latent factor model be built in steps. In particular, the measurement models (i.e. the latent
class and the latent factor models) can be examined first to assess the fit of different numbers of classes or
factors. Then once these measurement models are settled upon, the ‘structural model’, i.e. the relationship
among the latent variables, can be modeled simultaneously with the measurement models. This is how we
presented the method for the Project EAT example and feel this allows for appropriately focused model
checking. Additionally, a diagnostic approach was presented to check the nondifferential measurement
assumptions in the model fitted for Project EAT data. Although this approach is straightforward to carry
out, it has a weakness in that surrogates f̂i and ĉi are used and these results may not represent a check for
assumptions about fi and ci . Further work is needed to investigate the sensitivity and specificity of this
diagnostic approach.

In the simulation study and the example, we only considered models where the underlying latent
factor was assumed to be normally distributed. Although other distributions could be considered, it is
not clear whether this modeling choice can be checked as the latent factors are not directly observable.
Rather, methods that only require weak assumptions on the distribution of the underlying factors should be
developed in the future. One might also consider dropping the idea of underlying latent factors and instead
regressing the latent class on all the individual observed variables in X. Certainly, this is possible to do,
but in practice, when a variety of indicators are chosen to measure one latent variable, they are expected
to be highly correlated. In this case, most of them would not be statistically significant in the latent class
regression model on these indicators. The advantage of considering a latent variable as a predictor over
the observable indicators in modeling has been investigated (Wall and Li, 2003).

Finally, identifiability of model parameters is always an important issue in latent variable models. In
our proposed model, the parameters are well identified theoretically when the latent class model and the
latent factor model satisfy appropriate conditions. But identifiability is not a property of just the model but
also of the data combined with the model. A model may have weak data identifiability if perhaps due to
small sample size, some parameters are difficult or even impossible to estimate as was seen in the simula-
tion study when the model from the Project EAT example was fit to only 200 observations and in several
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cases the estimates went to the boundary. While generally it is hard to assess this data identifiability prob-
lem, some work has been done to quantify it for the latent class model within a fully Bayesian framework
by comparing the prior and posterior of parameters (Garrett and Zeger, 2000). Similar methods might be
possible to consider for the model presented here.

APPENDIX A

The E-step obtains the expectation of the log complete data likelihood given the observed data and the
current parameter estimates, i.e. θθθ l .

E(log Lc|Z1, . . . , Zn, W1, . . . , Wn ; θθθ l) =
n∑

i=1

∫
log f (Zi , di |Wi ; θθθ) f (di |Zi , Wi ; θθθ l) ddi

≡ gθθθ l
(θθθ ; Z, W).

For the latent class regression on latent factor model (2.1)–(2.5), unfortunately we do not have a closed
form for f (di |Zi , Wi ; θθθ l) and consequently we do not have a closed-form solution for the integral
in gθθθ l

(θθθ ; Z, W). Hence, we propose to use the Monte Carlo method to obtain an approximation to
gθθθ l

(θθθ ; Z, W). First, note that

gθθθ l
(θθθ ; Z, W) =

n∑
i=1

∫
log f (Zi , di |Wi ; θθθ) f (di |Zi , Wi ; θθθ l) ddi

=
n∑

i=1

∫
log f (Zi , di |Wi ; θθθ)

f (Zi |di , Wi ; θθθ l)∫
f (Zi |di , Wi ; θθθ l) f (di |Wi ; θθθ l) ddi

f (di |Wi ; θθθ l) ddi

=
n∑

i=1

E

(
log f (Zi , di |Wi ; θθθ)

f (Zi |di , Wi ; θθθ l)∫
f (Zi |di , Wi ; θθθ l) f (di |Wi ; θθθ l) ddi

)
,

where the expectation is taken with respect to the random variable di . Given the current θθθ l , a Monte Carlo
sample (d1

i , . . . , dM
i ) is generated from f (di |Wi ; θθθ l), then the expectation can be approximated by an

average

gθθθ l
(θθθ ; Z, W) ≈

n∑
i=1

1
M

M∑
m=1

[log f (Zi , dm
i |Wi ; θθθ)Hm

i ] ≡ gMC
θθθ l

(θθθ ; Z, W),

where Hm
i = f (Zi |dm

i ,Wi ;θθθ l )
1
M

∑M
m=1 f (Zi |dm

i ,Wi ;θθθ l )
.

Note that the same Monte Carlo sample is used to evaluate the integral in the denominator of the
weights in the expectation. Now, we note that log f (Zi , dm

i |Wi ; θθθ) can be factorized into four parts cor-
responding to the four parts of the model (2.2)–(2.5), i.e.

log f (Zi , dm
i |Wi ; θθθ) = log f (Yi |cm

i ; {π j |k}) + log f (Xi |f m
i ; λλλ0,���,���)

+ log f (cm
i |f m

i , Wi ; {αk}, {βββk}, {γγγ k}) + log f (f m
i |Wi ; ���,			).

(A.1)

The M-step is to maximize gMC
θθθ l

(θθθ ; Z, W) with respect to θθθ and then update θθθ l . Based on (A.1), we

see that each of the four parts has distinct parameters associated with it. Hence, we can maximize each
component separately as a straightforward weighted regression (weighted by Hm

i ) in order to obtain θθθ l+1.
The MCEM algorithm will iterate between the E-step and M-step until the parameter estimates

converge according to some criteria. In order to decrease the Monte Carlo error at the E-step, a large M
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should be used, although it has been pointed out that it is inefficient to choose a large M when θθθ l is far
from the ML estimate (Wei and Tanner, 1990; Booth and Hobert, 1999). Following the recommendation,
it is preferable to start with a small M and increase it for each iteration to Ml = M0 + T l, where Ml is the
sample size for the Monte Carlo step at the lth iteration and M0 and T are positive constants. We monitor
the convergence of the EM algorithm by plotting θθθ l vs. the iteration l.

Standard error estimates of the parameter estimates from MCEM can be obtained by inverting the
information matrix of the log likelihood function based on the observed data. We apply Louis’ formula
(Louis, 1982)

IZ(θθθ) = Ed

(
−∂2Lc(Z, d|W; θθθ)

∂θθθ∂θθθT

)
− Vard

(
∂Lc(Z, d|W; θθθ)

∂θθθ

)
,

evaluated at the maximum likelihood estimate θ̂θθ . The expectation and variance are taken with respect
to the conditional distribution of the latent variable d = (d1, . . . , dn)T given the observed data Z =
(Z1, . . . , Zn)T and parameter θθθ . These conditional expectations are difficult to evaluate because as before
in the EM algorithm the conditional distribution of d given Z is unavailable. Hence, we cannot sam-
ple from the conditional distribution or get the closed forms for the expectations. By a similar method
described for the parameter estimation, we can switch the conditional expectation to a weighted uncondi-
tional expectation with respect to d and then use the Monte Carlo method to approximate the expectation.
Here, a large M is used as it is unnecessary to iterate.

APPENDIX B

**** Data (dat) is generated as in simulation study from model 5.1;

**** Example of data frame;
id x1 x2 x3 x4 y1 y2 y3 y4 y5 dummy
1 -0.41747699 -0.103693622 -0.596811257 -0.827308222 0 1 1 1 1 1
2 -1.113301965 -0.098232232 0.2814094176 -0.577613842 0 0 1 1 0 1
3 -0.395122307 0.2969895587 0.1303007521 0.5346021666 0 0 1 0 1 1
4 0.375280428 1.1090689506 -0.576731743 0.1241954368 1 1 1 0 0 1
5 -0.363147587 -0.86985922 -1.039424695 -1.147074384 1 0 1 1 1 1

... ...

... ...

**** Note the X variables are centered (not standardized);
proc standard data = dat mean = 0 out = dat1;

var x1-x4;
run;

**** PROC NLMIXED for the latent class regressed on latent factor model
with K = 2, Q = 1, P = 4, J = 5;
proc nlmixed data = dat1 tech = quanew lis = 2 method = gauss

maxiter = 1000 gconv = .00000000001 fconv = .00000000001;

**** starting values (starting values are given for the logit(pi_i|j);
parms

alpha = 0.5 beta = 1 gamma = 1
lam11 = 1 lam12 = 1 lam13 = 1
psi1 = 0.5 psi2 = 0.5 psi3 = 0.5 psi4 = 0.5
bpi11 = 1 bpi21 = 1 bpi31 = 0 bpi41 = 0 bpi51 = -.5
bpi12 = 0.5 bpi22 = 0.5 bpi32 = -0.5 bpi42 = -0.5 bpi52 = -1;

bounds -6 <= bpi11 - bpi52 <= 6;

**** latent class part;
pi11 = 1/(1+exp(-bpi11)); pi12 = 1/(1+exp(-bpi12));
pi21 = 1/(1+exp(-bpi21)); pi22 = 1/(1+exp(-bpi22));
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pi31 = 1/(1+exp(-bpi31)); pi32 = 1/(1+exp(-bpi32));
pi41 = 1/(1+exp(-bpi41)); pi42 = 1/(1+exp(-bpi42));
pi51 = 1/(1+exp(-bpi51)); pi52 = 1/(1+exp(-bpi52));
prod11 = (pi11**y1)*(1-pi11)**(1-y1); prod12 = (pi12**y1)*(1-pi12)**(1-y1);
prod21 = (pi21**y2)*(1-pi21)**(1-y2); prod22 = (pi22**y2)*(1-pi22)**(1-y2);
prod31 = (pi31**y3)*(1-pi31)**(1-y3); prod32 = (pi32**y3)*(1-pi32)**(1-y3);
prod41 = (pi41**y4)*(1-pi41)**(1-y4); prod42 = (pi42**y4)*(1-pi42)**(1-y4);
prod51 = (pi51**y5)*(1-pi51)**(1-y5); prod52 = (pi52**y5)*(1-pi52)**(1-y5);

**** relation between latent class and latent factor (structural model);
eta1=exp(alpha+beta*fi)/(1+exp(alpha+beta*fi));
eta2=1/(1+exp(alpha+beta*fi));

*** Note: if a covariate W were also added, it could be included in the following
way,

*** eta1=exp(alpha+beta*fi+gamma*Wi)/(1+exp(alpha+beta*fi+gamma*Wi));

*** eta2=1/(1+exp(alpha+beta*fi+gamma*Wi));

**** the part of the likelihood coming from latent class part;
l_latclass=eta1*prod11*prod21*prod31*prod41*prod51

+eta2*prod12*prod22*prod32*prod42*prod52;
ll_latclass = log(l_latclass);

**** factor analysis part;
mu1 = lam11*fi; mu2 = lam12*fi;
mu3 = lam13*fi; mu4 = 1*fi;

**** the part of the likelihood coming from latent factor part;
ll_factpart = -.5*log(psi1) - (1/(2*psi1)) * (x1 - mu1)**2

-.5*log(psi2) - (1/(2*psi2)) * (x2 - mu2)**2
-.5*log(psi3) - (1/(2*psi3)) * (x3 - mu3)**2
-.5*log(psi4) - (1/(2*psi4)) * (x4 - mu4)**2;

**** dummy is just a place holder so that SAS has something on;

**** the left side of equation;
model dummy ˜ general(ll_latclass + ll_factpart);
random fi ˜ normal(0,phi) subject = id;
run;
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