Abstract

Chromosome numbers were determined in 29 accessions of wild and semidomesticated Capsicum species from the EMBRAPA Hortaliças (Brazil) germplasm collection. 2n = 24 was found in C. baccatum var. praetermissum, C. chinense, C. flexuosum and C. parvifolium, while C. buforum, C. campylopodium, C. cornutum, C. schottianum, C. villosum var. villosum and five other native south-eastern Brazilian species not yet taxonomically named all had 2n = 26 chromosomes. These are the first chromosome number determinations for C. cornutum, C. schottianum, C. villosum var. villosum and the five other Brazilian taxa. Our data confirm published data for C. baccatum var. praetermissum, C. campylopodium, C. chinense, C. flexuosum and C. parvifolium, but not for C. buforum. The prevalence of 2n = 26 chromosomes among Brazilian species, along with the morphological and ecological characteristics presented by the wild and semidomesticated species occurring in Brazil, form a pattern different from that found in Andean wild and semidomesticated species. This supports the hypothesis that there are two different evolutionary lines in the genus and that the native south-eastern Brazilian species belong to the ancestral Capsicum gene pool.

INTRODUCTION

Capsicum L. species, are native to the New World, but are cultivated widely in temperate and tropical regions, where they are used as vegetables, spices, ornamentals and for their medicinal properties. Most Capsicum species contain the alkaloid capsaicin, which determines their pungency, an important factor for the food and pharmaceutical industries.

Despite its importance and the volume of published data on many different aspects, knowledge about the origin and domestication of Capsicum is still controversial. Archaeological evidence indicates that some species were already being cultivated in some parts of South and Central America between 7000 and 5000 bc. Peppers, together with Phaseolus L. and some Cucurbitaceae, are among the oldest cultivated plants in the Americas (Pickersgill, 1969).

The association of aspects such as the antiquity of the genus, its present broad geographical distribution and different ways and areas of cultivation, lead to a wide expression of genetic variability, as seen in the very different morphological types. This situation makes the establishment of taxonomic position and the determination of species relationships rather difficult tasks, and raises many questions that are still unanswered. Even so, there is a general consensus that the genus comprises 20–30 species, mostly classified as wild and semidomesticated, besides the five that are cultivated world-wide: C. annuum L. var. annuum (bell pepper), C. baccatum L. var. pendulum (Willd.) Eshbaugh (ají), C. chinense Jacq. (habanero), C. frutescens L. (tabasco) and C. pubescens Ruiz & Pavon (rocoto) (McLeod, Eshbaugh & Guttman, 1979a, 1979b; McLeod, Guttman & Eshbaugh, 1983a; McLeod, et al., 1983b).

Brazil is considered to be the centre of diversity for the genus and has a richness of germplasm that is reflected in the large numbers of varieties cultivated all over the country, many of which are adapted to specific edapho-climatic microregions and have potential for genetic breeding (Buso et al., 2001). Brazil also has the largest number of wild Capsicum species (Pickersgill, 1984; Bianchetti, 1996), although a comprehensive study of this diversity, especially of the native species, is still lacking.

The most frequent chromosome number in the genus, as well as in the Solanaceae as a whole, is x = 12 (Smith & Heiser, 1951; Lippert, Smith & Bergh, 1966; Pickersgill, 1971, 1977, 1991; Limaye & Patil, 1989; Moscone, 1992) and both the cultivated as well as the wild species with this basic number are ‘true’Capsicum (Pickersgill, 1977, 1991). Until now, x = 13 has been found in C. ciliatum (H., B. & K.) Kuntze, C. lanceolatum (Green.) Morton & Stand. (Pickersgill, 1977, 1991; Tong & Bosland, 1997, 2003), C. mirabile Martius, C. campylopodium Sendtner. (Moscone et al., 1993) and one unidentified south-eastern Brazilian species (Pickersgill, 1977). Natural polyploidy (2n = 48) has been reported so far for just one wild accession of C. annuum (Pickersgill, 1977). The occurrence of the two basic numbers x = 12 and 13 could suggest that there are two different evolutionary lines and that a taxonomic realignment of the genus might be necessary (Pickersgill, 1977; McLeod et al., 1983b). For that, however, more comprehensive studies are needed and in particular a thorough examination of chromosome number distribution among wild Capsicum species, as well as the investigation of a possible relationship between chromosome numbers and morpho-ecological characteristics.

Therefore, in this paper we report chromosome numbers for a range of wild and semidomesticated Capsicum accessions from Brazil and discuss the data in relation to morpho-ecological information.

MATERIAL AND METHODS

All the accessions analysed are part of the Capsicum germplasm collection at EMBRAPA (Empresa Brazileira de Pesquisa em Agropecuária), Embrapa Hortaliças (CNPH), Brasília, DF, Brazil. The collections were made in several locations in the south-eastern region of Brazil, except for one accession from the Amazonian region (Table 1). Vouchers are kept at the CENARGEN (Centro Nacional de Recursos Genéticos e Biotecnologia), EMBRAPA, Brasília, DF, Brazil.

Table 1.

Capsicum species and accessions examined

Species, CNPH1 accession number, collector's2 numberPlace of collection3n2n
Semi-domesticated
C. baccatum var. praetermissum
3303, LBB 1524SP, Parque Estadual Jacupiranga24
3325, LBB 1553MG, Caldas1224
3326, LBB 1555MG, Maria da Fé, Pedrão24
C. chinense
3727, LBB 1720RR, Vila Apiaú, Roraima12
Wild
C. flexuosum
3324, LBB 1552MG, Caldas1224
C. parvifolium
3331, LBB 1560MG, University Federal de Viçosa1224
C. buforum
3367, LBB 1550SP, 1 km from Estação Eugene Lefévre13
3368, LBB 1554MG, Maria da Fé, EPAMIG13
C. campylopodium
3335, LBB 1566RJ, Santa Maria Madalena1326
C. cornutum
3316, LBB 1542SP, Estação Biológica da Boracéia13
3320, LBB 1546SP, Paraty-Cunha1326
3365, LBB 1527SP, Parque Estadual Serra do Mar13
C. schottianum
3310, LBB 1535SP, Estação Biológica da Boracéia1326
3311, LBB 1536SP, Estação Biológica da Boracéia1326
3315, LBB 1540SP, Estação Biológica da Boracéia1326
3318, LBB 1544SP, Natividade da Serra-Bairro Alto SP13
3319, LBB 1545SP, São Luiz de Paraitinga13
C. villosum var. villosum
3313, LBB 1538SP, Estação Biológica de Boracéia1326
3314, LBB 1539SP, Estação Biológica da Boracéia13
3317, LBB 1543SP, Estação Biológica da Boracéia26
3328, LBB 1557RJ, Parque Nacional do Itatiaia1326
Capsicum sp. 14
3301, LBB 1521SP, Parque Estadual Carlos Botelho13
Capsicum sp. 2 (Oito dentes)4
3302, LBB 1523SP, Parque Estadual Jacupiranga1326
3372, LBB 1525SP, Estação Ecológica Juréia, Itatins13
Capsicum sp. 6 (Piquete)4
3330, LBB 1559MG, Lima Duarte13
3337, LBB 1568MG, Parque Nacional do Caparaó13
3370, LBB 1564RJ, Parque Nacional Serra dos Órgãos13
Capsicum sp. 7 (Gruta do pião)5
3329, LBB 1558MG, Parque Estadual do Ibitipoca1326
Capsicum sp. 8 (Flor lilás)5
3334, LBB 1565RJ, Nova Friburgo13
Species, CNPH1 accession number, collector's2 numberPlace of collection3n2n
Semi-domesticated
C. baccatum var. praetermissum
3303, LBB 1524SP, Parque Estadual Jacupiranga24
3325, LBB 1553MG, Caldas1224
3326, LBB 1555MG, Maria da Fé, Pedrão24
C. chinense
3727, LBB 1720RR, Vila Apiaú, Roraima12
Wild
C. flexuosum
3324, LBB 1552MG, Caldas1224
C. parvifolium
3331, LBB 1560MG, University Federal de Viçosa1224
C. buforum
3367, LBB 1550SP, 1 km from Estação Eugene Lefévre13
3368, LBB 1554MG, Maria da Fé, EPAMIG13
C. campylopodium
3335, LBB 1566RJ, Santa Maria Madalena1326
C. cornutum
3316, LBB 1542SP, Estação Biológica da Boracéia13
3320, LBB 1546SP, Paraty-Cunha1326
3365, LBB 1527SP, Parque Estadual Serra do Mar13
C. schottianum
3310, LBB 1535SP, Estação Biológica da Boracéia1326
3311, LBB 1536SP, Estação Biológica da Boracéia1326
3315, LBB 1540SP, Estação Biológica da Boracéia1326
3318, LBB 1544SP, Natividade da Serra-Bairro Alto SP13
3319, LBB 1545SP, São Luiz de Paraitinga13
C. villosum var. villosum
3313, LBB 1538SP, Estação Biológica de Boracéia1326
3314, LBB 1539SP, Estação Biológica da Boracéia13
3317, LBB 1543SP, Estação Biológica da Boracéia26
3328, LBB 1557RJ, Parque Nacional do Itatiaia1326
Capsicum sp. 14
3301, LBB 1521SP, Parque Estadual Carlos Botelho13
Capsicum sp. 2 (Oito dentes)4
3302, LBB 1523SP, Parque Estadual Jacupiranga1326
3372, LBB 1525SP, Estação Ecológica Juréia, Itatins13
Capsicum sp. 6 (Piquete)4
3330, LBB 1559MG, Lima Duarte13
3337, LBB 1568MG, Parque Nacional do Caparaó13
3370, LBB 1564RJ, Parque Nacional Serra dos Órgãos13
Capsicum sp. 7 (Gruta do pião)5
3329, LBB 1558MG, Parque Estadual do Ibitipoca1326
Capsicum sp. 8 (Flor lilás)5
3334, LBB 1565RJ, Nova Friburgo13
1

CNPH, Embrapa Hortaliças

2

LBB, Luciano de Bem Bianchetti

3

MG, Minas Gerais; SP, São Paulo; RJ, Rio de Janeiro; RR, Roraima

4

Putative new species, numbered and nicknamed followingBianchetti et al. (1999)

5

New species, being proposed as C. pereirae Hunz. and C. friburguense Hunz., Bianchetti & Barboza, respectively.

Table 1.

Capsicum species and accessions examined

Species, CNPH1 accession number, collector's2 numberPlace of collection3n2n
Semi-domesticated
C. baccatum var. praetermissum
3303, LBB 1524SP, Parque Estadual Jacupiranga24
3325, LBB 1553MG, Caldas1224
3326, LBB 1555MG, Maria da Fé, Pedrão24
C. chinense
3727, LBB 1720RR, Vila Apiaú, Roraima12
Wild
C. flexuosum
3324, LBB 1552MG, Caldas1224
C. parvifolium
3331, LBB 1560MG, University Federal de Viçosa1224
C. buforum
3367, LBB 1550SP, 1 km from Estação Eugene Lefévre13
3368, LBB 1554MG, Maria da Fé, EPAMIG13
C. campylopodium
3335, LBB 1566RJ, Santa Maria Madalena1326
C. cornutum
3316, LBB 1542SP, Estação Biológica da Boracéia13
3320, LBB 1546SP, Paraty-Cunha1326
3365, LBB 1527SP, Parque Estadual Serra do Mar13
C. schottianum
3310, LBB 1535SP, Estação Biológica da Boracéia1326
3311, LBB 1536SP, Estação Biológica da Boracéia1326
3315, LBB 1540SP, Estação Biológica da Boracéia1326
3318, LBB 1544SP, Natividade da Serra-Bairro Alto SP13
3319, LBB 1545SP, São Luiz de Paraitinga13
C. villosum var. villosum
3313, LBB 1538SP, Estação Biológica de Boracéia1326
3314, LBB 1539SP, Estação Biológica da Boracéia13
3317, LBB 1543SP, Estação Biológica da Boracéia26
3328, LBB 1557RJ, Parque Nacional do Itatiaia1326
Capsicum sp. 14
3301, LBB 1521SP, Parque Estadual Carlos Botelho13
Capsicum sp. 2 (Oito dentes)4
3302, LBB 1523SP, Parque Estadual Jacupiranga1326
3372, LBB 1525SP, Estação Ecológica Juréia, Itatins13
Capsicum sp. 6 (Piquete)4
3330, LBB 1559MG, Lima Duarte13
3337, LBB 1568MG, Parque Nacional do Caparaó13
3370, LBB 1564RJ, Parque Nacional Serra dos Órgãos13
Capsicum sp. 7 (Gruta do pião)5
3329, LBB 1558MG, Parque Estadual do Ibitipoca1326
Capsicum sp. 8 (Flor lilás)5
3334, LBB 1565RJ, Nova Friburgo13
Species, CNPH1 accession number, collector's2 numberPlace of collection3n2n
Semi-domesticated
C. baccatum var. praetermissum
3303, LBB 1524SP, Parque Estadual Jacupiranga24
3325, LBB 1553MG, Caldas1224
3326, LBB 1555MG, Maria da Fé, Pedrão24
C. chinense
3727, LBB 1720RR, Vila Apiaú, Roraima12
Wild
C. flexuosum
3324, LBB 1552MG, Caldas1224
C. parvifolium
3331, LBB 1560MG, University Federal de Viçosa1224
C. buforum
3367, LBB 1550SP, 1 km from Estação Eugene Lefévre13
3368, LBB 1554MG, Maria da Fé, EPAMIG13
C. campylopodium
3335, LBB 1566RJ, Santa Maria Madalena1326
C. cornutum
3316, LBB 1542SP, Estação Biológica da Boracéia13
3320, LBB 1546SP, Paraty-Cunha1326
3365, LBB 1527SP, Parque Estadual Serra do Mar13
C. schottianum
3310, LBB 1535SP, Estação Biológica da Boracéia1326
3311, LBB 1536SP, Estação Biológica da Boracéia1326
3315, LBB 1540SP, Estação Biológica da Boracéia1326
3318, LBB 1544SP, Natividade da Serra-Bairro Alto SP13
3319, LBB 1545SP, São Luiz de Paraitinga13
C. villosum var. villosum
3313, LBB 1538SP, Estação Biológica de Boracéia1326
3314, LBB 1539SP, Estação Biológica da Boracéia13
3317, LBB 1543SP, Estação Biológica da Boracéia26
3328, LBB 1557RJ, Parque Nacional do Itatiaia1326
Capsicum sp. 14
3301, LBB 1521SP, Parque Estadual Carlos Botelho13
Capsicum sp. 2 (Oito dentes)4
3302, LBB 1523SP, Parque Estadual Jacupiranga1326
3372, LBB 1525SP, Estação Ecológica Juréia, Itatins13
Capsicum sp. 6 (Piquete)4
3330, LBB 1559MG, Lima Duarte13
3337, LBB 1568MG, Parque Nacional do Caparaó13
3370, LBB 1564RJ, Parque Nacional Serra dos Órgãos13
Capsicum sp. 7 (Gruta do pião)5
3329, LBB 1558MG, Parque Estadual do Ibitipoca1326
Capsicum sp. 8 (Flor lilás)5
3334, LBB 1565RJ, Nova Friburgo13
1

CNPH, Embrapa Hortaliças

2

LBB, Luciano de Bem Bianchetti

3

MG, Minas Gerais; SP, São Paulo; RJ, Rio de Janeiro; RR, Roraima

4

Putative new species, numbered and nicknamed followingBianchetti et al. (1999)

5

New species, being proposed as C. pereirae Hunz. and C. friburguense Hunz., Bianchetti & Barboza, respectively.

Somatic chromosome numbers were determined in root-tip cells following the protocol of Pozzobon & Valls (1997) with minor modifications. A detailed karyotypic analysis was not performed, but overall chromosome size and shape, and presence of satellited chromosomes were recorded. Meiotic chromosome numbers were analysed in pollen mother cells from anthers fixed in 3 : 1 ethanol-acetic acid and squashed in 2% propionic carmine.

At least five (generally more than ten) cells with good chromosome spreading and no overlapping were analysed per plant. Semi-permanent slides were examined by light microscopy and the work recorded on photomicrographs and with digital image capturing.

RESULTS AND DISCUSSION

Chromosome number and morphology

The chromosome numbers for 29 accessions of 2 semidomesticated and 12 wild Capsicum species are listed in Table 1. These are the first determinations for C. cornutum (Hern.) A. T. Hunziker, C. schottianum Sendtner, C. villosum Sendtner var. villosum and the five new species. It can be seen that 2n = 26 is the most common number among the wild species. No intraspecific variability for chromosome number was found and no apparent differences in the general size of chromosomes among species were detected. Capsicum chromosomes are about 3 µm in length.

For C. baccatum L. var. praetermissum (Heiser & Smith) A. T. Hunziker, the chromosome number 2n = 24 confirms published data (Pickersgill, 1977; Bertão, 1993; Ferreira, 1998). This species has 11 pairs of metacentric chromosomes and one subterminal satellited pair (Fig. 1). The same result was found by Bertão (1993) and by Pickersgill (1977), who also reported intraspecific variation in the number and position of satellites.

Somatic and meiotic chromosomes of Capsicum spp. Figs 1–4. Capsicum species with 2n = 24 chromosomes. Fig. 1. Mitotic metaphase in C. baccatum var. praetermissum. Arrow points to a satellited subtelocentric. Fig. 2. Late diakinesis with 12 bivalents in C. chinense. Arrow points to the smallest pair of the complement. Fig. 3. Mitotic metaphase in C. flexuosum. Arrow points to a satellited submetacentric. Fig. 4. Mitotic metaphase in C. parvifolium. Arrow points to a satellited submetacentric. Figs 5, 6. Species with 2n = 26 chromosomes. Fig. 5. Diakinesis in Capsicum sp. 1, with 13 bivalents. Fig. 6. Mitotic metaphase in Capsicum sp. 2. Arrow points to the small subtelocentric thirteenth pair. Scale bars = 10 µm.
Figures 1–6.

Somatic and meiotic chromosomes of Capsicum spp. Figs 1–4. Capsicum species with 2n = 24 chromosomes. Fig. 1. Mitotic metaphase in C. baccatum var. praetermissum. Arrow points to a satellited subtelocentric. Fig. 2. Late diakinesis with 12 bivalents in C. chinense. Arrow points to the smallest pair of the complement. Fig. 3. Mitotic metaphase in C. flexuosum. Arrow points to a satellited submetacentric. Fig. 4. Mitotic metaphase in C. parvifolium. Arrow points to a satellited submetacentric. Figs 5, 6. Species with 2n = 26 chromosomes. Fig. 5. Diakinesis in Capsicum sp. 1, with 13 bivalents. Fig. 6. Mitotic metaphase in Capsicum sp. 2. Arrow points to the small subtelocentric thirteenth pair. Scale bars = 10 µm.

Capsicum chinense has 2n = 24 chromosomes (n = 12, Fig. 2), the same number as found by several authors (Carluccio & Saccardo, 1977; Pickersgill, 1977; Limaye & Patil, 1989; Bertão, 1993; Moscone et al., 1995, 2003; Moscone, Lambrou & Ehrendorfer, 1996; Ferreira, 1998), who do not concur on several aspects of karyotype morphology. However, as we have not analysed somatic cells, it is not possible to compare results on that aspect. The accession that we analysed is morphologically different from typical C. chinense, presenting characteristics of wild species and it has a twelfth chromosome pair smaller than in other 2n = 24 species.

Among the wild species, only C. flexuosum Sendtner and C. parvifolium Sendtner had 2n = 24, as found by Moscone (1992) and Bertão (1993) for C. flexuosum and by Bertão (1993) and Moscone (1993) for C. parvifolium. In both species we observed 11 metacentric pairs and one submetacentric satellited pair (Figs 3, 4). Bertão (1993) reported the same general chromosome morphology, but one subterminal satellited pair for C. flexuosum, while both Bertão (1993) and Moscone (1993) described 12 metacentric pairs, including the satellited one, for C. parvifolium.

These differences in morphology of the satellited chromosome pair between our results and other published ones, as well as among different authors for C. chinense, could reflect real biological differences or could be the consequence of technical differences such as pretreatment, chromosome condensation or even karyotype representation.

An interesting feature of one of the analysed accessions of C. parvifolium (3331) is that this accession was outstanding among the 363 accessions of the EMBRAPA Hortaliças Capsicum germplasm collection in its resistance to the fungus Phytophthora capsici, one of the most serious diseases of Capsicum in Brazil (Ribeiro et al., 2003).

The eight accessions represented by two new (Capsicum sp. 7 and sp. 8) and three wild Brazilian species also assumed to be new all presented 2n = 26 chromosomes. The thirteenth pair in these is a small one, less than half the size of the other 12 pairs (c. 1.4 µm), with an almost terminal centromere (Figs 5–8). Pickersgill (1977) also reported a small acrocentric thirteenth chromosome pair in one unidentified Brazilian species.

Somatic and meiotic chromosomes of Capsicum species with 2n = 26 chromosomes. Arrows point to the small thirteenth pair. Fig. 7. Diakinesis in Capsicum sp. 2, with 13 bivalents. Fig. 8. Anaphase I in Capsicum sp. 6, with sticky chromosomes. Fig. 9. Pro-metaphase II in C. buforum with a 13 + 13 chromosome distribution. Fig. 10. Diakinesis in C. buforum, with 13 bivalents. Fig. 11. Late diakinesis in C. campylopodium, with 13 bivalents. Fig. 12. Late diakinesis in C. cornutum with 13 bivalents. Scale bars = 10 µm.
Figures 7–12.

Somatic and meiotic chromosomes of Capsicum species with 2n = 26 chromosomes. Arrows point to the small thirteenth pair. Fig. 7. Diakinesis in Capsicum sp. 2, with 13 bivalents. Fig. 8. Anaphase I in Capsicum sp. 6, with sticky chromosomes. Fig. 9. Pro-metaphase II in C. buforum with a 13 + 13 chromosome distribution. Fig. 10. Diakinesis in C. buforum, with 13 bivalents. Fig. 11. Late diakinesis in C. campylopodium, with 13 bivalents. Fig. 12. Late diakinesis in C. cornutum with 13 bivalents. Scale bars = 10 µm.

Capsicum buforum A. T. Hunziker (Figs 9, 10), C. campylopodium Sendtner (Fig. 11), C. cornutum (Figs 12, 13), C. schottianum(Figs 14–16) and C. villosum var. villosum (Figs 17, 18) also had 2n = 26 chromosomes, the thirteenth being similar in size and shape to that of the new species. Tong & Bosland (2003) reported 2n = 24 chromosomes in one accession of C. buforum. The characteristics that they reported for C. buforum, such as green mature fruits, three to four flowers per node and black seeds have been found so far in all (and only in) the 2n = 26 species studied here. Therefore, a technical problem (e.g. sample misidentification) leading to an erroneous count by the above authors cannot be discounted. Moscone et al. (1993, 1995, 2003) also found 2n = 26 in C. campylopodium, but with two small chromosome pairs. Capsicum villosum var. villosum was the only species analysed in which two satellited chromosome pairs could be identified, in accession 3317 (Fig. 17).

Somatic and meiotic chromosomes of Capsicum species with 2n = 26 chromosomes. Arrows point to the small thirteenth pair, except in Fig. 17. Fig. 13. Metaphase I in C. cornutum with 13 bivalents. Fig. 14. Mitotic metaphase in C. schottianum.Fig. 15. Metaphase I in C. schottianum with 13 bivalents. Fig. 16. Anaphase I in C. schottianum with 13 + 13 chromosome distribution. Fig. 17. Mitotic metaphase in C. villosum var. villosum with two pairs of satellited chromosomes (arrows). Fig. 18. Late diakinesis in C. villosum var. villosum with 13 bivalents. Scale bars = 10 µm.
Figures 13–18.

Somatic and meiotic chromosomes of Capsicum species with 2n = 26 chromosomes. Arrows point to the small thirteenth pair, except in Fig. 17. Fig. 13. Metaphase I in C. cornutum with 13 bivalents. Fig. 14. Mitotic metaphase in C. schottianum.Fig. 15. Metaphase I in C. schottianum with 13 bivalents. Fig. 16. Anaphase I in C. schottianum with 13 + 13 chromosome distribution. Fig. 17. Mitotic metaphase in C. villosum var. villosum with two pairs of satellited chromosomes (arrows). Fig. 18. Late diakinesis in C. villosum var. villosum with 13 bivalents. Scale bars = 10 µm.

The origin of the small thirteenth pair in the 2n = 26 species is still to be determined. Some rather speculative suggestions have been presented to date. The constancy in its number and behaviour during mitosis and meiosis supports Pickersgill (1977, 1991), who pointed out that they are not B chromosomes. Moscone et al. (1993) found similarities of C-banding patterns among the small pair and some regions of the other chromosomes in C. campylopodium (as well as in some chromosomes of the 2n = 24 C. pubescens) and suggested that the small pair could have originated through centric fission. In this case, a larger pair of chromosomes in the 2n = 26 species with a reduced or absent short arm would be expected; however, based on published data and our own work, this type of chromosome has not been observed so far in Capsicum and therefore centric fission is an unlikely origin of the 2n = 26 karyotype.

Chromosome numbers, morpho -ecological characteristics and evolutionary considerations

When the present results and published chromosome numbers for Capsicum species (Table 2) are compared, it can be seen that 2n = 24 is the predominant chromosome number among the cultivated, semidomesticated and wild species (most of those from the Andean regions but also in C. flexuosum and C. parvifolium, which are native to Brazil). The four 2n = 24 species that we analysed (the semidomesticated C. baccatum var. praetermissum, C. chinense and the wild C. flexuosum and C. parvifolium) share some morphological and ecological characteristics with most of the Andean wild species (all 2n = 24).

Table 2.

Chromosome numbers reported for Capsicum species

Species2nReferences
Domesticated
C. angulosum Mill.24Fedorov (1969); syn. to C. baccatum L.1
C. annuum L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1984, 1985, 1988); Goldblatt & Johnson (1990, 1991, 1994, 1996, 1998, 2000); Bertão (1993); Ferreira (1998)
48Pickersgill (1977)
C. baccatum L.24Moore (1973); Pickersgill (1977) Goldblatt (1981); Bertão (1993); Goldblatt & Johnson (1991, 1996); Ferreira (1998)
C. baccatum L. var. pendulum (Willd.) Eshbaugh24Goldblatt & Johnson (1990, 1998, 2000); Moscone et al. (1993, 2003)
C. baccatum L. var. umbilicatum (Vellozo) Hunz. & Barboza24Moscone (1999); Moscone et al. (2003); syn. to C. baccatum L.1
C. chinense Jacq.24Pickersgill (1977); Limaye & Patil (1989) Bertão (1993); Goldblatt & Johnson (1990, 1994); Ferreira (1998); Moscone et al. (1995, 1996, 2003); this work.
C. cordiforme Mill.24Fedorov (1969); syn. to C. annuum var. annuum1
C. frutescens L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1988); Bertão (1993); Goldblatt & Johnson (1991, 1996, 1998, 2000); Moscone et al. (2003)
C. pendulum Willd.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um var. pendulum1
C. pubescens Ruiz & Pavon24Fedorov (1969); Pickersgill (1977); Goldblatt & Johnson (1991, 1994, 1998, 2000); Moscone et al. (2003)
C. sinense Murr.24Fedorov (1969); probably C. chinense Jacq.2
Semi-domesticated
C. baccatum L. var. baccatum Eshbaugh24Goldblatt & Johnson (1990); Moscone et al. (2003)
C. baccatum var. praetermissum (Heiser & Smith) Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Ferreira (1998); this work; syn. to C. praetermissum1
C. cardenasii Heiser & Smith24Fedorov (1969), Pickersgill (1977)
C. chacoense Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Goldblatt & Johnson (1991, 1994, 1996, 1998); Moscone et al. (2003)
C. eximium Hunz.24Fedorov (1969); Pickersgill (1977); Moscone et al. (2003)
C. microcarpum Cav.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um1 (probably var. baccatum2)
C. tovarii Eshbaugh, P. G. Sm. & Nickrent Wild24Goldblatt (1985)
C. buforum Hunz.24Tong & Bosland (2003)
26This work
C. campylopodium Sendt.26Moscone et al. (1993, 1995, 2003), this work
C. ciliatum (H., B. & K.) Kuntze26Pickersgill (1977)
C. cornutum (Hern.) Hunz.26This work
C. flexuosum Sendt.24Moscone (1992), Bertão (1993), this work
C. galapagense Heiser & Smith24Fedorov (1969); Pickersgill (1977)
C. lanceolatum (Green.) Morton & Standl.26Tong & Bosland (1997, 2003)
C. macrophyllum Standl.24Fedorov (1969); re-classified as Witheringia solanacea L'Her.1
C. maculatum Standl. & Mort.24Fedorov (1969); re-classified as Witheringia maculata (Morton & Standl.) Hunz.1
C. mirabile Mart. var. mirabile26Moscone et al. (1995)
C. parvifolium Sendt.24Bertão (1993); Moscone (1993); Moscone et al. (1993, 1995, 2003); this work
C. schottianum Sendt.26This work
C. stenophyllum Mort. & Standl.24Fedorov (1969); re-classified as Witheringia meiantha (Don. Sm.) Hunz.1
C. stramoniifolium (H., B. & K.) Standl.24Fedorov (1969); re-classified as Witheringia stramonifolia Kunth1
C. testiculatum Vis. ex Dun.24Goldblatt & Johnson (1991); not considered as related to Capsicum1
C. tetramerum Stand. & Mort.24Fedorov (1969); re-classified as Witheringia solanacea var. solanacea L'Her.1
C. villosum Sendt. var. villosum26This work
Capsicum sp. (Brazil)26Pickersgill (1977)
Capsicum sp. 1326This work
Capsicum sp. 2326This work
Capsicum sp. 6326This work
Capsicum sp. 7326This work
Capsicum sp. 8326This work
Species2nReferences
Domesticated
C. angulosum Mill.24Fedorov (1969); syn. to C. baccatum L.1
C. annuum L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1984, 1985, 1988); Goldblatt & Johnson (1990, 1991, 1994, 1996, 1998, 2000); Bertão (1993); Ferreira (1998)
48Pickersgill (1977)
C. baccatum L.24Moore (1973); Pickersgill (1977) Goldblatt (1981); Bertão (1993); Goldblatt & Johnson (1991, 1996); Ferreira (1998)
C. baccatum L. var. pendulum (Willd.) Eshbaugh24Goldblatt & Johnson (1990, 1998, 2000); Moscone et al. (1993, 2003)
C. baccatum L. var. umbilicatum (Vellozo) Hunz. & Barboza24Moscone (1999); Moscone et al. (2003); syn. to C. baccatum L.1
C. chinense Jacq.24Pickersgill (1977); Limaye & Patil (1989) Bertão (1993); Goldblatt & Johnson (1990, 1994); Ferreira (1998); Moscone et al. (1995, 1996, 2003); this work.
C. cordiforme Mill.24Fedorov (1969); syn. to C. annuum var. annuum1
C. frutescens L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1988); Bertão (1993); Goldblatt & Johnson (1991, 1996, 1998, 2000); Moscone et al. (2003)
C. pendulum Willd.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um var. pendulum1
C. pubescens Ruiz & Pavon24Fedorov (1969); Pickersgill (1977); Goldblatt & Johnson (1991, 1994, 1998, 2000); Moscone et al. (2003)
C. sinense Murr.24Fedorov (1969); probably C. chinense Jacq.2
Semi-domesticated
C. baccatum L. var. baccatum Eshbaugh24Goldblatt & Johnson (1990); Moscone et al. (2003)
C. baccatum var. praetermissum (Heiser & Smith) Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Ferreira (1998); this work; syn. to C. praetermissum1
C. cardenasii Heiser & Smith24Fedorov (1969), Pickersgill (1977)
C. chacoense Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Goldblatt & Johnson (1991, 1994, 1996, 1998); Moscone et al. (2003)
C. eximium Hunz.24Fedorov (1969); Pickersgill (1977); Moscone et al. (2003)
C. microcarpum Cav.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um1 (probably var. baccatum2)
C. tovarii Eshbaugh, P. G. Sm. & Nickrent Wild24Goldblatt (1985)
C. buforum Hunz.24Tong & Bosland (2003)
26This work
C. campylopodium Sendt.26Moscone et al. (1993, 1995, 2003), this work
C. ciliatum (H., B. & K.) Kuntze26Pickersgill (1977)
C. cornutum (Hern.) Hunz.26This work
C. flexuosum Sendt.24Moscone (1992), Bertão (1993), this work
C. galapagense Heiser & Smith24Fedorov (1969); Pickersgill (1977)
C. lanceolatum (Green.) Morton & Standl.26Tong & Bosland (1997, 2003)
C. macrophyllum Standl.24Fedorov (1969); re-classified as Witheringia solanacea L'Her.1
C. maculatum Standl. & Mort.24Fedorov (1969); re-classified as Witheringia maculata (Morton & Standl.) Hunz.1
C. mirabile Mart. var. mirabile26Moscone et al. (1995)
C. parvifolium Sendt.24Bertão (1993); Moscone (1993); Moscone et al. (1993, 1995, 2003); this work
C. schottianum Sendt.26This work
C. stenophyllum Mort. & Standl.24Fedorov (1969); re-classified as Witheringia meiantha (Don. Sm.) Hunz.1
C. stramoniifolium (H., B. & K.) Standl.24Fedorov (1969); re-classified as Witheringia stramonifolia Kunth1
C. testiculatum Vis. ex Dun.24Goldblatt & Johnson (1991); not considered as related to Capsicum1
C. tetramerum Stand. & Mort.24Fedorov (1969); re-classified as Witheringia solanacea var. solanacea L'Her.1
C. villosum Sendt. var. villosum26This work
Capsicum sp. (Brazil)26Pickersgill (1977)
Capsicum sp. 1326This work
Capsicum sp. 2326This work
Capsicum sp. 6326This work
Capsicum sp. 7326This work
Capsicum sp. 8326This work
1

According toBaral & Bosland (2002)

2

L. B. Bianchetti (pers. comm.)

Table 2.

Chromosome numbers reported for Capsicum species

Species2nReferences
Domesticated
C. angulosum Mill.24Fedorov (1969); syn. to C. baccatum L.1
C. annuum L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1984, 1985, 1988); Goldblatt & Johnson (1990, 1991, 1994, 1996, 1998, 2000); Bertão (1993); Ferreira (1998)
48Pickersgill (1977)
C. baccatum L.24Moore (1973); Pickersgill (1977) Goldblatt (1981); Bertão (1993); Goldblatt & Johnson (1991, 1996); Ferreira (1998)
C. baccatum L. var. pendulum (Willd.) Eshbaugh24Goldblatt & Johnson (1990, 1998, 2000); Moscone et al. (1993, 2003)
C. baccatum L. var. umbilicatum (Vellozo) Hunz. & Barboza24Moscone (1999); Moscone et al. (2003); syn. to C. baccatum L.1
C. chinense Jacq.24Pickersgill (1977); Limaye & Patil (1989) Bertão (1993); Goldblatt & Johnson (1990, 1994); Ferreira (1998); Moscone et al. (1995, 1996, 2003); this work.
C. cordiforme Mill.24Fedorov (1969); syn. to C. annuum var. annuum1
C. frutescens L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1988); Bertão (1993); Goldblatt & Johnson (1991, 1996, 1998, 2000); Moscone et al. (2003)
C. pendulum Willd.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um var. pendulum1
C. pubescens Ruiz & Pavon24Fedorov (1969); Pickersgill (1977); Goldblatt & Johnson (1991, 1994, 1998, 2000); Moscone et al. (2003)
C. sinense Murr.24Fedorov (1969); probably C. chinense Jacq.2
Semi-domesticated
C. baccatum L. var. baccatum Eshbaugh24Goldblatt & Johnson (1990); Moscone et al. (2003)
C. baccatum var. praetermissum (Heiser & Smith) Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Ferreira (1998); this work; syn. to C. praetermissum1
C. cardenasii Heiser & Smith24Fedorov (1969), Pickersgill (1977)
C. chacoense Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Goldblatt & Johnson (1991, 1994, 1996, 1998); Moscone et al. (2003)
C. eximium Hunz.24Fedorov (1969); Pickersgill (1977); Moscone et al. (2003)
C. microcarpum Cav.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um1 (probably var. baccatum2)
C. tovarii Eshbaugh, P. G. Sm. & Nickrent Wild24Goldblatt (1985)
C. buforum Hunz.24Tong & Bosland (2003)
26This work
C. campylopodium Sendt.26Moscone et al. (1993, 1995, 2003), this work
C. ciliatum (H., B. & K.) Kuntze26Pickersgill (1977)
C. cornutum (Hern.) Hunz.26This work
C. flexuosum Sendt.24Moscone (1992), Bertão (1993), this work
C. galapagense Heiser & Smith24Fedorov (1969); Pickersgill (1977)
C. lanceolatum (Green.) Morton & Standl.26Tong & Bosland (1997, 2003)
C. macrophyllum Standl.24Fedorov (1969); re-classified as Witheringia solanacea L'Her.1
C. maculatum Standl. & Mort.24Fedorov (1969); re-classified as Witheringia maculata (Morton & Standl.) Hunz.1
C. mirabile Mart. var. mirabile26Moscone et al. (1995)
C. parvifolium Sendt.24Bertão (1993); Moscone (1993); Moscone et al. (1993, 1995, 2003); this work
C. schottianum Sendt.26This work
C. stenophyllum Mort. & Standl.24Fedorov (1969); re-classified as Witheringia meiantha (Don. Sm.) Hunz.1
C. stramoniifolium (H., B. & K.) Standl.24Fedorov (1969); re-classified as Witheringia stramonifolia Kunth1
C. testiculatum Vis. ex Dun.24Goldblatt & Johnson (1991); not considered as related to Capsicum1
C. tetramerum Stand. & Mort.24Fedorov (1969); re-classified as Witheringia solanacea var. solanacea L'Her.1
C. villosum Sendt. var. villosum26This work
Capsicum sp. (Brazil)26Pickersgill (1977)
Capsicum sp. 1326This work
Capsicum sp. 2326This work
Capsicum sp. 6326This work
Capsicum sp. 7326This work
Capsicum sp. 8326This work
Species2nReferences
Domesticated
C. angulosum Mill.24Fedorov (1969); syn. to C. baccatum L.1
C. annuum L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1984, 1985, 1988); Goldblatt & Johnson (1990, 1991, 1994, 1996, 1998, 2000); Bertão (1993); Ferreira (1998)
48Pickersgill (1977)
C. baccatum L.24Moore (1973); Pickersgill (1977) Goldblatt (1981); Bertão (1993); Goldblatt & Johnson (1991, 1996); Ferreira (1998)
C. baccatum L. var. pendulum (Willd.) Eshbaugh24Goldblatt & Johnson (1990, 1998, 2000); Moscone et al. (1993, 2003)
C. baccatum L. var. umbilicatum (Vellozo) Hunz. & Barboza24Moscone (1999); Moscone et al. (2003); syn. to C. baccatum L.1
C. chinense Jacq.24Pickersgill (1977); Limaye & Patil (1989) Bertão (1993); Goldblatt & Johnson (1990, 1994); Ferreira (1998); Moscone et al. (1995, 1996, 2003); this work.
C. cordiforme Mill.24Fedorov (1969); syn. to C. annuum var. annuum1
C. frutescens L.24Fedorov (1969); Moore (1973); Pickersgill (1977); Goldblatt (1981, 1988); Bertão (1993); Goldblatt & Johnson (1991, 1996, 1998, 2000); Moscone et al. (2003)
C. pendulum Willd.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um var. pendulum1
C. pubescens Ruiz & Pavon24Fedorov (1969); Pickersgill (1977); Goldblatt & Johnson (1991, 1994, 1998, 2000); Moscone et al. (2003)
C. sinense Murr.24Fedorov (1969); probably C. chinense Jacq.2
Semi-domesticated
C. baccatum L. var. baccatum Eshbaugh24Goldblatt & Johnson (1990); Moscone et al. (2003)
C. baccatum var. praetermissum (Heiser & Smith) Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Ferreira (1998); this work; syn. to C. praetermissum1
C. cardenasii Heiser & Smith24Fedorov (1969), Pickersgill (1977)
C. chacoense Hunz.24Fedorov (1969); Pickersgill (1977); Bertão (1993); Goldblatt & Johnson (1991, 1994, 1996, 1998); Moscone et al. (2003)
C. eximium Hunz.24Fedorov (1969); Pickersgill (1977); Moscone et al. (2003)
C. microcarpum Cav.24Fedorov (1969); Goldblatt & Johnson (1991); syn. to C. baccat um1 (probably var. baccatum2)
C. tovarii Eshbaugh, P. G. Sm. & Nickrent Wild24Goldblatt (1985)
C. buforum Hunz.24Tong & Bosland (2003)
26This work
C. campylopodium Sendt.26Moscone et al. (1993, 1995, 2003), this work
C. ciliatum (H., B. & K.) Kuntze26Pickersgill (1977)
C. cornutum (Hern.) Hunz.26This work
C. flexuosum Sendt.24Moscone (1992), Bertão (1993), this work
C. galapagense Heiser & Smith24Fedorov (1969); Pickersgill (1977)
C. lanceolatum (Green.) Morton & Standl.26Tong & Bosland (1997, 2003)
C. macrophyllum Standl.24Fedorov (1969); re-classified as Witheringia solanacea L'Her.1
C. maculatum Standl. & Mort.24Fedorov (1969); re-classified as Witheringia maculata (Morton & Standl.) Hunz.1
C. mirabile Mart. var. mirabile26Moscone et al. (1995)
C. parvifolium Sendt.24Bertão (1993); Moscone (1993); Moscone et al. (1993, 1995, 2003); this work
C. schottianum Sendt.26This work
C. stenophyllum Mort. & Standl.24Fedorov (1969); re-classified as Witheringia meiantha (Don. Sm.) Hunz.1
C. stramoniifolium (H., B. & K.) Standl.24Fedorov (1969); re-classified as Witheringia stramonifolia Kunth1
C. testiculatum Vis. ex Dun.24Goldblatt & Johnson (1991); not considered as related to Capsicum1
C. tetramerum Stand. & Mort.24Fedorov (1969); re-classified as Witheringia solanacea var. solanacea L'Her.1
C. villosum Sendt. var. villosum26This work
Capsicum sp. (Brazil)26Pickersgill (1977)
Capsicum sp. 1326This work
Capsicum sp. 2326This work
Capsicum sp. 6326This work
Capsicum sp. 7326This work
Capsicum sp. 8326This work
1

According toBaral & Bosland (2002)

2

L. B. Bianchetti (pers. comm.)

According to Pickersgill (1969), wild Capsicum species have small, red, erect fruits and seeds are dispersed by birds attracted by the bright fruit colour. During domestication this kind of dispersal was lost, as man probably selected, consciously or not, nondeciduous pendant fruits. The change from erect to pendant fruits could have been due to the increase in fruit size and weight selected for in the domesticated forms. Such fruits, hidden among the leaves, would also be protected against predation by birds.

Capsicum baccatum var. praetermissum is endemic to the south-south-eastern region of Brazil (Bianchetti, 1996). Eventually, some plants might be found in other places, either wild or as escapees from cultivation. The species is found mostly as escapees in disturbed habitats or cultivated in small gardens. The fruits are deciduous, ovoid, rarely globular, bright red, erect and with pale yellow seeds. These morphological and ecological characteristics are shared with the wild Andean taxa.

Capsicum chinense is also found wild or under cultivation and is frequently used by the indigenous inhabitants of the northern Brazilian state of Roraima. Its fruits and seeds are morphologically similar to those of domesticated and wild Andean species (Barbosa et al., 2002).

Capsicum flexuosum is normally distributed in low altitudes in a transition zone between the wild Andean species and those occurring in south-eastern Brazil, Paraguay and Argentina. It presents morphological characteristics from both groups of species: fruits are deciduous, globular, red or orange (characteristic of Andean species adapted to dry climates), opaque and pendant, with blackish seeds (characteristic of Brazilian species adapted to wet climates). Bianchetti (1996) suggested that this mixed morphology could be explained by a recent evolutionary origin of C. flexuosum.

Capsicum parvifolium also presents morphological characteristics of both Andean and Brazilian species. The fruits are red or orange, with pale yellow seeds (characteristic of Andean species adapted to dry climates), globular and pendant (characteristic of Brazilian species adapted to wet climates). This is the only species with a disjunct geographical distribution in dry areas in Venezuela, Colombia and north-eastern Brazil (Bianchetti, 1996). According to Bianchetti (1996), this present distribution could be explained by the following scenarios: a very wide distribution of the species during the late glacial period dwindled, owing to the enlarging Argentinian – Paraguayan – Bolivian arid region, leaving open vegetation areas which were later isolated; or a humid tropical region expanded over South America, including north-eastern Brazil, and a later retreat of the forest and consequent expansion of open vegetation formed refugia in which C. parvifolium is found.

It should be noted that fruit colour in these four species is similar to that of the Andean species, but the pendant fruits of C. flexuosum and C. parvifolium are a characteristic shared by most Brazilian taxa. Both species have undergone environmental changes and some morphological variation, but have maintained the chromosome number of 2n = 24.

The other wild species analysed present a set of morphological and ecological discriminatory characteristics, including: (1) a more coastal (eastern) distribution, usually above 400 m a.s.l.; (2) occurrence in humid forests; (3) fruits that are globular, pendant and greenish-yellowish when ripe with blackish seeds, suggesting that the natural pollinators are probably not birds (Bianchetti, 1996; Bianchetti et al., 1999). We have showed that another distinctive characteristic of these species is the chromosome number of 2n = 26, with the thirteenth pair morphologically different from the other chromosomes of the complement. The joint analysis of these morpho-ecological and cytological aspects strongly suggests the existence of two distinct evolutionary lines. However, how the difference in chromosome numbers is related to phylogenetic relationships is still not clear.

A few other species from the Andean or north-western South American regions, such as C. mirabile and an unidentified species, also have 2n = 26 chromosomes (Pickersgill, 1977, 1991; Moscone et al., 1993; Tong & Bosland, 1997, 2003). Tong & Bosland (2003) attempted interspecific crosses between the 2n = 26 C. lanceolatum from Guatemala and several 2n = 24 species [C. pubescens, C. praetermissum, C. ciliatum (H., B. & K.) Kuntze, C. baccatum, C. frutescens, C. buforum, C. cardenasii Heiser & Smith, C. eximium Hunz. and C. tovarii Eshbaugh] and verified the existence of incompatibility between the 2n = 26 species and the other taxa.

Data in Table 2 show that x = 13 is more common among the wild Brazilian species than in the other Capsicum taxa studied so far. Is the x = 13 a primitive or a derived characteristic? Have the x = 13 species originated from a x = 12 ancestor and acquired one pair of chromosomes (the small pair); have the x = 12 species originated from the x = 13 ones, or have both group of species originated from a common ancestor, having afterwards undergone distinct evolutionary trends? Bianchetti (1996), examining morpho-ecological characteristics of these x = 13 species, suggested that they represent a primitive condition. Moreover, the occurrence of the x = 13 species, C. lanceolatum in Guatemala and C. ciliatum in north-western South America, could represent the remains of an ancient continuous vegetation linking the eastern South American region (where the Brazilian wild x = 13 species are) and the north-western region (Bianchetti, 1996).

Based on his own data and those of Landrum (1981) on Myrceugenia (Myrtaceae), a genus with distribution and phylogenetic problems similar to those of Capsicum, Bianchetti (1996) formulated the hypothesis that the genus Capsicum was distributed in a continuous humid forest vegetation belt extending from the Brazilian south-east to near to Chile. These species, with x = 13, had pendant, greenish-yellowish fruits that were disseminated by forest-inhabiting vectors, probably bats. With the elevation of the Andes, the area located to the east (Argentina) became semiarid and there followed an extreme reduction of the forest, leading to a selection pressure favouring species with the potential to adapt to the new environment. In some of the populations one pair of chromosomes was lost and the surviving x = 12 taxa changed fruit position and colour to erect and reddish and the dispersal vectors changed to open-vegetation inhabitants, probably birds. Afterwards, these species migrated northwards through the Andes to regions of intermediate altitudes and mild climates. In south-eastern Brazil, the vegetation was little altered owing to the region's climatic stability, so the species from that area maintained the primitive characteristics of pendant greenish-yellowish fruits.

CONCLUDING REMARKS

Existing data suggest a clear separation between the wild Brazilian Capsicum species with x = 13 and the others, mostly with x = 12. Morpho-ecological data (Bianchetti, 1996) suggest that Brazilian species are primitive and the others are derived. Cytogenetic information obtained so far cannot confirm whether x = 13 is primitive or derived, but a comparison of our cytological work and the morpho-ecological data suggests that x = 13 is the ancestral basic number and that the two basic chromosome numbers represent two different evolutionary lines. Further studies in a larger number of species and populations, including FISH (Fluorescent in situ Hybridization) analysis, use of DNA markers and crossing experiments, are necessary to elucidate the evolutionary history of Capsicum.

ACKNOWLEDGEMENTS

We thank Dr Andrea del Pilar de Souza Peñaloza, Ms. Sileuza Santos (EMBRAPA-CENARGEN), MSc Sabrina de Carvalho and MSc Claudia Silva (EMBRAP-CNPH) for their help in collecting material for cytogenetic analysis and for maintaining and supplying plants and seeds. EMBRAPA gave financial support and a PhD grant.

REFERENCES

Baral
JB
,
Bosland
PW
2002
.
An updated synthesis of the Capsicum genus
.
Capsicum and Eggplant Newsletter
21
:
11
21
.

Barbosa
RI
,
Luz
FJF
,
Nascimento Filho
HR
,
Do Maduro
CB
2002
.
Pimentas do gênero Capsicum cultivadas em Roraima, Amazônia Brasileira. I. Espécies domesticadas
.
Acta Amazônica
32
:
177
132
.

Bertão
MR
1993
.
Evolução cariotípica no gênero Capsicum (Solanaceae)
.
Unpubl. MSc. thesis
, Escola Superior de Agricultura Luiz de Queiroz/USP, Piracicaba.

Bianchetti
LB
1996
.
Aspectos morfológicos, ecológicos e biogeográficos de dez táxons de Capsicum (Solanaceae) ocorrentes no Brasil
.
Unpubl. MSc. thesis
, Universidade de Brasília/UNB, Brasília.

Bianchetti
LB
,
Bustamante
PG
,
Silva
GP
,
Reifschneider
FJB
1999
.
Relatório de viagem para coleta de espécies silvestres de Capsicum (Solanaceae), realizada entre os dias 28/4 e 26/5 de no sudeste do Brasil.
Disponível em
: http://www.cnph.embrapa.br/projetos/capsicum/indexf3sub10.htm.

Buso
GSC
,
Lourenço
RT
,
Bianchetti
LB
,
De Lins
TCL
,
Pozzobon
MT
,
De Amaral
ZPS
,
Ferreira
ME
2001
.
Espécies silvestres do gênero Capsicum coletadas na Mata Atlântica Brasileira e sua relação genética com espécies cultivadas de pimenta: uma primeira abordagem genética utilizando marcadores moleculares.
Boletim de Pesquisa e Desenvolvimento 7.
Brasília
:
Embrapa Recursos Genéticos e Biotecnologia.

Carluccio
F
,
Saccardo
F
1977
.
Karyotype studies in Capsicum
. In:
Pochard
E
ed.
Capsicum 77. Compte Rendues 3ème Congrès Eucarpia Piment.
Montfavet-Avignon
:
INRA
,
39
50
.

Fedorov
AA
1969
.
Chromosome numbers of flowering plants
.
Leningrad
:
Russian Academy of Sciences.

Ferreira
MAMM
1998
.
Determinação do padrão de regiões heterocromáticas no gênero Capsicum através de métodos de bandamento
.
Unpubl. MSc. thesis
, Escola Superior de Agricultura ‘Luiz de Queiroz’ ESALQ-USP, Piracicaba.

Goldblatt
P
1981
.
Index to plant chromosome numbers 1975–78
. Monographs in Systematic Botany 5.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
1984
.
Index to plant chromosome numbers 1979–81
. Monographs in Systematic Botany 8.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
1985
.
Index to plant chromosome numbers 1982–83
. Monographs in Systematic Botany 13.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
1988
.
Index to plant chromosome numbers 1984–85
. Monographs in Systematic Botany 23.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
,
Johnson
DE
1990
.
Index to plant chromosome numbers 1986–87
. Monographs in Systematic Botany 30.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
,
Johnson
DE
1991
.
Index to plant chromosome numbers 1988–89
. Monographs in Systematic Botany 40.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
,
Johnson
DE
1994
.
Index to plant chromosome numbers 1990–91
. Monographs in Systematic Botany 51.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
,
Johnson
DE
1996
.
Index to plant chromosome numbers 1992–93
. Monographs in Systematic Botany 58.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
,
Johnson
DE
1998
.
Index to plant chromosome numbers 1994–95
. Monographs in Systematic Botany 69.
St Louis, MO
:
Missouri Botanical Garden.

Goldblatt
P
,
Johnson
DE
2000
.
Index to plant chromosome numbers 1996–97
. Monographs in Systematic Botany 81.
St Louis, MO
:
Missouri Botanical Garden.

Landrum
LR
1981
.
The phylogeny and geography of Myrceugenia (Myrtaceae)
.
Brittonia
33
:
105
129
.

Limaye
VA
,
Patil
VP
1989
.
Karyomorphological studies in the genus Capsicum Linn
.
Cytologia
54
:
455
463
.

Lippert
LF
,
Smith
PG
,
Bergh
BO
1966
.
Cytogenetics of the vegetable crops. Gardens peppers, Capsicum sp
.
Botanical Review
32
:
24
55
.

McLeod
MJ
,
Eshbaugh
WH
,
Guttman
SI
1979a
.
A preliminary biochemical systematic study of the genus Capsicum – Solanaceae
. In:
Hawkes
JG
,
Lester
RN
,
Skelding
AD
eds.
The biology and taxonomy of the Solanaceae
.
New York
:
Academic Press
,
701
713
.

McLeod
MJ
,
Eshbaugh
WH
,
Guttman
SI
1979b
.
An electrophoretics study of Capsicum (Solanaceae). The purple flowered taxa
.
Bulletin of the Torrey Botanical Club
106
:
326
333
.

McLeod
MJ
,
Guttman
SI
,
Eshbaugh
WH
1983a
.
Peppers (Capsicum)
. In:
Tanksley
SD
,
Orton
TJ
eds.
Isozymes in plant genetics and breeding.
Part B.
Amsterdam
:
Elsevier
,
189
201
.

McLeod
MJ
,
Guttman
SI
,
Eshbaugh
WH
,
Rayle
RE
1983b
.
An electrophoretic study of evolution in Capsicum (Solanaceae)
.
Evolution
37
:
562
574
.

Moore
RJ
1973
.
Index to plant chromosome numbers 1967–1971.
Utrecht
:
International Bureau for Plant Taxonomy and Nomenclature.

Moscone
EA
1992
.
Estudios de cromosomas meioticos en Solanaceae de Argentina
.
Darwiniana
31
:
261
297
.

Moscone
EA
1993
.
Estudios cromosómicos en Capsicum (Solanaceae) II. Analisis cariotípico de C. parvifolium y C. annuum var. annuum
.
Kurtziana
22
:
9
18
.

Moscone
EA
1999
.
Análisis cariotípico en C. baccatum var. umbilicatum (Solanaceae) mediante bandeos AgNor y de fluorescencia
.
Kurtziana
27
:
225
232
.

Moscone
EA
,
Lambrou
M
,
Hunziker
AT
,
Ehrendorfer
F
1993
.
Giemsa C-banded karyotypes in Capsicum (Solanaceae)
.
Plant Systematics and Evolution
186
:
213
229
.

Moscone
EA
,
Loidl
J
,
Ehrendorfer
F
,
Hunziker
AT
1995
.
Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining
.
American Journal of Botany
82
:
276
287
.

Moscone
EA
,
Lambrou
M
,
Ehrendorfer
F
1996
.
Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae)
.
Plant Systematics and Evolution
202
:
37
63
.

Moscone
EA
,
Baranyi
M
,
Ebert
I
,
Greilhuber
J
,
Ehrendorfer
F
,
Hunziker
AT
2003
.
Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry
.
Annals of Botany
92
:
21
29
.

Pickersgill
B
1969
.
The domestication of chili peppers
. In:
Ucko
J
,
Dimbleby
GW
eds.
The domestication and exploitation of plants and animals.
London
:
Duckworth
,
443
450
.

Pickersgill
B
1971
.
Relationships between weedy and cultivated forms in some species of chili peppers (Genus Capsicum)
.
Evolution
25
:
683
691
.

Pickersgill
B
1977
.
Chromosomes and evolution in Capsicum
. In:
Pochard
E
ed.
Capsicum 77. Comptes Rendues 3ème Congrès Eucarpia Piment.
Montfavet-Avignon
:
INRA
,
27
37
.

Pickersgill
B
1984
.
Migration of Chili Peppers, Capsicum spp, in the Americas
. In:
Store
P
ed.
Pré-Columbian plant migration
. Papers of the Peabody Museum of Archaelogy and Ethnology 76.
Cambridge
:
Harvard University Press
,
105
123
.

Pickersgill
B
1991
.
Cytogenetics and evolution of Capsicum L
. In:
Tsuchiya
T
,
Gupta
PK
eds.
Chromosome engineering in plants: genetics, breeding, evolution.
Part B.
Amsterdam
:
Elsevier
,
139
160
.

Pozzobon
MT
,
Valls
JFM
1997
.
Chromosome number in germplasm accessions of Paspalum notatum (Gramineae)
.
Brazilian Journal of Genetics
20
:
29
34
.

Ribeiro
CS da C
,
Lobo
M
Jr
,
Henz
GP
,
Reifschneider
FJB
2003
.
Evaluation of Capsicum spp. genotypes for resistance to Phytophthora capsici in Brazil
.
Capsicum and Eggplant Newsletter
22
:
125
126
.

Smith
PG
,
Heiser
CB
Jr.
1951
.
Taxonomic and genetic studies of the cultivated peppers Capsicum annuum L. & C. frutescens L
.
American Journal of Botany
38
:
362
368
.

Tong
N
,
Bosland
PW
1997
.
Meiotic chromosome study of Capsicum lanceolatum, another 13 chromosome species
.
Capsicum and Eggplant Newsletter
16
:
42
43
.

Tong
N
,
Bosland
PW
2003
.
Observations on interspecific compatibilty and meiotic chromosome behavior of Capsicum buforum and C. lanceolatum
.
Genetic Resources and Crop Evolution
50
:
193
199
.

Author notes

Current address: Departamento de Plantas Forrageiras e Agrometeorologia, Faculdade de Agronomia, UFRGS, Caixa Postal 15100, 91501-970 Porto Alegre, RS, Brazil