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Behavioural disinhibition is a common feature of the syndromes associated with frontotemporal lobar degeneration (FTLD). It is

associated with high morbidity and lacks proven symptomatic treatments. A potential therapeutic strategy is to correct the neuro-

transmitter deficits associated with FTLD, thereby improving behaviour. Reductions in the neurotransmitters glutamate and GABA

correlate with impulsive behaviour in several neuropsychiatric diseases and there is post-mortem evidence of their deficit in FTLD.

Here, we tested the hypothesis that prefrontal glutamate and GABA levels are reduced by FTLD in vivo, and that their deficit is

associated with impaired response inhibition. Thirty-three participants with a syndrome associated with FTLD (15 patients with

behavioural variant frontotemporal dementia and 18 with progressive supranuclear palsy, including both Richardson’s syndrome

and progressive supranuclear palsy-frontal subtypes) and 20 healthy control subjects were included. Participants undertook ultra-

high field (7 T) magnetic resonance spectroscopy and a stop-signal task of response inhibition. We measured glutamate and GABA

levels using semi-LASER magnetic resonance spectroscopy in the right inferior frontal gyrus, because of its strong association with

response inhibition, and in the primary visual cortex, as a control region. The stop-signal reaction time was calculated using an

ex-Gaussian Bayesian model. Participants with frontotemporal dementia and progressive supranuclear palsy had impaired response

inhibition, with longer stop-signal reaction times compared with controls. GABA concentration was reduced in patients versus con-

trols in the right inferior frontal gyrus, but not the occipital lobe. There was no group-wise difference in partial volume corrected

glutamate concentration between patients and controls. Both GABA and glutamate concentrations in the inferior frontal gyrus cor-

related inversely with stop-signal reaction time, indicating greater impulsivity in proportion to the loss of each neurotransmitter.

We conclude that the glutamatergic and GABAergic deficits in the frontal lobe are potential targets for symptomatic drug treatment

of frontotemporal dementia and progressive supranuclear palsy.
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Introduction
Behavioural change is a common feature of the syndromes

associated with frontotemporal lobar degeneration (FTLD)

pathology, including behavioural variant frontotemporal de-

mentia (bvFTD) and progressive supranuclear palsy (PSP)

(Gerstenecker et al., 2013; Bang et al., 2015; Lansdall et al.,

2017; Murley et al., 2020a). This is associated with loss of

functional independence (Agarwal et al., 2019; Murley

et al., 2020b) and increased mortality (Lansdall et al., 2019)

in both disorders. Better treatment of behavioural symptoms

might therefore improve both functionally independent sur-

vival and quality of life for patients and their families. A po-

tential treatment strategy is to reverse neurotransmitter

deficits, which has been effective in other neurodegenerative

and neuropsychiatric disorders (Barone, 2010; Kandimalla

and Reddy, 2017). There is evidence of neurotransmitter

deficits in FTLD, but limited evidence of a relationship with

phenotype (Huey et al., 2006; Murley and Rowe, 2018).

The behavioural disturbance caused by FTLD syndromes

comprises many neurocognitive processes with distinct ana-

tomical and neurochemical alterations (Ranasinghe et al.,

2016; Passamonti et al., 2018). An inability to inhibit in-

appropriate actions is seen in both bvFTD (O’Callaghan

et al., 2013a; Hughes et al., 2018) and PSP (Gerstenecker

et al., 2013; Zhang et al., 2016a). This phenotypic overlap

between bvFTD and PSP is reflected in the MDS-2017 crite-

ria for the PSP-F subtype (Höglinger et al., 2017), along

with frequent parkinsonism in bvFTD (Rowe, 2019). In this

study, we therefore used a transdiagnostic approach to be-

havioural disinhibition (Husain, 2017), with ‘FTLD syn-

dromes’ encompassing bvFTD, PSP-Richardson’s syndrome

and PSP-Frontal syndrome. We measured glutamate and

GABA concentrations in vivo, before testing the association

of these neurotransmitter deficits with behavioural

disinhibition.

The neurotransmitters glutamate and c-aminobutyric acid

(GABA) are associated with behavioural variability in health

and neurological and psychiatric diseases. For example,

GABA concentrations in CSF (Lee et al., 2009) and prefront-

al cortex (Boy et al., 2011; Silveri et al., 2013; Hermans

et al., 2018) inversely correlate with impulsivity and risky

decision-making (Fujihara et al., 2015). Proton magnetic res-

onance spectroscopy (1H-MRS) enables in vivo non-invasive

measurement of glutamate and GABA, and has identified

deficits in diseases associated with impulsivity (Ende, 2015;

Yasen et al., 2017). GABA deficits are seen in drug and alco-

hol addiction (Prisciandaro et al., 2017; Li et al., 2020), at-

tention deficit hyperactivity disorder (Edden et al., 2012;

Ende et al., 2016) and obsessive compulsive disorder (Zhang

et al., 2016b). There is also an association between glutam-

ate, measured in vivo with MRS, and self-reported impulsiv-

ity in healthy adults (Schmaal et al., 2012a; Coccaro et al.,

2013), personality disorders (Hoerst et al., 2010), attention

deficit hyperactivity disorder (Naaijen et al., 2015; Ende

et al., 2016) and addiction (Schmaal et al., 2012b). The dir-

ection of the relationship between glutamate, GABA and im-

pulsive behaviour is complex and may depend on disease

state (Ende, 2015), brain region (Dharmadhikari et al.,

2015; Naaijen et al., 2015) and receptor subtype (Lee et al.,

2011; Hermans et al., 2018).

There is preclinical and clinical evidence of GABA and glu-

tamate deficits in FTLD (Murley and Rowe, 2018). For ex-

ample, in transgenic tauopathy mouse models, there is

impairment of both glutamatergic (Gascon et al., 2014;

Warmus et al., 2014; Decker et al., 2016) and GABAergic

(Levenga et al., 2014; Li et al., 2017; Jiang et al., 2018) neu-

ron function. In post-mortem human studies of FTLD, gluta-

matergic pyramidal neurons (Ferrer, 1999; Henderson et al.,

2000) and receptors (Francis et al., 1993; Procter et al., 1999;

Bowen et al., 2008; Gascon et al., 2014) are reduced.

GABAergic neurons are markedly reduced in FTD (Ferrer,

1999) and PSP (Levy et al., 1995), with loss of GABAA recep-

tors in some brain regions (Landwehrmeyer and Palacios,

1994; Suzuki et al., 2002). Post-mortem GABA concentra-

tions are decreased in the basal ganglia in bvFTD (Kanazawa

et al., 1988). There is also emerging evidence of in vivo glu-

tamate deficits (Benussi et al., 2019). MRS in bvFTD shows

reduced glutamate/glutamine levels in the frontal and tem-

poral lobes (Ernst et al., 1997; Sarac et al., 2008), and there

is an inverse correlation between CSF glutamate levels and

verbal agitation (Vermeiren et al., 2013). PET studies have

also shown loss of glutamate and GABA receptors (Foster

et al., 2000; Leuzy et al., 2016).

In this study we use ultra-high field (7 T) 1H-MRS to

measure glutamate and GABA in vivo. This method requires

the target region (voxel) to be selected before each scan. We

chose the right inferior frontal gyrus as our experimental re-

gion of interest. This region is critical for response inhibition

(Aron et al., 2004, 2014), as shown in structural (Aron

et al., 2003) and functional studies (Swann et al., 2009;

Levy and Wagner, 2011; Ye et al., 2014; Rae et al., 2015).

In bvFTD, abnormal functional connectivity of the inferior

frontal gyrus is associated with impulsivity (Hughes et al.,

2015, 2018). We also measured glutamate and GABA in a

control region, the right occipital lobe, which is minimally

affected by FTLD pathologies (Riedl et al., 2014).

We tested two specific hypotheses: (i) GABA and glutam-

ate levels are reduced in the frontal but not occipital cortex

in subjects with bvFTD/PSP compared with controls, even

after correction for atrophy; and (ii) the GABA and glutam-

ate deficits in the frontal lobe of patients are associated with

failure of response inhibition.

Materials and methods

Participant recruitment

Forty-four patients with bvFTD or PSP were recruited from the
Cambridge Centre for Frontotemporal Dementia, the
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Cambridge Centre for Parkinson-Plus and the ‘Join Dementia
Research’ patient register. All patients had a clinical assessment
to confirm they met the diagnostic criteria for bvFTD
(Rascovsky et al., 2011), PSP-Richardson’s syndrome or PSP-
Frontal syndrome (Höglinger et al., 2017). Disease severity was
assessed with the Clinical Dementia Rating scale modified for
FTLD (Knopman et al., 2008, 2011) and Progressive
Supranuclear Palsy Rating Scale (Golbe and Ohman-Strickland,
2007). Twenty age- and sex-matched controls with no history
of a neurological or psychiatric illness were recruited from the
‘Join Dementia Research’ database. Participants were asked to
abstain from alcohol and PRN benzodiazepines or ‘Z-drugs’ for
24 h prior to the scan but continue their regular medications.
No participants in the study were taking regular ‘Z-drugs’ or
benzodiazepines. All participants gave written informed consent.
The study had ethical approval from the Cambridge Central
Research Ethics Committee (16/EE/0351; 16/EE/0084).

Neuropsychology

Participants underwent cognitive and neuropsychological assess-
ments including the Addenbrooke’s Cognitive Examination-
Revised (ACE-R) (Mioshi et al., 2006), Frontal Assessment
Battery (FAB) (Royall, 2001), Hayling Sentence Completion test
(Burgess and Shallice, 1997) and INECO Frontal Screening test
(Torralva et al., 2009). Each participant’s closest relative com-
pleted the Cambridge Behavioural Inventory-Revised (CBI-R)
(Wear et al., 2008) and Frontotemporal Dementia Rating Scale
(FRS) (Mioshi et al., 2010). We report the Hayling A + B score
instead of total score (O’Callaghan et al., 2013b; Martyr et al.,
2019).

Stop-signal task

A stop-signal type response inhibition task was used to measure
response inhibition (Ye et al., 2014; Tsvetanov et al., 2018)
(Supplementary material and Supplementary Fig. 1).
Participants were presented with a series of trials consisting of
either go, no-go or stop trials and responded using a manual
two-button box. On go trials, participants pressed the left but-
ton when shown a left-pointing black arrow and pressed the
right button when shown a right-pointing black arrow. On stop
trials, after a short and variable ‘stop-signal’ delay (SSD), the
black arrow changed colour from black to red and a tone
sounded at the same time (the stop signal). On stop trials, the
SSD was varied using a staircase method to target a cumulative
stop accuracy of 50% in each participant (see Tsvetanov et al.,
2018 for details). The starting SSD was calculated from 20 go
trials at the start of each block. These trials were omitted from
further analysis. On no-go trials, the SSD was set to zero.
Participants were instructed to not respond if the arrow became
red, suppressing their imminent response. Participants were
given standardized instructions and asked to respond as quickly
and accurately as possible. Participants were told neither to
slow down on go trials, nor to wait for a possible stop signal
(Verbruggen et al., 2019). The task consisted of five blocks of
120 trials (go n = 450, no-go n = 51, stop n = 99). Participants
undertook a practice session of 20 trials prior to the first block.

We used the Dynamic Models of Choice toolbox in R
(Version 3.6.1) to perform parametric Bayesian hierarchical ana-
lysis of the stop-signal task (Matzke et al., 2013; Heathcote

et al., 2019). This method is described in detail elsewhere
(Heathcote et al., 2019). In brief, the model assumes a race be-
tween three independent processes: one corresponding to the
stop process and two corresponding to go processes that match
or mismatch the choice stimulus. A correct go response occurs
when the matching go process finishes before the mismatching
go process. Successful stop trials occur when the stop process
finishes before either of the go processes. The model assumes
that the finishing times of these processes follow an ex-Gaussian
skewed distribution, which is typical for reaction time data
(Heathcote et al., 1991). We estimated the mean (l), standard
deviation (r) and exponential decay (s) of the ex-Gaussian dis-
tribution separately for each process. We included two atten-
tional failure parameters that represent the probability that the
go and stop processes fail to start (‘trigger failure’). We esti-
mated these parameters hierarchically, so that parameters for in-
dividual participants were considered to be samples from
corresponding group-level distributions. We fitted this hierarch-
ical model separately for the patient and control groups. The
Dynamic Models of Choice model has several advantages over
other methods of calculating stop-signal reaction time (SSRT).
First, it provides a distribution of plausible SSRT values, rather
than a point estimate of SSRT, which may better reflect disease-
related disinhibition (Matzke et al., 2013). Second, the model
accounts for attentional failures on go and stop trials, which
occur when a participant fails to react to a go or stop signal.
These ‘trigger failures’ are common in health (Matzke et al.,
2017) and diseases such as schizophrenia (Matzke et al., 2017)
and, if not modelled, may cause overestimation of the SSRT
(Matzke et al., 2019; Skippen et al., 2019). Third, the model
can accommodate choice errors by including two Go runners,
which yields more accurate parameter estimates for the stop
process (Heathcote et al., 2019; Matzke et al., 2019). Lastly,
hierarchical Bayesian methods regularize participant-level esti-
mates according to group statistics, which enables reliable
group-level inference and produces, on average, more accurate
participant-level estimates (Gelman et al., 2013).

We used Markov chain Monte Carlo sampling to approxi-
mate the posterior distributions of parameters simultaneously at
the level of the group and individual participants. The prior dis-
tributions for the group-level parameters were the same as used
by the model developers (Heathcote et al., 2019), except for
slightly higher prior mean values for lgo-match (1.5 s), lgo-mismatch

(1.5 s) and l
stop

(1 s), to account for slower reaction times in
older age and neurodegenerative disease. We initially ran the
model using 33 chains (i.e. three times the number of parame-
ters), with thinning of every 10th sample and a 5% probability
of migration for both the group and participant levels. We
assessed convergence of the Markov chain Monte Carlo chains
by visual inspection of the trace plots and confirmed that the
potential scale reduction statistic R̂ was 51.1 for all parame-
ters. After this, we obtained an additional 500 iterations for
each chain to create a final posterior distribution of each param-
eter, for further analyses. We compared the observed and simu-
lated data (generated from the model’s posterior predictive
distribution), to ensure that the model adequately captures the
data-generating process. The primary outcome of interest,
SSRT, now without the potential confound of attentional fail-
ure, was computed as the sum of lstop and sstop (Matzke et al.,
2019).

GABA and glutamate deficits from FTLD BRAIN 2020: 143; 3449–3462 | 3451

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/143/11/3449/5952714 by guest on 23 April 2024

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa305#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa305#supplementary-data


Magnetic resonance spectroscopy

Participants underwent scanning with a MAGNETOM Terra
scanner (Siemens Healthineers) with a 32-channel receiver and
single channel transmit head coil (Nova Medical). A
T1-weighted MP2RAGE structural sequence [repetition time =
4300 ms, echo time = 1.99 ms, resolution = 99 ms, bandwidth
= 250 Hz/px, voxel size = 0.75 mm3, field of view =
240 � 240 � 157 mm, acceleration factor (A�P) = 3, flip-
angle = 5/6� and inversion times = 840/2370 ms] was acquired
for voxel placement and partial volume correction. The default
settings for tissue probability parameters (six tissue classes) in
the standard SPM12 pipeline were used for tissue segmentation
and voxel-based morphometry (Supplementary material).

Magnetic resonance spectra were acquired serially from one
region of interest, the right inferior frontal gyrus, and one con-
trol region, the right primary visual cortex. Voxel order was
randomized between participants. Both voxels (2 � 2 � 2 cm3)
were placed manually by the same operator (A.G.M.) using ana-
tomical landmarks. To confirm that spectroscopy voxel place-
ment was consistent across participants in both brain regions,
we retrospectively overlaid the co-registered voxels on a T1

study-wise template. (Fig. 1A and B). Spectra were acquired
using a short-echo semi-LASER sequence (Öz and Tká�c, 2011;
Deelchand et al., 2015) (repetition time/echo time = 5000/26
ms, 64 repetitions) using the recommended pre-scan protocol of
FASTESTMAP shimming (Gruetter and Tká�c, 2000) semi-
LASER water-peak flip angle and VAPOR water suppression
calibration (Tkac et al., 1999). This spectroscopy sequence gives
reliable and reproducible GABA and glutamate measurements
in the human brain in vivo (Barron et al., 2016; Kolasinski
et al., 2017; Joers et al., 2018; Frangou et al., 2019; Hong
et al., 2019; Ip et al., 2019).

Each of the 64 individual spectral transients from each partici-
pant were saved separately. These were then corrected for effects
of eddy currents and for frequency and phase shifts using
MRspa (Dinesh Deelchand, University of Minnesota, www.
cmrr.umn.edu/downloads/mrspa). Two patient participants had
inadequate data for further analysis and were excluded, due to
incomplete scans and movement artefacts.

Neurochemicals between 0.5 and 4.2 ppm, including glutam-
ate and GABA, were quantified using LCModel (Version 6.2-3)
(Provencher, 1993), with water scaling and a simulated basis set
that included experimentally-acquired macromolecule spectra
(Fig. 1C). For partial volume correction, fractions of grey mat-
ter, white matter and CSF were obtained from segmentation of
the MP2RAGE images using SPM12. A generalized linear
model was used to remove the effect of age, sex and partial vol-
ume and the residual glutamate and GABA values were used for
further analysis (Supplementary material).

Statistical analysis

Analysis of variance was used to compare GABA and glutamate
levels between groups, with region of interest as a within subject
factor and diagnosis as a between subject factor. All P-values
were corrected for multiple comparisons using Tukey’s test. We
tested the association between the right inferior frontal gyrus
GABA and glutamate concentrations and behavioural disinhib-
ition, as measured by the SSRT and carer questionnaires, in par-
ticipants with bvFTD/PSP. For each value in the individual-level
posterior distributions of SSRT, a Spearman’s correlation

coefficient was calculated with the residual glutamate and
GABA values after partial volume, age and sex correction. This
results in a posterior distribution of plausible correlation values
(Ly et al., 2018). The region of practical equivalence was
defined as a Spearman’s R between –0.1 and 0.1, corresponding
to a small effect size (Cohen, 1992; Kruschke, 2018). The null
hypotheses was rejected if the 95% highest density interval
(HDI) of the ‘R’ correlation values did not overlap with the re-
gion of practical equivalence (Kruschke, 2018). Analysis was
performed in MATLAB 2018b (MathWorks, USA) and JASP
(Version 0.11).

Data availability

Anonymized data are available on reasonable request for aca-
demic purposes.

Results
Forty-four patients with bvFTD/PSP participated in the

study. The primary clinical diagnoses were evenly split be-

tween bvFTD (n = 22) and PSP (n = 22), but if MAX-rules

and mutual exclusivity criteria were set aside (Grimm et al.,

2019), many patients met more than one set of diagnostic

criteria for bvFTD, PSP-Frontal syndrome and PSP-

Richardson’s syndrome. Thirty-six patients met the diagnos-

tic criteria for probable bvFTD (with or without parkinson-

ism and oculomotor deficits), 19 met the criteria for

PSP-Frontal syndrome and 23 met the criteria for PSP-

Richardson’s syndrome (with or without cognitive and be-

havioural change). Fifteen patients exhibited clinical and

radiological features consistent with all three conditions.

Three patients with bvFTD had parkinsonism but did not

meet the diagnostic criteria for PSP. Therefore, we use a

transdiagnostic approach when reporting these results and

refer to all patients with bvFTD or PSP as an ‘FTLD’ group,

noting the high, but not perfect, clinical pathological correla-

tions between clinically probable and possible bvFTD, PSP

and the pathologies of FTLD (Perry et al., 2017; Gazzina

et al., 2019).

Patient demographics and neuropsychology results are

shown in Table 1. Statistical comparisons of the FTLD sub-

groups (bvFTD versus PSP) are included in the

Supplementary material, noting that both groups were im-

pulsive, as expected.

First, we compared grey and white matter volumes be-

tween FTLD syndromes and healthy controls using voxel-

based morphometry. Participants with FTLD had reduced

grey matter volume in the frontal and temporal lobes, basal

ganglia, thalamus and cerebellum, with corresponding white

matter volume loss in the frontostriatal and corticospinal

tracts and brainstem. Brain volume was relatively preserved

in the occipital lobe (Supplementary Fig. 2). Participants

with bvFTD and those with PSP had reduced grey matter in

the right orbitofrontal and anterior cingulate cortex, bilateral

inferior frontal gyri, insula and motor cortices, as shown by

a conjunction analysis (Nichols et al., 2005). This also
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revealed volume loss in subcortical structures including the

caudate, putamen and globus pallidus and superior cerebel-

lum. White matter volume loss was seen in frontostriatal

pathways (Supplementary Fig. 3).

Second, we used 1H-MRS to measure glutamate and

GABA concentrations in the right inferior frontal gyrus and

occipital lobe. The spectral quality was adequate for neuro-

transmitter quantification in both brain regions (Table 2 and

Figure 1 Spectroscopy voxel location and composition. (A) Frontal voxel (sum of all participants) superimposed on a mean structural

image of all participants. (B) Occipital voxel location. (C) Mean spectra from all participants showing the raw data, LCModel fit, baseline, residual

(fit-raw data), glutamate and GABA fits.
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Fig. 1C). The mean correlation coefficients between all

metabolites and both GABA and glutamate were less nega-

tive than –0.3, suggesting both were accurately distinguished

from other metabolites (Provencher, 1993). GABA and glu-

tamate measurements were water scaled, then corrected for

partial volume, age, sex and measurement accuracy

(Supplementary material). Water-scaled values without cor-

rection are shown in the Supplementary material. There was

no difference between groups in glutamate concentration in

either voxel [simple main effects: right inferior frontal gyrus

F(1) = 0.34, P = 0.56; right occipital lobe F(1) = 0.73,

P = 0.40] (Fig. 2). GABA was reduced in bvFTD/PSP com-

pared to controls in the right inferior frontal gyrus [F(1) =

8.67, P = 0.005] but not occipital lobe [F(1) = 0.06,

P = 0.81] (Fig. 2). Including white matter volume in the re-

gression analysis for GABA concentrations did not change

this finding. The GABA deficit in the right inferior frontal

gyrus was present in both bvFTD [t(38) = 2.93, P = 0.006]

and PSP [t(40) = 2.36 P = 0.023] subgroups compared with

the healthy controls. Removing the one outlier (Grubb’s test

P5 0.05) in the occipital lobe region in the patient group

did not change these results.

Third, we used Bayesian hierarchical modelling of a stop-

signal task to estimate the SSRT as the measure of response

inhibition. Data from nine participants with bvFTD/PSP

were excluded, due to low number of trials (550 stop trials)

or inability to complete the task. These excluded participants

did not have significantly different neurotransmitter concen-

trations from the group that completed the task [right infer-

ior frontal gyrus GABA t(40) = 0.47, P = 0.64; glutamate

t(40) = 0.56, P = 0.58]. The remaining bvFTD/PSP (bvFTD

n = 17, PSP n = 18) and control participants completed a

similar total number of trials (mean 663 versus 670 trials,

Mann-Whitney U-test = 300, P = 0.228) but participants

Table 1 Demographics and neuropsychology results of the study cohort

Control mean (SD) bvFTD/PSP mean (SD) t-statistic P-value

n 20 44

Age, years 67.1 (5.6) 66.2 (8.4) 0.47 NS

Sex, %male 65 72 0.263a NS

Disease onset to study, years (SD) NA 5.84 (11.32) NA NA

Diagnosis to study, years (SD) NA 1.08 (1.48) NA NA

CDR
VR

plus NACC FTLD 0 (0) 9.81 (5.19) –8.42 50.001

PSPRS Total 0.1 (0.31) 23.1 (17.81) –5.75 50.001

ACER Total 96.2 (2.71) 68 (24.11) 5.20 50.001

FAB 17.45 (0.83) 11.14 (5.14) 5.62 50.001

Hayling (A + B score) 4.3 (7.12) 24.31 (19.58) –4.08 50.001

Hayling Total 18.45 (2.28) 11.26 (4.83) 5.86 50.001

INECO 25.78 (2.83) 14.2 (7.53) 6.63 50.001

CBIR Total 6.35 (6.13) 64.62 (36.52) –6.61 50.001

FRS Total (Logit) 0.86 (0.3) 0.37 (0.28) 9.23 50.001

ACER = Addenbrooke’s Cognitive Examination-Revised; CBIR = Cambridge Behavioural Inventory-Revised; CDRVR plus NACC FTLD = Clinical Dementia Rating Scale plus NACC

FTLD behaviour and language domains, sum of boxes; FAB = Frontal Assessment Battery; FRS = Frontotemporal Dementia Rating Scale; NA = not applicable; PSPRS = Progressive

Supranuclear Palsy Rating Scale; SD = standard deviation.
aChi-squared, NS (not significant) = P4 0.05

Table 2 Spectral quality measurements

Control mean (SD) bvFTD/PSP mean (SD) t-statistic P-value

Water line width, Hz

Right inferior frontal gyrus 13.9 (1.3) 13.0 (2.7) 1.86 0.18

Right occipital lobe 13.9 (1.0) 13.34 (1.7) 2.11 0.15

Signal-to-noise ratio

Right inferior frontal gyrus 54.8 (5.3) 44.8 (8.7) 22.25 50.001

Right occipital lobe 67.4 (15.38) 57.8 (14.1) 5.39 0.02

Glutamate CRLB

Right inferior frontal gyrus 2.1 (0.3) 2.4 (0.5) 4.7 0.034

Right occipital lobe 2.3 (0.7) 2.4 (1.1) 0.22 0.65

GABA CRLB

Right inferior frontal gyrus 9.4 (1.1) 12.3 (4.4) 8.21 0.006

Right occipital lobe 19.2 (17.3a) 19.4 (9.3) 0.005 0.946

Values are presented as mean and standard deviation for each group. CRLB = Cramér Rao Lower Bound.
aThere was one outlier in the control group (CRLB 84).
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with bvFTD/PSP made more go errors (Mann-Whitney

U-test = 185.5, P = 0.003) and omissions (Mann-Whitney U-

test = 231.5, P = 0.005). Further details regarding behaviour-

al performance are provided in the Supplementary material.

The stop-signal task performance descriptive results,

Markov chain Monte Carlo trace plots and prior and pos-

terior density plots are shown in the Supplementary mater-

ial. The posterior estimates for the group and individual

level go and stop reaction time distributions for bvFTD/PSP

syndromes and controls are shown in Fig. 3. All control in-

dividual-level reaction times were similar to the group-level

distribution, with no evidence of strategic slowing. In

bvFTD/PSP, individual go reaction time distributions varied

widely; some overlapped with the control distributions, but

many were markedly longer (Fig. 3A). There was also simi-

lar variability in bvFTD/PSP stop reaction time distributions

(Fig. 3C).

There was a group-level difference in SSRT between the

participants with bvFTD/PSP and controls, with clear

separation of the ex-Gaussian distributions and no overlap

in the 95% HDIs of the mean reaction time (Fig. 3D). The

go reaction time did not differ significantly between groups,

as evidenced by the overlapping HDI boundaries (Fig. 3B).

Next, we tested the hypothesis that GABA and glutamate

deficits in the right inferior frontal gyrus are associated with

impulsivity in patients who underwent MRS and completed

the stop signal task (bvFTD n = 15, PSP n = 18). Both GABA

and glutamate concentrations in the right inferior frontal

gyrus were inversely correlated with the SSRT (Fig. 4). This

association with impaired response inhibition was stronger

for glutamate (95% HDI: –0.56, –0.38) than GABA (95%

HDI: –0.35, –0.13), but both these credible intervals were

outside the prespecified region of practical equivalence (–0.1,

0.1). The corrected glutamate and GABA concentrations did

not correlate (Spearman’s R = 0.06, P = 0.70).

Finally, we tested the specificity of the association between

GABA and glutamate concentrations in the right inferior

frontal gyrus and SSRT. Trigger failure probability, a measure

Figure 2 Glutamate and GABA concentrations in the FTLD syndromes of bvFTD and PSP. Values are corrected for age, sex and

partial volume (grey and white matter for glutamate, grey matter for GABA). **P = 0.005. IFG = inferior frontal gyrus.
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of inattention derived by the Dynamic Models of Choice

model, was not associated with either the GABA (95%

HDI: –0.13, 0.18) or glutamate (95% HDI: –0.01, 0.31) con-

centration in the inferior frontal gyrus (Supplementary Fig. 9).

There was no association between SSRT and other MRS-vis-

ible metabolites, including N-acetylaspartate (95% HDI

–0.25, –0.05), creatine/phosphocreatine (95% HDI –0.03,

–0.19), glycerophosphocholine/phosphocholine (95% HDI

–0.01, 0.23), myo-inositol (95% HDI –0.25, –0.03), glutam-

ine (95% HDI –0.01, 0.11) and glutathione (95% HDI

–0.10, 0.11). Occipital lobe GABA and glutamate concentra-

tions were not associated with SSRT in either group. There

was no association between neurotransmitter concentrations

in any region and carer ratings of challenging behaviour

(Supplementary material). There was no association between

neurotransmitter concentration and SSRT or trigger failure

probability in healthy volunteers.

Discussion
This study has two main findings. First, GABA and glutam-

ate levels are reduced in the right inferior frontal gyrus in

patients with bvFTD and PSP, with the GABA deficit persist-

ing after correction for age, sex and atrophy. Second, glu-

tamate and GABA concentrations in the inferior frontal

gyrus correlate with disinhibition, as measured by the SSRT.

This finding of a frontal lobe GABA deficit, as measured

using 1H-MRS, is supported by other in vivo and post-mor-

tem evidence of GABAergic neuron loss in bvFTD and PSP

(Ferrer, 1999; Levenga et al., 2014). A GABAergic deficit

may contribute to the abnormal functional connectivity asso-

ciated with cognitive impairment in FTLD syndromes.

GABAergic interneurons have widespread functions beyond

simple inhibition of excitatory neurons and have a key role

in the regulation of oscillatory dynamics (Owens and

Figure 3 Reaction time distributions for patients with bvFTD/PSP and healthy controls. The group-level result is shown by the thick

line and individual-level results are shown by the thinner lines. (A) Go reaction time distributions. (B) Box plot of 95% highest density interval

for the m of the go reaction time. bvFTD/PSP = blue; healthy controls = red.

3456 | BRAIN 2020: 143; 3449–3462 A. G. Murley et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/143/11/3449/5952714 by guest on 23 April 2024

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa305#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa305#supplementary-data


Kriegstein, 2002; Mann and Paulsen, 2007; Buzsáki and

Wang, 2012). Gamma and beta oscillation frequency

correlates with cortical GABA concentration

(Muthukumaraswamy et al., 2009; Gaetz et al., 2011;

Kujala et al., 2015; Baumgarten et al., 2016) and GABAA re-

ceptor density (Kujala et al., 2015), while inhibition of

GABAergic receptors reduces oscillatory power and impairs

inhibition and working memory (Hines et al., 2013). Beta-

power correlates with behavioural disturbance in bvFTD

(Hughes et al., 2018), and bvFTD reduces frontotemporal

beta-coherence (Hughes and Rowe, 2013). Brain network

connectivity of the inferior frontal gyrus is altered in FTLD,

during response inhibition (Hughes et al., 2015, 2018) and

at rest (Seeley et al., 2009; Sami et al., 2018). These altered

oscillations and frequency-bound connectivities in bvFTD

may be caused partially by GABAergic deficits. This raises

the possibility that correcting GABAergic deficits may re-

store neurophysiological function and improve cognition

and behaviour.

There was no difference in glutamate concentration be-

tween patients with bvFTD/PSP and controls after correction

for grey and white matter volume loss. However, it would

be misleading to conclude that there is no glutamatergic ab-

normality in FTLD syndromes. Given the high density of

glutamatergic neurons in the neocortex, grey matter atrophy

typically correlates with the number of glutamatergic neu-

rons in the remaining brain tissue (Harding, 1998; Zarow

et al., 2005). Unlike GABA, glutamate has many functions

Figure 4 Correlation between neurotransmitters (GABA and glutamate) and SSRT. Results from bvFTD/PSP patients only. (A)

Scatter plot of mean SSRT and corrected GABA, values in brackets are 95% HDI. (B) Histogram of Spearman’s correlation values between glu-

tamate (corrected for grey matter, age and sex) and SSRT. Red lines show 95% HDI. Black bar shows region of practical equivalence (–0.1, 0.1).

(C) Histogram of Spearman’s correlation values between glutamate and SSRT. (D) Scatter plot of mean SSRTand corrected glutamate.
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in the CNS beyond neurotransmission including neuron and

glia metabolism and protein synthesis (Hertz, 2013; Zhou

and Danbolt, 2014). Only a small proportion of total glu-

tamate acts as a neurotransmitter (Danbolt, 2001).

Therefore, it is possible that MRS of glutamate is an indirect

measure of glutamatergic neuron density. Correcting MRS

measures of glutamate for atrophy would, in this case, have

removed a difference between the results obtained from the

participants with bvFTD/PSP and controls.

In the right inferior frontal gyrus voxel, both GABA and

glutamate concentrations inversely correlated with disinhib-

ited behaviour (impaired response inhibition, as measured

by the SSRT). This complements results obtained with other

functional imaging modalities, including functional MRI and

electrophysiology, that show activation of the right inferior

gyrus during the stop-signal task in healthy volunteers

(Chambers et al., 2006, 2009; Levy and Wagner, 2011;

Aron et al., 2014; Ye et al., 2014; Rae et al., 2015). The

right inferior gyrus forms part of a cognitive control net-

work, which is activated during response inhibition and also

includes the presupplementary motor area and subthalamic

nucleus (Rae et al., 2015). GABA levels in this network, spe-

cifically the presupplementary motor area, inversely correlate

with SSRT in healthy older adults (Hermans et al., 2018), al-

though Hermans et al. used an edited MRS sequence at 3 T

and did not measure glutamate levels. One strength of our

7 T MRS study is that both glutamate and GABA can be

measured at the same time in the same brain region to study

whether both contribute to response inhibition in FTLD

syndromes.

There was no association between GABA and glutamate

concentrations in the right inferior gyrus and carer ratings of

global behavioural impairment. This might be because the

right inferior gyrus is just one of many regions associated

with the socially disinhibited and challenging behaviours

reported by carers. It cannot be assumed that GABA and

glutamate concentrations in the right inferior gyrus are rep-

resentative of the whole frontal lobe. Global behavioural im-

pairment results from pathology in multiple brain regions

and impairment in diverse cognitive processes. New sequen-

ces measuring glutamate and GABA across the whole brain

may show correlation with other behavioural impairments

in FTLD syndromes and are a promising area for future re-

search (Moser et al., 2019). In addition, deficits in other

neurotransmitter pathways, including serotonin, dopamine,

noradrenaline and acetylcholine also contribute to behav-

ioural impairment in FTLD syndromes (Huey et al., 2006;

Hughes et al., 2015; Murley and Rowe, 2018). Ultimately,

an effective treatment for behavioural symptoms in FTLD

may need to restore multiple neurotransmitter pathways.

This study has several limitations. First, MRS measurement

accuracy is limited by scan quality (Wilson et al., 2019).

To mitigate this, we used a validated sequence, with auto-

mated shimming and water and outer volume suppression,

that is recommended by recent consensus guidelines (Öz

et al., 2020). Our measures of MRS quality, including

water linewidth, signal-to-noise ratio and Cramér-Rao

lower bounds, were within standard limits for ultra-high

field 1H-MRS (Wilson et al., 2019; Öz et al., 2020). In

addition, the absence of a group difference in the control

region (occipital lobe) suggests the results in the inferior

frontal gyrus reflect a true neurotransmitter deficit and not

an artefact of movement or another patient-related bias.

Second, the spectroscopy regions of interest may have var-

ied between individuals, particularly in the proportion of

brain included, because participants had different total

brain volumes, but their MRS voxels remained the same

size. This was necessary to avoid a confound of varying sig-

nal-to-noise but means that the region of interest covers a

slightly different proportion of the brain between partici-

pants. Third, brain volume within the MRS voxel was

lower in the groups of patients with bvFTD/PSP. The

GABA and glutamate concentrations of CSF are not high

enough to be MRS-visible; therefore, this partial volume ef-

fect must be considered when reporting MRS results

(Quadrelli et al., 2016; Porges et al., 2017). One approach

is to report the relative concentration of the metabolite of

interest to an internal standard, using another metabolite

such as creatine. However, this was not appropriate in our

patient group, where the creatine level is likely also to be

abnormal, because of impaired metabolism (Foster et al.,

1988; Diehl-Schmid et al., 2007; Pathak et al., 2013).

Absolute metabolite correction uses tissue water concentra-

tion to ‘water scale’ metabolite results and some studies

enter the voxel fraction of CSF at this stage of analysis.

This does not account for voxel differences in grey and

white matter volume, which have different GABA and glu-

tamate concentrations (Choi et al., 2006; Gasparovic et al.,
2009; Bhattacharyya et al., 2011). We used a generalized

linear model, weighted for Cramér-Rao lower bound, to re-

move the effects of age, sex, grey and white matter from

the results. This approach may still bias results if tissue vol-

ume closely correlates with metabolite concentration but, if

anything, is likely to cause a type II error. Finally, nine

patients were unable to complete the stop signal task, due

to greater cognitive or motor impairment. This limits the

applicability of these results to patients at the later stages

of FTLD syndromes.

In conclusion, MRS has potential as an imaging biomark-

er of degeneration in bvFTD and PSP and possibly other

syndromes associated with FTLD. In early bvFTD, there is

selective vulnerability of glutamatergic von Economo neu-

rons in the anterior cingulate and frontoinsular cortex

(Seeley et al., 2006; Kim et al., 2012). MRS could enable

in vivo quantification of this glutamatergic deficit, as an ad-

junct to studies of presymptomatic carriers of causative

mutations (Rohrer et al., 2015). Moreover, the association

with neurotransmitter deficits and impaired response inhib-

ition leads to the hypothesis that GABA reuptake inhibitors

might be used to restore function (Adams et al., 2020). Since

behavioural disinhibition is associated with carer stress and

poor patient outcome, symptom-oriented clinical trials are

required for affected patients within the spectrum of disor-

ders associated with FTLD.
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