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Recent resting-state functional connectivity magnetic resonance imaging studies have shown significant group differences in

several regions and networks between patients with major depressive disorder and healthy controls. The objective of the present

study was to investigate the whole-brain resting-state functional connectivity patterns of depressed patients, which can be used

to test the feasibility of identifying major depressive individuals from healthy controls. Multivariate pattern analysis was em-

ployed to classify 24 depressed patients from 29 demographically matched healthy volunteers. Permutation tests were used to

assess classifier performance. The experimental results demonstrate that 94.3% (P50.0001) of subjects were correctly classi-

fied by leave-one-out cross-validation, including 100% identification of all patients. The majority of the most discriminating

functional connections were located within or across the default mode network, affective network, visual cortical areas and

cerebellum, thereby indicating that the disease-related resting-state network alterations may give rise to a portion of the

complex of emotional and cognitive disturbances in major depression. Moreover, the amygdala, anterior cingulate cortex,

parahippocampal gyrus and hippocampus, which exhibit high discriminative power in classification, may play important roles

in the pathophysiology of this disorder. The current study may shed new light on the pathological mechanism of major

depression and suggests that whole-brain resting-state functional connectivity magnetic resonance imaging may provide

potential effective biomarkers for its clinical diagnosis.
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Introduction
Major depressive disorder is a common mental illness characterized

by a persistent, pervasive depressed mood or anhedonia, a sense

of worthlessness and cognitive impairments. Up to 10% of people

with depressive episodes will become suicidal if untreated (APA,

2000). To date, the diagnosis of major depression has largely been

based on self-reported symptoms and clinical signs. Understanding

the pathophysiology of major depression is clearly an international

imperative.

It has been proposed that major depressive symptoms are asso-

ciated with the dysregulation of a distributed neuronal network

encompassing cortical and limbic regions rather than with the

(functional) breakdown of a single discrete brain region

(Mayberg, 1997, 2003; Davidson et al., 2002; Drevets, 2003;

Phillips et al., 2003; Seminowicz et al., 2004; Drevets et al.,

2008; Price and Drevets, 2010). Recently, resting-state functional

MRI has attracted increasing attention for mapping large-scale

neural network function and dysfunction. During rest,

low-frequency (0.01–0.08 Hz) blood oxygen level-dependent fluc-

tuations of functional MRI signals are thought to be related to

spontaneous neuronal activity, and the correlation analysis

method has proven effective for measuring functional connectivity

network alterations in neuropsychiatric conditions, including de-

pression (Greicius et al., 2007; Greicius, 2008; Buckner, 2010).

The tonic nature of major depressive core symptoms indicates

that resting-state functional MRI may be helpful for improving

our understanding of the pathophysiological mechanisms under-

lying affective and cognitive dysfunctions in major depression

(Mesulam, 1998; Van den Heuvel and Hulshoff Pol, 2010).

Based on resting-state functional MRI, a growing body of studies

has focused on the quantitative analysis of the brains of patients

with neurological and psychiatric disorders, including Alzheimer’s

disease and dementia (Greicius et al., 2004; Zhou et al., 2010a),

and schizophrenia (Liu et al., 2008b; Whitfield-Gabrieli et al.,

2009). Using seed-based methods, resting-state functional MRI

studies have detected network alterations in depressed patients,

especially abnormalities in the default mode network and the af-

fective network (Anand et al., 2005, 2009; Greicius et al., 2007;

Bluhm et al., 2009; Sheline et al., 2010; Zhou et al., 2010b).

Similarly, Craddock et al. (2009) employed multivoxel pattern ana-

lysis to predict major depressive state using resting-state functional

connectivity limited to 15 predefined regions of interest. Veer

et al. (2010) extracted resting-state networks of depressed

patients using independent component analysis, and then used

univariate statistical methods to investigate the identified compo-

nents. These studies provide valuable insight into the pathological

mechanism of major depression, but they also have some signifi-

cant limitations. First, seed-based methods limit the obtained in-

formation to the selected regions of interest and make it difficult

to examine functional connectivity patterns on a whole-brain scale

(Van den Heuvel and Hulshoff Pol, 2010). Secondly, traditional

group-level statistical methods do not provide a mechanism for

evaluating the discriminative power of the identified connections

at the individual level (Seidman et al., 2004; Craddock et al.,

2009).

As a data-driven technique, multivariate pattern analysis based

on whole-brain resting-state functional MRI data can complement

both seed-based and univariate statistical analyses. Whole-brain

functional connectivity analysis, unlike those analysing several pre-

defined regions or networks of interest, can ensure the optimal use

of the wealth of information present in the brain imaging data. In

particular, multivariate pattern analysis methods can both find

potential neuroimaging-based biomarkers to differentiate patients

from healthy controls at the individual subject level and potentially

detect exciting spatially distributed information to further highlight

the neural mechanisms underlying the behavioural symptoms of

major depression (Pereira et al., 2009). In recent years, there has

been increasing interest in multivariate pattern analysis methods to

categorize psychiatric patients from healthy controls using struc-

tural or functional brain images (Klöppel et al., 2008; Craddock

et al., 2009; Desikan et al., 2009; Shen et al., 2010; Zhou et al.,

2010a; Ardekani et al., 2011). If a multivariate pattern analysis-

based classifier can label new samples with better-than-random

accuracy, then the two populations are indeed likely to be differ-

ent, and the classifier can capture the population differences

(Golland and Fischl, 2003). In multivariate pattern analysis-based

brain imaging analysis, the features for classification can be various

structural characteristics or functional properties extracted from

neuroimaging data. For resting-state functional MRI, resting-state

functional connectivity measured by the correlation of two func-

tional MRI time series has been used for the discrimination of

psychiatric disorders (Craddock et al., 2009; Shen et al., 2010).

To date, it is unknown whether multivariate pattern analysis can

capture whole-brain resting-state functional connectivity patterns

to discriminate or identify depressed patients from healthy controls

at the individual subject level with a high degree of accuracy. The

purpose of this study was to explore significant disorder-related

patterns using whole-brain resting-state functional MRI in

medication-free depressed patients without co-morbidity and in

carefully matched healthy controls and to discriminate patients

from healthy subjects. The altered functional connections were

expected to be observed in the resting-state networks that include

areas known to be associated with affective and cognitive pro-

cessing. Functional connectivity, measured by the correlation of

two activity time series of anatomically separated brain regions,

was used as a classification feature. This exploration will be helpful

in further discovering the neural mechanisms underlying the

behavioural symptoms of depression, which may offer additional

information for advancing our understanding of the pathophysi-

ology of this disorder.

Materials and methods

Subjects
The study’s participants included 32 patients diagnosed with major

depressive disorder from the outpatient clinic at the First Affiliated

Hospital of China Medical University and 33 demographically similar

healthy volunteers recruited through advertisements. All of the sub-

jects were right-handed native Chinese speakers. Three patients and

two controls were removed from the sample due to excessive head
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motion during scan acquisition (42.5 mm translation and/or 42�

rotation). Five additional patients and two additional control subjects

were removed due to head motions with acute fluctuations that

caused strong spurious correlation. The remaining 24 depressed pa-

tients and 29 healthy controls remained gender-, age-, education- and

weight-matched (see Table 1).

Depressed patients met the criteria for a current episode of unipolar

recurrent major depression based on the DSM (Diagnostic and

Statistical Manual of Mental Disorders)-IV criteria (APA, 2000).

Using the Structured Clinical Interview for DSM-IV (First et al.,

1995), confirmation of the diagnosis was made by clinical psychiatrists.

All patients were medication-naive at the time of the scan. Exclusion

criteria included acute physical illness, substance abuse or dependence,

a history of head injury resulting in loss of consciousness and major

psychiatric or neurological illness other than depression. Similar exclu-

sion criteria were adopted for healthy control subjects. On the days of

the scans, the depressive symptoms of patients were assessed with the

17-item Hamilton Depression Rating Scale (Hamilton, 1960), Hamilton

Anxiety Rating Scale (Hamilton, 1959) and Clinical Global Impression

Scale-Severity (Guy, 1976) (see Table 1). Healthy volunteer subjects

were studied under identical conditions. This study was approved by

the Ethics Committee of the First Affiliated Hospital of China Medical

University, and all participants gave written informed consent.

Resting experiment and image
acquisition
In the experiments, subjects were simply instructed to keep their eyes

closed, relax, remain awake and perform no specific cognitive exercise.

After each session, subjects were asked whether they were awake and

relaxed in the previous session, and all of the subjects confirmed that

they were. Magnetic resonance images were acquired using a 1.5-T

GE SIGNA scanner (GE Medical Systems). To reduce head movement,

the subjects’ heads were fixed using foam pads with a standard bird-

cage head coil. All functional MRI images were collected using a

gradient-echo echo planar imaging sequence. The imaging parameters

were as follows: repetition time/echo time = 2000/50 ms, thickness/

gap = 5/1.5 mm, field of view = 240 mm� 240 mm, flip angle = 90�,

matrix = 64 � 64 and slices = 20. Each functional resting-state session

lasted �8 min, and 245 volumes were obtained.

Data preprocessing
Resting-state functional MRI images were preprocessed using a stat-

istical parametric mapping software package (SPM5�, http://www.fil

.ion.ucl.ac.uk/spm). For each subject, the first five volumes of the

scanned data were discarded for magnetic saturation. The remaining

240 volumes were corrected by registering and re-slicing for head

motion. Next, the volumes were normalized to the standard echo

planar imaging template in the Montreal Neurological Institute

space. The resulting images were spatially smoothed with a Gaussian

filter of 8 mm full-width half-maximum kernel, detrended to abandon

linear trend and then temporally filtered with a Chebyshev band-pass

filter (0.01–0.08 Hz). The registered functional MRI volumes with the

Montreal Neurological Institute template were divided into 116 regions

according to the automated anatomical labelling atlas (Schmahmann

et al., 1999; Tzourio-Mazoyer et al., 2002). The atlas divides the cere-

brum into 90 regions (45 in each hemisphere) and divides the cere-

bellum into 26 regions (nine in each cerebellar hemisphere and eight in

the vermis). All region of interest masks were generated using the free

software WFU_PickAtlas� (version 2.0, http://www.ansir.wfubmc

.edu) (Maldjian et al., 2003).

Regional mean time series were obtained for each individual by

averaging the functional MRI time series over all voxels in each of

the 116 regions. Note that aside from the band-pass filtering and

correcting for movement, additional preprocessing steps, such as

global signal regression, have recently been performed in functional

connectivity analysis (Fox et al., 2009). Global signal regression creates

artefactual negative correlations, but this technique is suggested to

improve the specificity of positive correlations and can remove specific

confounds from the data to facilitate the evaluation of neurophysio-

logical relationships (Fox et al., 2009), so the results with global signal

regression are more readily or reliably interpreted. Therefore, each

regional mean time series was further corrected by regressing out

head motion and the global signals. To further reduce spurious vari-

ance unlikely to reflect neuronal activity, we have included in the

regression the white matter and cerebrospinal fluid (CSF) average sig-

nals, as well as the first order derivative terms for the global, white

matter and CSF average signals (Fox et al., 2006; Fair et al., 2008;

Biswal et al., 2010; Dosenbach et al., 2010). The time courses of noise

components extracted by using group independent component ana-

lysis were also utilized for artefact removal for each subject (Liu et al.,

2008a; Kelly et al., 2010). The residuals of these regressions

Table 1 Characteristics of the participants in this study

Variable Mean � SD (range) P-value

Patient Control

Sample size 24 29

Gender (male/female) 8/16 9/20 0.86a

Age (years) 31.83 � 10.99 (18–52) 33.62 � 10.29 (19–53) 0.54b

Education (years) 11.71 � 3.13 11.00 � 3.12 0.66b

Weight (kg) 60.5 � 10.93 62.55 � 8.59 0.45b

Age of illness onset (years) 28.71 � 10.90

Number of previous episodes 1.63 � 0.77

Duration of current episode (months) 5.33 � 6.29 (1–24)

Hamilton Depression Rating Scale 26.42 � 5.22 (18–38) 4.25 � 1.02 (3–6)

Hamilton Anxiety Rating Scale 20.29 � 5.25 (8–30) 3.55 � 0.91 (2–5)

Clinical Global Impression Scale-Severity 5.92 � 0.65 (5–7)

aPearson Chi-square test.
bTwo-sample t-test.
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constituted the set of regional mean time series used for functional con-

nectivity analyses. We evaluated functional connectivity between each

pair of regions using Pearson correlation coefficient. Thus, for each sub-

ject, we obtained a resting-state functional network captured by a

116 � 116 symmetric matrix. Removing 116 diagonal elements, we ex-

tracted the upper triangle elements of the functional connectivity matrix

as classification features, i.e. the feature space for classification was

spanned by the (116 � 115)/2 = 6670 dimensional feature vectors.

Identification of features with high
discriminative power
The abnormal resting-state functional connectivity patterns in depres-

sion are principally represented by the highly discriminating functional

connections, and initially reducing the number of features accelerates

computation and diminishes noise (Pereira et al., 2009; Dosenbach

et al., 2010; Shen et al., 2010). Therefore, feature selection was

used to construct the feature space for classification by retaining the

most discriminating functional connections and eliminating the rest.

The discriminative power of a feature can be quantitatively measured

by its relevance to classification (Guyon and Elisseeff, 2003). In this

study, we used the Kendall tau rank correlation coefficient (Kendall

and Jean, 1990), which provides a distribution-free test of independ-

ence between two variables to measure the relevance of each feature

to classification.

Suppose that there are m samples in the patient group and n sam-

ples in the control group. Let xij denote the functional connectivity

feature i of the jth sample and yj denote the class label of this sample

( + 1 for patients and �1 for controls). The Kendall tau correlation

coefficient of the functional connectivity feature i can be defined as:

�i ¼
nc � nd

m� n
ð1Þ

where nc and nd are the number of concordant and discordant pairs,

respectively. Because the relationship between two samples that

belong to the same group is not considered, the total number of

sample pairs is m � n. For a pair of two-observation data sets

{xij, yj} and {xik, yk}, it is a concordant pair when

sgnðxij � xikÞ ¼ sgnðyj � ykÞ: ð2Þ

where sgn( ) is a signum function. Correspondingly, it is a discordant

pair when

sgnðxij � xikÞ ¼ �sgnðyj � ykÞ: ð3Þ

Thus, a positive correlation coefficient �i indicates that the ith func-

tional connectivity coefficient increases in the patient group compared

to the control group. A negative �i indicates that the ith functional

connectivity coefficient decreases in the patient group. The discrimina-

tive power was defined as the absolute value of the Kendall tau cor-

relation coefficient. We subsequently ranked features according to

their discriminative powers and selected those with coefficients over

a threshold as the final feature set for classification.

Since we used a leave-one-out cross-validation strategy to estimate

the generalization ability of the classifiers (see below) and feature

ranking is based on a slightly different training data set in each iter-

ation of the cross-validation, the final feature set differed slightly from

iteration to iteration. Therefore, the contribution of different regions to

classification was not evenly distributed, and some regions formed

many highly discriminating functional connections with other regions,

while some did not form any. Consensus functional connectivity was

introduced here, which was defined as the functional connectivity fea-

ture appearing in the final feature set of each cross-validation iteration

(Dosenbach et al., 2010). Region weight, representing the relative

contribution to identification of depressed patients, was denoted by

its occurrence number in the consensus functional connections in this

study. The consensus functional connectivity discriminative power was

denoted by the average of its discriminative powers across all iterations

of the cross-validation.

Support vector classification and
performance evaluation
When the data set of features with high discriminative power were

obtained, support vector machines with linear kernel function were

employed to solve the classification problem (Vapnik, 1995; Bishop,

2006). The results were reported with the best parameter setting. Due

to our limited number of samples, we used a leave-one-out

cross-validation strategy to estimate the generalization ability of our

classifier. The performance of a classifier can be quantified using the

generalization rate, sensitivity and specificity based on the results of

cross-validation. Note that the sensitivity represents the proportion of

patients correctly predicted, while the specificity represents the pro-

portion of controls correctly predicted. The overall proportion of sam-

ples correctly predicted is evaluated by the generalization rate.

Permutation tests
Some researchers have explored a framework of permutation tests for

assessing classifier performance (Golland and Fischl, 2003; Ojala and

Garriga, 2010). Choosing the generalization rate as the statistic, per-

mutation tests were employed to estimate the statistical significance of

the observed classification accuracy. In permutation testing, the class

labels of the training data were randomly permuted prior to training.

Cross-validation was then performed on the permuted training set,

and the permutation was repeated 10 000 times. It was assumed

that a classifier learned reliably from the data when the generalization

rate GR0 obtained by the classifier trained on the real class labels

exceeded the 95% confidence interval of the classifier trained on ran-

domly relabelled class labels. For any value of the estimated GR0, the

appropriate P-value P̂ðGR0Þ represented the probability of observing a

classification prediction rate no less than GR0. We reject the null

hypothesis that the classifier could not learn the relationship between

the data and the labels reliably and declare that the classifier learned

the relationship with a probability of being wrong of at most P̂ðGR0Þ.

Results

Classification results
The classification results indicate that the final correct classification

rate of the training data set was 100% using the 550 most dis-

criminating functional connections. Using leave-one-out cross-vali-

dation, the linear support vector machine classifier achieved an

accuracy of 94.3% (100% for patients, 89.7% for healthy con-

trols, P50.0001). With the generalization rate as the statistic, the

permutation distribution of the estimate is shown in Fig. 1, indi-

cating that the classifier learned the relationship between the data

and the labels with a probability of being wrong of 50.0001.
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Altered resting-state functional
connectivity in major depression
In this investigation, 55.4 � 1.0% of the selected functional con-

nections in the cross-validation were diminished in depressed

patients compared with healthy controls, and 442 consensus func-

tional connections were identified in the cross-validation (Fig. 2).

The brain regions related to consensus functional connectivity are

primarily located within: (i) the default mode network (mainly

containing the parahippocampal gyrus, anterior cingulate cortex,

hippocampus, thalamus, inferior temporal gyrus, posterior cingu-

late cortex and medial prefrontal cortex), which plays an important

role in self-referential activity (Raichle, 2001; Greicius et al., 2003);

(ii) the affective network (including the amygdala, temporal poles,

pallidum, insula and superior temporal gyrus), which is involved in

mood regulation and affective processing (Ongür et al., 2003;

Sheline et al., 2010); and (iii) the visual cortical areas (comprising

the lingual gyrus, fusiform gyrus, inferior occipital gyrus and cal-

carine gyrus), which are involved in visual processing (Beckmann

et al., 2005; Damoiseaux et al., 2006; Veer et al., 2010). In

addition, some consensus functional connections between the

cerebellum and the inferior temporal gyrus, hippocampus, para-

hippocampal gyrus and thalamus in the default mode network,

Figure 1 The permutation distribution of the estimate using the

linear support vector machine classifier (repetition times: 10 000)

when selecting the 550 most discriminating features: x- and

y-labels represent the generalization rate and occurrence

number, respectively. GR0 is the generation rate obtained by the

classifier trained on the real class labels. With the generalization

rate as the statistic, this figure reveals that the classifier learned

the relationship between the data and the labels with a prob-

ability of being wrong of 50.0001.

Figure 2 Region weights and the distribution of 442 consensus functional connections. Regions are colour-coded by category. The line

colours representing the relative consensus functional connections are scaled with their mean discriminative power in the leave-one-out

cross-validation. (A) Consensus functional connections demonstrated in left and top view. (B) Region weights and consensus functional

connections demonstrated in a circle graph.
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as well as the amygdala and temporal poles in the affective net-

work, were unexpected (Fig. 3). The top 100 consensus functional

connections are shown in Fig. 3, most of which were also located

within or across these resting-state networks.

Brain regions with high discriminative
power
For visual representation, the diameter of a sphere representing

a region was scaled by the corresponding region weight (Figs 2

and 3). Several brain regions exhibited greater weights than

others, i.e. amygdala, anterior cingulate cortex, parahippocampal

gyrus and hippocampus. Amygdala exhibited the highest discrimi-

native power, and the functional connections between this region

and the prefrontal lobe, visual cortex, other limbic regions and the

cerebellum were altered in major depression. Abnormal functional

connectivity was also observed between the anterior cingulate

cortex and other prefrontal lobe, parahippocampal gyrus and cer-

ebellum. Additionally, functional connections of the parahippo-

campal gyrus were altered with the inferior temporal gyrus,

superior temporal poles, anterior and posterior cingulate cortex,

thalamus, fusiform gyrus and cerebellum. Functional connectivity

between the hippocampus and the prefrontal lobe, inferior occipi-

tal gyrus, amygdala and cerebellum were altered in depressed

patients as well.

Discussion
Based on multivariate pattern analysis, this study demonstrated

that depressed patients can be distinguished from healthy controls

using whole-brain resting-state functional MRI with excellent clas-

sification accuracy and sensitivity. Moreover, the majority of the

altered functional connections with high discriminative power were

located within or across the default mode network, affective net-

work, visual cortical areas and cerebellum. In particular, the amyg-

dala, anterior cingulate cortex, parahippocampal gyrus and

hippocampus exhibited high discriminative power in classification.

Altered resting-state networks

Default mode network

Altered functional connectivity was found to be related to the

default mode network with regions known to be involved in

self-referential activity (Raichle, 2001; Greicius et al., 2003),

Figure 3 Left and top view of the most discriminating network formed by the top 100 consensus functional connections (A) and the

consensus functional connectivity network related to the bilateral cerebellar lobule three regions (B). Labels indicating brain regions are

located at their respective centres of mass. Regions are colour-coded by category. The line colours representing the relative consensus

functional connections are scaled with their mean discriminative power in the leave-one-out cross-validation.
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such as the bilateral hippocampus/parahippocampal gyrus, ante-

rior cingulate cortex, thalamus, inferior temporal gyrus, posterior

cingulate cortex and medial prefrontal cortex. Abnormality of the

default mode network in depression is reported in several previous

studies (Greicius et al., 2007; Bluhm et al., 2009; Sheline et al.,

2010; Zhou et al., 2010b). In this study, the bilateral hippocam-

pus/parahippocampal gyrus, anterior cingulate cortex, thalamus

and inferior temporal gyrus exhibited large region weights. The

hippocampus/parahippocampal gyrus is a key structure in the

limbic-cortical dysregulation model in major depression

(Mayberg, 2003; Seminowicz et al., 2004; Drevets et al., 2008;

Price and Drevets, 2010), and altered functional connections of

the hippocampus/parahippocampal gyrus may be related to defi-

cits in emotion-mediated memory formation observed in depres-

sion (LaBar and Cabeza, 2006; Savitz and Drevets, 2009). Anterior

cingulate cortex, as a critical brain region in emotion processing,

has been implicated as a focus of dysfunction in depression

(Greicius et al., 2007; Sheline et al., 2010). Increased connections

of the anterior cingulate cortex with other prefrontal cortex and

within the default mode network observed here were in keeping

with recent studies (Greicius et al., 2007). The thalamus has been

subjected to intense scrutiny in depression (Greicius et al., 2007;

Anand et al., 2009). Altered connectivity of the thalamus with the

prefrontal lobe and the limbic areas may account for the distur-

bances in autonomic regulations that are associated with depres-

sion (Drevets et al., 2008). The inferior temporal gyrus is involved

in the processing of complex emotional visual stimuli (Geday et al.,

2001), especially those deeply involved with visual memory

(Masahiko and Atsuo, 2002). Abnormal functional connectivity

of the inferior temporal gyrus may contribute to working

memory dysfunction in depressed patients (Axmacher et al.,

2008; Parra et al., 2010).

Affective network

Abnormalities were found in the resting-state functional connec-

tivity related to the affective network. The affective network in

which the amygdala and temporal poles exhibit the greatest

region weights is particularly involved in the relationship of emo-

tion/mood to visceral function (Ongür et al., 2003; Olson et al.,

2007; Ding et al., 2009). Abnormal connectivity between the

amygdala and the hippocampus/parahippocampal gyrus and orbi-

tofrontal cortex were found. All of the above altered connections

fall into the limbic-cortical dysregulation model (Mayberg, 2003;

Seminowicz et al., 2004; Drevets et al., 2008; Price and Drevets,

2010) and may negatively affect the regulation of mood and

affect (Savitz and Drevets, 2009). In addition, the altered connec-

tivity between temporal poles and the parahippocampal gyrus, as

well as the basal ganglia and orbitofrontal cortex, may reflect

dysfunctions of visceral monitoring, which is compromised in

depression (Sheline et al., 2010).

Visual cortical areas

Aberrant connectivity of the visual cortical areas with regions

known to be involved in visual processing, such as the lingual

gyrus, fusiform gyrus, inferior occipital gyrus and calcarine gyrus,

has been demonstrated in this study (Beckmann et al., 2005;

Damoiseaux et al., 2006; Veer et al., 2010). The altered functional

connections related to the fusiform gyrus, which is involved in the

perception of emotions in facial stimuli (Kanwisher et al., 1997; Fu

et al., 2008), may result in the social avoidance observed in

depressed patients by participating in negative cognitive models

(Yao et al., 2009; Liu et al., 2010). The abnormality of the resting-

state functional connectivity related to the primary visual area,

including the occipital cortex and calcarine gyrus and extending

into the lingual gyrus, has been reported before (Veer et al., 2010)

and may be related to impaired selective attention and working

memory in major depression (Borkowska and Rybakowski, 2001;

Phillips et al., 2003; Desseilles et al., 2009).

Cerebellum

In the current study, in addition to the aberrant connectivity

within itself, altered connections were observed between the cer-

ebellum and the regions in the default mode network and affec-

tive network. Using emotional or cognitive tasks with functional

MRI, several previous studies have reported abnormalities in the

cerebellum in association with depression (Pillay et al., 1997; Frodl

et al., 2010; Liu et al., 2010; Guo et al., 2011). In this study, the

cerebellar connections were primarily altered with the limbic and

paralimbic regions comprising the amygdala, hippocampus/para-

hippocampal gyrus, thalamus and superior temporal poles. To

some extent, this result is in accordance with the previous findings

that the cerebellum has anatomical connections with the limbic

regions, which are involved in mood regulation (Turner et al.,

2007). The cerebellum may contribute to certain non-motor func-

tions, including emotion and cognitive processing (Dolan, 1998;

Schmahmann and Sherman, 1998; Schmahmann and Caplan,

2006; Hu et al., 2008; Habas et al., 2009; Krienen and Buckner,

2009; O’Reilly et al., 2010; Moulton et al., 2011). We speculate

that the aberrant cerebellar connectivity with the default mode

network and affective network may partially underlay emotional

and cognitive symptoms seen in major depression.

Reliable identification of major
depression
In this study, 100% of 24 depressed patients and 89.7% of 29

healthy control subjects were correctly classified by the linear sup-

port vector machine classifier, corresponding to an accuracy of

94.3%. Recently, several brain imaging studies have attempted

to distinguish depressed patients from healthy controls (Fu et al.,

2008; Costafreda et al., 2009; Craddock et al., 2009). However,

to the best of our knowledge, no previous studies have achieved

such a high level of classification accuracy, considering the sample

size. Thus, we believe that this classifier detected the reliable

population differences between depressed patients and healthy

controls (Golland and Fischl, 2003). Furthermore, choosing the

generalization rate as the statistic, the statistical significance of

the observed classification accuracies was estimated by permuta-

tion testing. The results demonstrate that the linear support vector

machine classifier learned the relationship between the data and

the labels with a probability of being wrong of 50.0001. In other

words, this multivariate pattern analysis method reliably captured

the disorder-related resting-state functional connectivity patterns.
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Pattern classification of functional MRI data is a challenging

task, due to the high dimensionality of the data, individual varia-

bility, noisy measurements and small available sample sizes. The

present study demonstrates that resting-state connectivity patterns

can distinguish depressed patients from controls with a high

degree of accuracy. However, some issues that may potentially

influence classifier performance should be addressed here. Brain

atlas selection may have an impact on functional connectivity

measurements (Smith et al., 2011). Functionally defined regions

of interest have recently been suggested in whole-brain connec-

tivity analysis (Shirer et al., 2012). Using the 90 functional regions

of interest defined by Shirer et al. (2012), the support vector

machine classifier performed with a classification accuracy of

92.5%. We speculate that more accurate functionally defined

regions of interest distributed throughout the entire brain may

improve the classification performance.

Limitations and future directions
Although the classification results of this study using resting-state

functional connectivity are encouraging, there are still limitations

related to sample size, scanner variability and the lack of a large

independent data set with which to test our methods and confirm

the findings. Therefore, it is important to confirm the classification

results with a larger sample size and multicentre imaging data in

the future. Some physiological noises, such as cardiac and respira-

tory rates, can alias into the low-frequency domain of functional

MRI signals (Strother, 2006; Murphy et al., 2009). However, car-

diac and respiratory rates were not collected during the scans in

this study, and the impact of these physiological noises on classi-

fier performance remains to be determined. Additional neuroima-

ging evidence, such as structural abnormality other than resting-

state functional connectivity, is needed as a synthesized biomarker

for more reliable clinical diagnosis of this complex disorder. The

automated anatomical labelling atlas, including 116 regions, covers

the entire cerebrum and the cerebellum but excludes the brain-

stem, which may be central to monoaminergic hypotheses in

major depression (Drevets et al., 2007); clearly, the functional

connectivity of the brainstem should be investigated in the

future. In addition, an assessment of the relationship between

the consensus functional connections and the clinical variables is

needed to delineate the consensus functional connections and to

confirm that consensus functional connections prove reliable

within depression.

Conclusion
This study demonstrates that multivariate pattern analysis methods

can identify major depressive individuals from healthy controls

based on resting-state functional MRI with 94.3% classification

accuracy. The majority of the most discriminating functional con-

nections were located within or across the default mode network,

affective network, visual cortical areas and cerebellum, thereby

indicating that the disease-related resting-state network alterations

may give rise to a portion of the complex of emotional and cog-

nitive disturbances in major depression. Moreover, the amygdala,

anterior cingulate cortex, parahippocampal gyrus and hippocam-

pus may play important roles in the pathophysiology of this dis-

order. Future investigations are needed to combine whole-brain

resting-state functional connectivity with other neuroimaging evi-

dence, such as structural abnormality as a synthesized biomarker,

for more reliable clinical diagnosis.
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