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Effective bidirectional signalling between axons and Schwann cells is essential for both the development and maintenance of

peripheral nerve function. We have established conditions by which human induced pluripotent stem cell-derived sensory neurons

can be cultured with rat Schwann cells, and have produced for the first time long-term and stable myelinating co-cultures with

human neurons. These cultures contain the specialized domains formed by axonal interaction with myelinating Schwann cells, such

as clustered voltage-gated sodium channels at the node of Ranvier and Shaker-type potassium channel (Kv1.2) at the juxtapar-

anode. Expression of type III neuregulin-1 (TIIINRG1) in induced pluripotent stem cell-derived sensory neurons strongly enhances

myelination, while conversely pharmacological blockade of the NRG1-ErbB pathway prevents myelination, providing direct evi-

dence for the ability of this pathway to promote the myelination of human sensory axons. The b-secretase, BACE1 is a protease

needed to generate active NRG1 from the full-length form. Due to the fact that it also cleaves amyloid precursor protein, BACE1 is

a therapeutic target in Alzheimer’s disease, however, consistent with its role in NRG1 processing we find that BACE1 inhibition

significantly impairs myelination in our co-culture system. In order to exploit co-cultures to address other clinically relevant

problems, they were exposed to anti-disialosyl ganglioside antibodies, including those derived from a patient with a sensory

predominant, inflammatory neuropathy with mixed axonal and demyelinating electrophysiology. The co-cultures reveal that

both mouse and human disialosyl antibodies target the nodal axolemma, induce acute axonal degeneration in the presence of

complement, and impair myelination. The human, neuropathy-associated IgM antibody is also shown to induce complement-

independent demyelination. Myelinating co-cultures using human induced pluripotent stem cell-derived sensory neurons thus

provide insights into the cellular and molecular specialization of axoglial signalling, how pharmacological agents may promote

or impede such signalling and the pathogenic effects of ganglioside antibodies.
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Introduction
There is a close anatomical and metabolic relationship be-

tween axons and Schwann cells such that the health of each

cell type is intimately dependent on the other. Axoglial

signalling is critical for myelination and can be disturbed

in pathological states (Taveggia et al., 2010). The use of

primary rodent cells (dorsal root ganglion neurons and

Schwann cells) in the generation of myelinating co-cultures

led to great progress in understanding the interactions be-

tween these two cell types, showing for instance that the

axolemma contains a signal that could promote Schwann

cell proliferation (Wood and Bunge, 1975; Salzer et al.,

1980). This was subsequently identified as neuregulin-1

(Morrissey et al., 1995). The type III neuregulin-1 isoform

(TIIINRG1) is expressed on the axolemma of large diam-

eter axons and signals in a juxtacrine manner (via ErbB 2/3

heterodimers expressed by Schwann cells) to promote axon

ensheathment and myelination (Garratt et al., 2000;

Michailov et al., 2004; Taveggia et al., 2005). Co-cultures

recapitulate many of the sequential features of myelination

observed in vivo, including Schwann cell alignment to

axons, ensheathment of the axon by the Schwann cell pro-

cess and finally membrane wrapping and compaction. The

intercellular interactions between axons and Schwann cells

during myelination result in the formation of axonal do-

mains with specialised molecular constituents (Rasband and

Peles, 2016). For instance, voltage gated sodium channels

(VGSCs) are clustered at the node of Ranvier, flanked by

the paranodes where tight adherence of the Schwann cell

paranodal loops to the axon act as a diffusion barrier,

separating VGSCs from potassium channels in the

juxtaparanode.

Human induced pluripotent stem cells (iPSCs) are in-

creasingly used in model systems of neurological disorders

(Sandoe and Eggan, 2013; Corti et al., 2015). They facili-

tate the study of human proteins in their normal cellular

context, and, through the reprogramming of patient-

derived samples, allow the impact of mutations to be inves-

tigated within a relevant polygenetic background. They can

be used for pharmacological studies, toxicity screening, to

investigate immunopathological mechanisms, and to assess

the reactivity of cells/antisera towards human antigens.

Culture protocols have advanced such that instead of

focussing on single cell types it is possible to investigate

intercellular interactions and more complex tissues. This

approach has been used to investigate central myelin

(Czepiel et al., 2015) but has not previously been used to

study axoglial signalling and myelination in the peripheral

nervous system. We report here that sensory neurons dif-

ferentiated from human iPSCs can be effectively and reli-

ably myelinated by rat Schwann cells. These myelinating

co-cultures display the expected features of axonal and

Schwann cell specialization.

In inflammatory neuropathies such as Guillain Barré syn-

drome (GBS) and chronic inflammatory demyelinating

polyneuropathy (CIDP), axoglial proteins and glycolipids

are important targets for the underlying autoimmune pro-

cess (Willison and Yuki, 2002; Devaux et al., 2012). In a

subset of patients, neuropathy-associated antibodies specif-

ically target neo-epitopes formed by cis and trans inter-

actions between different axonal and glial molecules

(Querol et al., 2013; Rinaldi et al., 2013). Recreating

these interactions in solid phase systems has proved diffi-

cult. Problems with existing assays are further evidenced by

the inconsistent relationship between antibody binding

in vitro and pathogenic effects in vivo (Greenshields

et al., 2009). Anti-disialosyl ganglioside antibodies, which

bind to alpha2-8 linked disialic acid residues (as found in

GD3, GD1b, GT1b and GQ1b), are associated with pre-

dominantly sensory and/or ataxic neuropathies. Disialosyl

antibodies of the IgM class are a defining feature of

CANOMAD (chronic ataxic neuropathy with ophthalmo-

plegia M-protein, cold agglutinins and anti-disialosyl anti-

bodies). This neuropathy shows both axonal and

demyelinating features on electrophysiology (Willison

et al., 2001). Disialosyl antibodies of the IgG class have

been found in acute sensory neuropathies, some with un-

equivocal electrophysiological evidence of demyelination in

the form of temporal dispersion (Wicklein et al., 1997;

Miyazaki et al., 2001). However, immunization of rabbits

with GD1b that raised IgM and IgG antibodies induced a

sensory neuropathy characterized pathologically by down-

regulation of the neurotrophin-3 receptor, trkC, and by the

degeneration of sensory axons and DRG neurons

(Kusunoki et al., 1996; Hitoshi et al., 1999). In this

report, we exploit the myelinating co-cultures to show

that both mouse IgG and human, neuropathy-associated

IgM type anti-disialosyl antibodies bind to human iPSC-

derived sensory axons at the nodal axolemma and, in

addition to inducing acute complement mediated axonal

degeneration, have deleterious, complement-independent

effects on myelination.

Materials and methods

Induced pluripotent stem cell
generation

NHDF1 (from 44-year-old female) was reprogrammed with
Yamanaka retroviruses SOX2, KLF4, OCT3/4, c-MYC and
NANOG (Takahashi et al., 2006), and has previously been
described (Hartfield et al., 2014). AH017-7 (from 67-year-
old female) has also previously been described (Handel et al.,
2016) and was reprogrammed using the SeVdp(KOSM)302L
Sendai virus system, containing genes for KLF4, OCT3/4,
SOX2 and c-MYC, expressed from a single transcript and
packaged into a single Sendai virus to ensure consistency of
gene dosage ratio (Nishimura et al., 2011, 2013). AD2-1 (from
51-year-old male) was reprogrammed using the CytoTuneTM-
iPS Reprogramming Kit (ThermoFisher) and will be described
in an upcoming publication (Buskin et al., in press). The fibro-
blasts to generate AD2-1 were obtained from a commercial
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source (Lonza, CC-2511). Further details are supplied in the
Supplementary material.

The iPSC line AD2-1 were obtained through the IMI/EU
sponsored StemBANCC consortium via the Human
Biomaterials Resource Centre, University of Birmingham, UK
(http://www.birmingham.ac.uk/facilities/hbrc).

iPSC lines were also subject to strict quality control
checks before the initiation of differentiation. Quality control
details for AD2-1 are explained in van de Bunt et al. (2016).
Briefly, this included tests for Sendai virus clearance, FACS for
pluripotency markers, genomic integrity checks and embryoid
body tri-lineage differentiation experiments. Cells are also con-
firmed as negative for Mycoplasma before cryopreservation.

Induced pluripotent stem cell
maintenance and differentiation

iPSCs were defrosted, plated onto Matrigel
�

coated plastic and
maintained in mTeSR1 medium, which was exchanged daily.
iPSCs were passaged when 90% confluent onto Matrigel

�

coated plasticware using TrypLE express (ThermoFisher). Rho-
associated, coiled-coil containing protein kinase (ROCK) inhibi-
tor (ScienCell) (10mM) was included in the medium for 24 h
after each passage. Prior to the start of differentiation, iPSCs
were plated onto Matrigel

�
coated 6-well plates. Twenty-four

hours later, the medium was exchanged from mTeSR1 to mouse
embryonic fibroblast conditioned medium (ScienCell) supple-
mented with 10 ng/ml human recombinant FGF2. Cells were
allowed to expand in MEF-conditioned medium until �50%
confluent, at which time differentiation was started according
to Chambers et al. (2012) (detailed differentiation protocol in
Supplementary material). This differentiation resulted in a pure
neuronal culture with extensive aborized neurites by 2–3 weeks
after the end of the small inhibitor stage.

Schwann cell harvesting and culture

All work using animals conformed to UK Home Office legisla-
tion (Scientific Procedures Act 1986). Schwann cells were har-
vested from the sciatic nerve and brachial plexus of postnatal
Day 3 or 4 rats. Rat Schwann cells are used as well established
culture protocols exist and they can be successfully expanded
several times in vitro in order to create cryopreserved stocks.
Nerves were enzymatically digested with a collagenase (Sigma,
3 mg/ml) and dispase II protease (Sigma, 2.5 mg/ml) incubation
for 1 h at 37�C. Nerves were gently triturated using a P1000
pipette tip and plated onto PDL/laminin coated plastic in
Schwann cell expansion medium [DMEM/F12 (ThermoFisher),
10% foetal bovine serum (ThermoFisher), 200 ng/ml NRG1-b1
EGF domain (R&D Systems), 10 ng/ml NGF (recombinant-
murine, Peprotech), 4mg/ml forskolin (Sigma)]. Cells were seri-
ally treated with 5–10mM araC to eliminate fibroblasts. After
approximately four passages, each time doubling the growing
area, cells were frozen in a Mr Frosty freezing container
(ThermoFisher), and stored in liquid nitrogen.

Establishing the myelinating
co-cultures

To establish the co-cultures, a frozen vial of Schwann cells was
thawed in warm water, centrifuged in phosphate-buffered saline

(PBS) and resuspended in Schwann cell basal medium [DMEM/
F12 (ThermoFisher), 5mg/ml insulin (Sigma), 100mg/ml transfer-
rin (Millipore), 25 ng/ml NGF (recombinant-human, Peprotech),
25 ng/ml Selenium (Sigma), 25 ng/ml thyroxine (Sigma), 30 ng/ml
progesterone (Sigma), 25 ng/ml triiodothyronine (Sigma), 8mg/ml
putrescine (Sigma)]. The medium on the neuronal cultures
was changed from N2 to Schwann cell basal medium.
Schwann cells (25 000) in a 25ml droplet were slowly pipetted
onto a single coverslip containing the iPSC-derived neurons,
with care taken not to touch the coverslip with the pipette tip.
The Schwann cell droplet was evenly distributed over the cover-
slip. Cultures were carefully put back into the incubator to
allow Schwann cell adherence. The culture medium was changed
2 days later. At this stage abundant Schwann cells can be
observed adhered to the coverslip. An additional Schwann
cell basal medium change was performed 4 days after adding
the Schwann cells. During the 1-week period when the human
iPSC-derived neurons are cultured in Schwann cell basal medium
we observe no detrimental effects to the neurons, such as neurite
blebbing. Myelination was induced 1 week after Schwann
cell addition, by exposing the cells to myelination medium [N2
medium, 1:300 phenol-free Matrigel

�
(Scientific Laboratory

Supplies), 5% charcoal-stripped FBS (ThermoFisher), 25 ng/ml
NGF (recombinant-human, Peprotech), 50mg/ml ascorbic acid
(Sigma)]. Medium changes were performed twice weekly from
then on.

When optimizing the culture conditions required to establish
myelinating co-cultures, we observed that the Schwann cells
proliferate and align to the human axons during the week
after seeding them onto the neurons; this is aided by keeping
the co-cultures in Schwann cell basal medium. However, we
noticed that simply supplementing the Schwann cell basal
medium with ascorbic acid (as usually performed when cultur-
ing primary DRG neurons and Schwann cells together) re-
sulted in only the occasional formation of myelin internodes.
Furthermore, after �3–4 weeks these cultures gradually began
to show signs of a decline in neuronal health, such as neurite
blebbing. We therefore adapted commonly used protocols
when generating myelinating co-cultures using primary
rodent cells, by using myelination medium that is largely for-
mulated to encourage the growth and wellbeing of the neu-
rons. We found that using the neuronal medium, with the
addition of Matrigel

�
and ascorbic acid greatly improved

both neuronal health, alignment by Schwann cells and the
levels of myelination. This adaptation in medium allowed us
to establish healthy and stable myelinating co-cultures between
rat Schwann cells and human iPSC-derived neurons that could
be kept for many months without signs of a gradual decline in
cellular health.

AAV transduction

For AAV8-Nrg1 type-III production, rat NRG1 type-III was
subcloned into an AAV vector. Type-III-b1a constructs were a
gift from Dr Douglas L. Falls (Emory University, Atlanta,
USA) (Wang et al., 2001). A 2.3kb EcoNI/PsiI insert was
cloned from the original PcDNA3.1 vector into the EcoR1
site of a pAAV-CAG vector. The AAV viral packaging, CsCl
purification and viral genome titration were performed by
Vector Biolabs.

Neuronal cultures were transduced 3 weeks after plating
neurons onto coverslips. After infection, neurons were left
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for 7 days before the addition of Schwann cells. The stock
virus was diluted in N2 medium to the correct multiplicity
of infection (MOI) based on 25 000 cells per coverslip. N2
medium containing the AAV was then transferred to the neur-
onal cultures, and left for 3 days. An N2 plus neurotrophins
medium change was performed on Days 3 and 5 after infec-
tion, and Schwann cells were added on Day 7. Co-cultures
were then kept in Schwann cell basal medium for 7 days,
before inducing myelination (as described above).

Immunocytochemistry and confocal
imaging

For immunocytochemistry, coverslips were transferred to PBS,
and fixed in 1% paraformaldehyde for 20 min. Cells were
washed three times in PBS and then permeabilized in ice
cold methanol for 20 min. Following three PBS washes, cells
were blocked [5% donkey serum, 0.3% milk powder, 1%
bovine serum albumin (BSA), 0.1% sodium azide, 1% dime-
thyl sulphoxide (DMSO)], washed in PBS, and incubated with
the primary antibody overnight at 4�C. Cells were then
washed with PBS, and incubated with the secondary antibody
for 2 h at room temperature. The secondary antibody was
washed off with PBS, and the coverslips were mounted onto
Superfrost Plus microscope slides (Thermo Scientific) in
Vectashield mounting medium (Vector Laboratories). Primary
antibodies used and their dilations are indicated in the
Supplementary material. Secondary antibodies used were
Alexa Fluor 568, 546, 488, 405 or Pacific Blue.

Myelination was quantified via confocal microscopy using
systematic random sampling to ensure objective sampling
across the coverslip. See Supplementary material for additional
detail.

NF200-positive surface area was taken as a measurement of
axon area, while myelin basic protein (MBP) positive surface
was used as a measurement of myelin area. Since measuring
MBP area was a novel approach to quantify myelination, we
cross-validated our results by comparing them to the most
commonly used method (myelin internode count). We counted
the number of internodes and quantified the myelin area in 18
separate myelinated co-culture coverslips within a single neur-
onal differentiation and found both set of results were highly
correlated (Pearson’s R; r = 0.962, n = 18, P5 0.001;
Supplementary Fig. 1). Hence, measurement of MBP surface
area was used to quantify myelination, as it provided the more
time efficient method. When comparing between conditions,
the proportion of the total axonal area covered by myelin
(MBP area/NF200 area) was calculated, and expressed as a
fold change from control. To acquire cell numbers, DAPI posi-
tive nuclei were quantified using ‘Particle Analyser’ provided
by ImageJ software.

Pharmacological blockade of NRG1-
ErbB signalling

Pharmacological inhibition of ErbB/NRG1 signalling was per-
formed using the selective and irreversible ErbB inhibitor,
PD168393 (7 and 70 nM, reconstituted in DMSO,
Calbiochem), and the b-secretase inhibitor IV (50 and
500 nM, reconstituted in DMSO, Calbiochem) that binds to
BACE1 active site, blocking its proteolytic activity.

Compounds were included in the cell culture myelination
medium at all medium changes, at the stated concentrations.
Control conditions included the vehicle of the compound
(DMSO) at the same concentration. Cells were cultured for
4 weeks with twice weekly medium changes before fixation
and image processing.

Transmission electron microscopy

Cells adhered to coverslips were fixed, dehydrated, infiltrated
with epoxy resin and embedded into Agar100 resin. The
coverslip was snapped off, leaving the cells embedded as a
monolayer on the surface of the block. Ultrathin sections
were cut, mounted, post-stained and imaged. Detailed instruc-
tions can be found in Supplementary material.

Anti-disialosyl antibody treatment

The mouse monoclonal IgG antibodies MOG12 and EG4 were
produced and purified from hybridomas cloned by limiting
dilution after GT1b or GQ1b ganglioside immunization (re-
spectively) of GD3-synthase deficient mice, as previously
described (Boffey et al., 2005). The human monoclonal IgM
antibody HA1 was cloned after EBV transformation of periph-
eral blood mononuclear cells taken from a patient with
CANOMAD, as previously described (Willison et al., 1996).
All of these anti-ganglioside antibodies cross-react with struc-
turally similar gangliosides containing disialosyl groups,
including GD1b, GD3, GT1a, GT1b and GQ1b. Herein,
they are referred to as ‘anti-disialosyl’ antibodies to reflect
this reactivity. Normal mouse IgG was obtained from
Abcam. To identify topographical binding patterns, the culture
media of mature co-cultures were supplemented with anti-dis-
ialosyl antibodies at 100mg/ml and incubated at 37�C for 16 h.
To assess the effects of complement, culture media were sub-
sequently supplemented with 20% normal human serum and
re-incubated at 37�C for 2 h. Immunocytochemistry and con-
focal imaging were then performed, as described above. To
assess their effects on myelination, anti-disialosyl antibodies
were added to every change of medium for the first 4 weeks
after myelination was induced, at both low (10 mg/ml) and
high (EG4 40 mg/ml, MOG12 and HA1 50 mg/ml) concentra-
tions, without the addition of normal human serum.
Experiments were repeated with three different iPSC differen-
tiations. Controls were treated with myelination medium only,
or with identical concentrations of normal mouse IgG. After 4
weeks, cells were fixed, the entire axonal field was imaged, and
the proportion of the NF200 positive axonal area covered by
MBP positive myelin was calculated as before.

To assess effects on established myelin, co-cultures aged 9 to
12 months from three different iPSC lines were used. At base-
line, myelination medium was supplemented with fluoromyelin
red (Fisher Scientific) at a 1:300 dilution, and incubated at
37�C for 16 h. The extent of baseline myelination was re-
corded by imaging live cells over a 2688 mm � 2688 mm
centred grid at 10 � objective magnification. Images took less
than 3 min to acquire per coverslip. Automated stage move-
ment with defined coordinates were used to allow serial ima-
ging of the same areas. After baseline imaging, myelination
medium was replaced. From this point on, the human IgM
HA1 was added to each change of medium for the next
4 weeks. Control coverslips were treated with standard
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myelination medium only. After 4 weeks, cultures were fixed
and axon and myelin coverage was assessed by immunofluor-
escence with NF200 and MBP primary antibodies, as before.
To identify areas of demyelination, the fluoromyelin image
from baseline was overlain with the MBP channel image at
4 weeks, in which the background had been made transparent.
The area of fluoromyelin signal (at baseline) without a corres-
ponding MBP signal (after 4 weeks) was calculated using
ImageJ, and expressed as a proportion of the total fluoromye-
lin area at baseline. Areas of ongoing demyelination, identified
by ‘fragmented’ MBP staining replacing linear fluoromyelin
staining, were also imaged at higher power (63� objective)
to assess the integrity of demyelinated axons.

Statistics

Statistical analysis was performed using IBM SPSS Statistics for
Mac (Version 22). Student’s t-test was used for comparison of
two groups, one-way ANOVA using Tukey post hoc correc-
tion was used for more than two groups. Correlation was
analysed using Pearson’s R. Results are reported as
mean � SEM. Asterisks indicate the level of significance
(���P5 0.001, ��P50.01, �P50.05).

Results

Alignment and myelination of human
induced pluripotent stem cell-derived
sensory neurons by rat Schwann cells

We found that the key step in promoting myelination in co-

cultures of human iPSC-derived sensory neurons and rat

Schwann cells was to use a neuronal base medium with

Matrigel
�

in the myelinating medium stage rather than a

Schwann cell basal medium. This gave rise to long-lasting

stable co-cultures in which neuronal health was maintained

and a much greater efficiency of myelination. To investigate

how human iPSC-derived sensory neurons interacted with

primary rat Schwann cells, co-cultures were investigated for

canonical markers of the Schwann cell-axon relationship.

Initially, sensory neurons were first differentiated using the

previously published protocol (Chambers et al., 2012).

These neurons grew extensive arborized neurites, and

490% of cells were positive for the sensory neuron tran-

scription factor BRN3A (Fig. 1A). After allowing the neu-

rons to mature and grow widespread neurite processes for

2 weeks, rat Schwann cells were added in suspension, these

adhered to the coverslip and were allowed to migrate and

come in contact with axons for 1 week before myelination

was induced (schematic and timeline of co-culture shown in

Fig. 1B). In that time, alignment and Schwann cell-axon

interaction was observed by the expression of N-cadherin

at the cell-to-cell interface (Fig. 1C, arrowheads), as has

been described in primary co-cultures of DRGs and

Schwann cells (Wanner and Wood, 2002). Staining the

Schwann cell cytoplasm with an antibody directed against

S100 revealed the typical bipolar Schwann cell morphology

that was closely aligned to the NF200 positive axon of the

sensory neuron (Fig. 1D). As the tightly associated rat

Schwann cell begins to form the axon/Schwann cell com-

plex before the onset of myelination, increased levels of

extracellular matrix are observed (collagen IV), indicating

the beginning of basal lamina formation (Fig. 1E). The first

MBP positive internodes were observed after �2 weeks of

ascorbic acid supplementation, and gradually increased

over time in culture (Fig. 3). After 6 weeks of myelination,

abundant MBP positive internodes are detected throughout

the culture (Fig. 1F). On a transcriptional level, Schwann

cells followed a typical transition into a mature myelinating

state; basal expression of the transcription factor SOX10

was present in all Schwann cells, but not in neuronal nuclei

(arrowheads, Fig. 1H). Upon induction of myelination, rat

Schwann cells associated with MBP positive internodes

showed strong upregulation of KROX20 (Fig. 1I), while

the expression of c-JUN was not detected in these cells

(Fig. 1G, arrowhead depicts a Schwann cell nucleus asso-

ciated with an MBP positive internode that is negative for

c-JUN), consistent with the cross antagonistic relationship

between these transcription factors (Parkinson et al., 2008).

Taken together, these myelinating co-cultures of rat

Schwann cell and human iPSC-derived sensory neurons ex-

press the canonical markers of an axoglial relationship, and

we demonstrate for the first time that there is successful

cross-species signalling in order to initiate alignment,

basal lamina formation and myelination.

Node of Ranvier formation and
maturation of the myelin sheath

We detected characteristic nodal structures in our 6-week

myelinated co-cultures using antibodies directed against

proteins localized to the specialized axonal domains that

form at the node of Ranvier, the paranode and the juxta-

paranode. Caspr (contactin-associated protein)-positive

paranodes encompassed dense clusters of voltage gated

sodium channels at the nodes (using an antibody that rec-

ognizes a sequence from the intracellular III-IV loop present

in all vertebrate Nav channels) (Fig. 2A and B). The shaker

type voltage gated potassium channel (Kv1.2) was localized

in adjacent juxtaparanodes (Fig. 2A). Nodes of Ranvier

were abundantly detected throughout the culture at this

time point, with the occasional heminode also present

(Fig. 2C).

Myelin sheath ultrastructure was viewed with electron

microscopy at 6 and 14 weeks post-myelination. At this

resolution individual myelin wraps and the basal lamina

around the Schwann cell/axon complex could be observed

(arrowheads, Fig. 2D). At the earlier time point, several

axons were observed where the myelin wraps were not

compacted (arrow Fig. 2D). Increasing numbers of myelin

wraps and a more compacted myelin structure were

observed at the later time point indicating the typical mat-

uration of the myelin sheath (Fig. 2D).
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Myelination increases over time

To investigate the time course of myelination in the co-cul-

tures, myelin coverage was quantified at 2, 3, 4, 6 and 14

weeks post-induction. Representative images used for the

quantification are illustrated in Fig. 3(A–E). As expected,

an overall significant increase in the quantity of myelin was

observed over time [Fig. 3G, ANOVA, F(4,17) = 9.616,

P50.001], however the axonal coverage did not signifi-

cantly change over time [Fig. 3F, ANOVA, F(4,17) = 2.735,

P40.05], indicating that the increase in myelin is not

simply due to greater axonal outgrowth. Furthermore,

these cultures are extremely stable, and have been main-

tained for over 9 months with no loss of myelin or

neuron integrity (Supplementary Fig. 2).

To assess the levels of myelination across different iPSC

lines, we differentiated three separate control lines to sen-

sory neurons and co-cultured them with rat Schwann cells

as described in the methods. All three iPSC-derived

neuronal cultures were successfully myelinated and the

levels of myelination were very similar between cell lines

(Supplementary Fig. 3) demonstrating the reproducibility of

this co-culture system.

Overexpression of NRG1 type III
influences levels of myelination

TIIINRG1 expression at the axonal surface has been estab-

lished as one of the key regulators of myelination. To in-

vestigate the role of TIIINRG1 in the present co-culture

system, human iPSC-derived neurons were transduced

with an AAV containing a TIIINRG1 construct at a

range of MOIs (1 � 104 to 1 � 106, Fig. 4B–D). Viral

transduction was well tolerated by iPSC-derived neurons,

as no difference in axon area (Fig. 4E) [ANOVA, F(3,17)

= 1.103, P4 0.05] or visible signs of cellular stress were

observed across different conditions (Fig. 4A–D). Neuronal

Figure 1 Rat Schwann cells align and myelinate human iPSC-derived sensory neurons. (A) Sensory neurons can be differentiated

from iPSCs, identified through BRN3A positive nuclei, and these grow extensive NF200 immunoreactive neurite processes. (B) Schematic

showing the establishment of the myelinating co-cultures. (C) As rat Schwann cells migrate and come into contact with human axons, N-cadherin

expression is upregulated at the interface between the axon and Schwann cell (arrowheads). (D) The S100 immunoreactive Schwann cell tightly

aligns to the human axon. (E) Collagen expression is upregulated as the basal lamina forms around the Schwann cell/axon complex. (F) MBP

positive internodes are abundant throughout the co-cultures after 6 weeks of myelination. (G) Myelinating Schwann cells do not express c-Jun

(arrowhead highlights a c-Jun negative nucleus) in contrast to non-myelinating Schwann cells. (H) Rat Schwann cells are SOX10 positive, whereas

the neurons (NF200 positive, arrowheads) do not express SOX10. (I) Myelinating Schwann cells express KROX20.
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overexpression of TIIINRG1 type caused a significant in-

crease in the formation of myelin at 4 weeks (Fig. 4F)

[ANOVA, F(3,17) = 47.87, P5 0.001], with 4.8-fold and

13-fold increase with 1 � 105 and 1 � 106 MOI, respect-

ively. Full-length (FL) and the cleaved-terminal fragment

(CTF, formed following proteolytic processing) of

TIIINRG1 protein expression was increased in the

1 � 105 and 1 � 106 MOI condition compared to untrans-

duced basal expression (Fig. 4G), which significantly

increased the levels of myelination in both conditions

(Fig. 4F). Interestingly, viral transduction with 1 � 104

MOI concentration led to some increase in the protein

levels of both the full-length and cleaved-terminal fragment

(Fig. 4G), without influencing the levels of myelination

(Fig. 4F) suggesting a possible threshold effect, furthermore

assessing total NRG1 levels is only a partial reflection of

TIIINRG1 protein at the axoglial interface.

Pharmacological blockade of NRG1-
ErbB signalling leads to impaired
myelination

Neuregulins belong to the family of EGF domain-contain-

ing proteins and interact with and activate receptor tyrosine

kinases of the ErbB family expressed by Schwann cells

(ErbB2 and ErbB3). The selective and irreversible ErbB in-

hibitor PD168393 was used to block ErbB receptors and

prevent TIIINRG1 signal transduction. As expected, a dose-

dependent reduction in myelination was detected in the

presence of PD168393 inhibitor (Fig. 5B, C and F)

[ANOVA, F(2,14) = 14.87, P5 0.001]. TIIINRG1 requires

proteolytic cleavage by proteases to expose its active EGF-

domain (Hu et al., 2006; Willem et al., 2006; Fleck et al.,

2016). The cell-permeable isophthalamide that binds to

BACE-1 active site was used to block its proteolytic activ-

ity. The presence of the BACE1 inhibitor significantly

reduced myelination when compared to the control condi-

tions (Fig. 5D–F) [ANOVA, F(2,13) = 7.421, P5 0.01].

These results indicated that interference with NRG1-ErbB

signalling reduced myelination in our co-culture system.

Neither the ErbB inhibitor [ANOVA, F(2,14) = 2.311,

P4 0.05] nor the BACE1 inhibitor [ANOVA,

F(2,13) = 1.452, P4 0.05] had a measurable effect on

axonal density (Fig. 5B–E). To assess whether the pharma-

cological blockade of NRG/ErbB signalling led to a reduc-

tion in Schwann cell proliferation, we quantified the

number of DAPI positive Schwann cell nuclei in our cul-

tures. Only the highest concentration of PD168393 resulted

Figure 2 Nodes of Ranvier and the basal lamina successfully form in co-cultures. (A) Clustering of voltage gated sodium channels at

the node, Caspr at the paranode and Kv1.2 at the juxtaparanode is detected after 4 weeks of myelination. (B) Sodium channels cluster between

the MBP positive internodes. (C) Abundant Caspr positive paranodes are detected after 6 weeks of myelination. (D) At the electron microscopy

level, the basal lamina can be observed (arrowheads) as well as individual myelin wraps. Not all the myelin wraps are tightly compacted at 6 weeks

(arrow), whereas after 14 weeks of myelination, the number of wraps has increased and are tightly compacted.
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in a reduction in Schwann cell numbers (Fig. 5G), consist-

ent with the fact that NRG1 promotes stem cell prolifer-

ation. When we assessed the protein levels of the full-length

and cleaved-terminal fragment of TIIINRG1 after neurons

have been treated with the BACE1 inhibitor, we found that

there was a reduction in the amount of cleaved-terminal

fragment, and an increase in the full-length levels with

both concentrations of BACE1 inhibitor. This corresponds

to the inhibition of the proteolytic cleavage of full-length

TIIINRG1, resulting in an accumulation of the full-length

and a reduction in the cleaved-terminal fragment. Similar

results were observed when assessing full-length and

cleaved fragment levels in the Bace1-/- mouse (Hu et al.,

2006; Willem et al., 2006).

Anti-disialosyl antibodies impair
myelination

Gangliosides containing disialosyl moieties are known to be

expressed by sensory neurons (Svennerholm et al., 1994).

Auto-antibodies directed against these gangliosides are

associated with acute (IgG) and chronic sensory/ataxic neu-

ropathies (IgM) with electrophysiological evidence of both

axonal degeneration and demyelination (Wicklein et al.,

1997; Miyazaki et al., 2001; Willison et al., 2001). We

therefore investigated the topographical targets and patho-

logical effects of anti-disialosyl antibodies using two mouse

IgG3 monoclonal antibodies (MOG12 and EG4) and the

human IgM monoclonal, HA1. After overnight incubation,

all antibodies had bound to exposed axolemma (at both the

nodes of Ranvier) (Figs 6A and 7A) and unmyelinated

axons (Figs 6A and 7B) within the mature co-cultures.

Nodal reactivity was sharply delimited by the paranodal

junction protein Caspr indicating that tight junctions at

the paranode are likely excluding access of these antibodies

to the internodal regions (Figs 6A and 7A). We did not

observe binding to Schwann cells. After overnight incuba-

tion with either mouse or human ADAs at 10 or 100 mg/ml,

the addition of normal human serum as a source of com-

plement produced axonal deterioration and myelin bleb-

bing within 2 h (Figs 6B and 7E). These changes were not

seen with antibody or normal human serum alone (Figs 6B,

and 7C and D). The prolonged addition of the low con-

centrations of mouse IgG anti-disialosyl antibodies (10 mg/

ml), without normal human serum, started at the onset of

myelination, significantly reduced the proportion of myeli-

nation at 4 weeks (Fig. 6D and G) [n = 3, mean (95%

confidence interval, CI) reduction versus control = 66%

(35% to 96%), P5 0.01, one-way ANOVA with Tukey

correction], without reducing the total axonal area itself

(Fig. 6D and F). Unlike the changes observed following

the addition of normal human serum, this condition did

not result in axonal degeneration. Likewise, there were no

morphological changes in the axons after 4 weeks, when

compared to control conditions without antibody (Fig. 6H

and I). Prolonged incubation with higher concentrations of

mouse IgG ADAs (50 mg/ml) almost entirely prevented mye-

lination [Fig. 6E and G, n = 3, mean (95% CI) reduction

versus control = 96% (64% to 127%), P5 0.001, one-way

ANOVA with Tukey correction], but also produced wide-

spread irregularities in the axonal neurofilament-heavy

Figure 3 Myelination increases over time in culture.

Cultures were fixed and immunocytochemistry performed at (A) 2,

(B) 3, (C) 4, (D) 6 and (E) 14 weeks post-induction of myelination.

(A) The first MBP-positive internodes can be detected at �2 weeks.

Myelination was quantified (G) as a proportion of NF200-positive

staining (F). Levels of myelination steadily increase over time,

whereas axonal area remains unchanged from 4 weeks.
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staining (Fig. 6E and J). There was no significant difference

between the two different mouse IgG anti-disialosyl antibo-

dies in terms of their observed effects on myelination at

either the high or low concentration (both P4 0.05, un-

paired t-test), and these results were pooled for the final

analysis. No significant effect on myelination was seen with

control antibodies (normal mouse IgG, Abcam) at either

high (50 mg/ml) or low (10 mg/ml) concentration

(P40.05, one-way ANOVA with Dunnett correction)

(Supplementary Fig. 4).

The prolonged addition of the human IgM monoclonal,

HA1, started at the onset of myelination, likewise resulted

in a dose-dependent reduction in axonal coverage by

myelin at 4 weeks [n = 3, mean (95% CI) reduction at

10 mg/ml versus control = 56% (35% to 77%), P5 0.001,

mean (95% CI) reduction at 50 mg/ml versus control = 75%

(54% to 96%), P5 0.0001, one-way ANOVA with Tukey

correction] (Fig. 7F–J). Neither antibody concentration

caused visible changes to axonal morphology (Fig. 7F–H)

or a significant change in axonal area [one-way ANOVA

with Tukey correction, F(2,6) = 0.9833, P4 0.05] (Fig. 7I).

A human anti-disialosyl IgM antibody
induces demyelination

To establish whether ADAs could induce demyelination, in

addition to preventing myelination, established co-cultures

aged 9–12 months were used. With prolonged exposure to

HA1 at 50 mg/ml, numerous myelin internodes present at

baseline (revealed by live cell FluoroMyelinTM staining)

were absent on repeat images taken after 4 weeks (Fig.

8B). In comparison, under control conditions, the majority

of internodes remained stable over the same time period

(Fig 8A). Higher power images revealed no differences in

Figure 4 Overexpression of TIIINRG1 significantly increases myelination in the co-cultures. (A–D) Human iPSC-derived neurons

were transduced with an AAV containing a TIIINRG1 construct at a range of MOI’s. Cultures were fixed for immunocytochemistry or lysed for

protein extraction at 4 weeks post-induction of myelination. (E) Viral transduction had no effect on axonal outgrowth or morphology, with no

visible signs of neurite blebbing (insets in A–D). Scale bar = 50mm. (F) Myelination was similar in (A) untransduced and (B) 1 � 104 MOI

conditions, whereas a significant and dose dependent increase in myelination was observed in (C) 1 � 105 (�P5 0.05) and (D) 1 � 106

(���P5 0.001) conditions. (G) In the transduced neurons, western blot shows the increase in both the full-length (FL) (135 kDa) and cleaved-

terminal fragment (CTF) (60 kDa) of TIIINRG1 compared to untransduced control. The calnexin control demonstrates an even protein loading

across conditions.
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axonal morphology between the groups (Fig. 8C and D).

Furthermore, in HA1 treated cultures, presumed ongoing

demyelination could occasionally be observed, with

clumps of disintegrating myelin surrounding intact axons

(Fig. 8D). When quantified at 4 weeks, there was no sig-

nificant difference in axonal area between HA1 treated and

control cultures [mean (95% CI) coverage difference for

HA1 versus control = 0.05 (�1.24 to 1.13), P = 0.9039,

unpaired t-test] (Fig. 8E). However, the extent of myelin

loss (demyelination) was significantly higher in the HA1

group [mean (95% CI) increased myelin loss with HA1

versus control = 10.54% (3.92 to 17.17), P = 0.0115, un-

paired t-test] (Fig. 8F).

Discussion
Our aim was to establish myelinating co-cultures from

iPSC-derived sensory neurons and use them to investigate

the physiology and pathology of axoglial interactions

within the peripheral nervous system. We found that, sur-

prisingly given the species difference, human iPSC-derived

sensory neurons can be reliably and efficiently myelinated

by rat Schwann cells. These co-cultures feature the expected

markers of a specialized axoglial relationship, including the

widespread formation of nodes of Ranvier. The cultures are

also extremely stable over time, which is a significant

advantage compared to primary myelinating co-cultures,

and will enable axoglial physiology and disease pathogen-

esis to be investigated over long time periods.

iPSCs have become a fundamental tool for disease mod-

elling, drug and toxicology screening and regenerative

medicine. With the intrinsic capability of almost limitless

self-renewal, the theoretical capacity to differentiate into

essentially every cell type, and the potential to model a

pathogenic genotype by reprogramming cells from an af-

fected individual, iPSCs have attracted considerable atten-

tion (Soldner et al., 2012; Sterneckert et al., 2014;

Hockemeyer and Jaenisch, 2016). This led to rapid ad-

vances in the field, both in terms of reprogramming meth-

ods and in the development of novel and improved

differentiation protocols for a large variety of cell types

(Mertens et al., 2016). The differentiation protocol for sen-

sory neurons used in the current study is exemplary

(Chambers et al., 2012). Using a combination of five

small molecular pathway inhibitors, this method produces

a sensory neuronal population within 2 weeks at an effi-

ciency of 490%. Further characterization defined these

neurons as molecularly and functionally comparable to

human sensory neurons derived from mature dorsal root

ganglia. The protocol was originally developed with the

aim of generating nociceptors, most (but not all) of which

have small diameter, unmyelinated axons. However, the

neurons generated are heterogenous (Young et al., 2014).

Figure 5 Pharmacological blockade of NRG1/ErbB signalling impairs myelination in the human/rat co-cultures. Irreversible

blockade of ErbB receptors with PD168393 at (B) 7 nM and (C) 70 nM dose-dependently reduces the formation of MBP positive internodes

compared to (A) control cultures. Inhibition of the b-secretase protease (BACE1) with (D) 50 nM and (E) 500 nM also results in a dose-dependent

reduction in the formation of myelin. The few remaining myelin internodes are indicated in B, D and E with arrowheads. (F) Quantification of the

myelin levels relative to an internal control. (G) Schwann cell numbers are reduced only with the highest concentration of PD168393. (H)

Treatment of iPSC-derived sensory neurons with BACE1 results in an accumulation in full-length (FL) TIIINRG1, and a reduction in the

cleaved-terminal fragment (CTF).
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We noted approximately a third of neurons generated using

this protocol had action potential characteristics of non-

nociceptive afferents (unpublished observation) and all

axons were immunoreactive for neurofilament heavy

chain, a characteristic of large diameter axons. We there-

fore investigated whether these sensory axons could be

myelinated. We observed that iPSC-derived sensory neu-

rons were indeed able to engage in the highly complex

cell-to-cell interactions with Schwann cells, and successfully

undergo myelination. Direct comparisons of myelination

with primary co-cultures of rat DRG neurons with rat

Schwann cells have not been conducted however, qualita-

tively the onset and nature of myelination is very similar.

The longevity of our co-cultures is substantially greater

than primary rat/rat co-cultures, so whilst similar levels of

myelination may be initially observed after several weeks,

we observe a progressive increase in myelination over time.

Co-cultures could be maintained for 49 months without

Figure 6 Mouse IgG anti-disialosyl antibodies cause acute, complement dependent axonal degeneration while prolonged

application without a source of complement impairs myelination. (A) Both mouse IgG3 antibodies (mADAs, example shown is EG4,

blue) bind to unmyelinated axons and the nodal axolemma, but do not cross the paranodal junction (marked by Caspr, red). (B) With the

additional provision of normal human serum (NHS) as a source of complement, axonal degeneration can be observed after 2 h. (C–E and G)

Prolonged culture with mouse anti-disialosyl antibodies without a source of complement significantly reduces the extent of myelination at 4 weeks

at both low (10 mg/ml, ��P5 0.01) and high (40mg/ml EG4, 50mg/ml MOG12, ���P5 0.001) antibody concentrations. (F) Axonal area in antibody-

treated cultures is not reduced over this time period. Graphs show pooled data from three separate experiments using both anti-disialosyl

antibodies (EG4 and MOG12). Example images were treated with MOG12 (‘mADA’) or myelination medium only (‘Control’). (H–I) Axonal

morphology is no different from controls after 4 weeks of continuous incubation with low dose (10 mg/ml) mouse anti-disialosyl antibodies

without NHS, but (J) irregular axonal staining and blebbing is seen at 50mg/ml.
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loss of myelin or axonal integrity (Supplementary Fig. 2),

qualifying them for studies that require extremely long

timeframes.

The activation of the myelination process (Fig. 1) and the

formation of nodal structures (Fig. 2), require sequential

and highly complex reciprocal cellular interaction (Salzer,

2015). While many factors play a role in myelination,

including cAMP, brain-derived neurotrophic factor

(BDNF), Notch 1, cell adhesion molecules, and G-protein-

coupled receptors, NRG1-ErbB signalling has been estab-

lished as a key regulator of this process (Taveggia, 2016).

All NRG1 isoforms contain an epidermal growth factor

(EGF)-like signalling domain that can act on heterodimeric

ErbB2-ErbB3 receptors expressed at the Schwann cell mem-

brane; the membrane-bound type III isoform is thought to

be the most important signalling molecule for the regula-

tion of myelination in the PNS (Michailov et al., 2004;

Taveggia et al., 2005; Birchmeier and Bennett, 2016).

Using an AAV-mediated overexpression system or pharma-

cological inhibition, we find that TIIINRG1 expressed on

human axons could strongly promote myelination. Levels

of NRG1 in the peripheral nervous system are regulated by

Figure 7 A CANOMAD associated human IgM anti-disialosyl antibody (HA1) also causes acute, complement dependent

axonal degeneration while prolonged application without a source of complement impairs myelination. (A) HA1 (green) binds to

nodal axolemma (flanked by Caspr, red) and to (B) unmyelinated axons (NF200, red), without any reactivity to Schwann cells (S100, blue). (C–E)

Short-term incubation with HA1 followed by normal human serum as a source of complement leads to (E) acute axonal degeneration. (F–H)

Prolonged incubation with HA1, without provision of complement, leads to a dose-dependent reduction in myelination over 4 weeks, quantified in

(J). No significant alteration to (F–H) axonal morphology or (I) axonal coverage was observed (���P5 0.001 versus control).
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proteolytic cleavage by a range of secretase enzymes,

including BACE1 (Hu et al., 2006; Willem et al., 2006;

Fleck et al., 2016). The role of NRG1-ErbB signalling in

myelination of the rodent peripheral nervous system is well

established, and we have now shown that modulating

TIIINRG1 expression on human sensory axons also has a

key role in regulating myelination. Co-cultures also have

potential for drug and toxicology screening (Fig. 5). In

the last decade BACE1 has emerged as an important

target for experimental therapies in Alzheimer’s disease.

In addition to the proteolytic processing of NRG1,

BACE1 is one of the b-secretase enzymes required for the

endoproteolysis of the amyloid precursor protein (APP),

and hence the production of the 42-amino acid long b-

amyloid peptide (amyloid-b42), widely considered to be

neurotoxic and crucial during the early onset of

Alzheimer’s disease (Vassar, 2004). As a result, BACE1 in-

hibitors are currently in human clinical trials (Vassar et al.,

2014). Given the profound effect on the myelination of

human axons, the potential for BACE1 inhibition to pro-

duce deleterious effects on peripheral nerve function is

highlighted by this study. This may be a particular problem

for patients with pre-existing neuropathies (up to 8% of the

elderly population) (Martyn and Hughes, 1997), in which

ongoing repair may be critically important. NRG1 is now

also being considered as a target for clinical intervention.

Human based myelinating co-cultures should prove a useful

tool for screening the effects of drugs targeting this signal-

ling pathway.

iPSC-based assays also offer advantages in the investiga-

tion of autoimmune diseases. Indeed, non-myelinating cul-

tures of iPSC-derived motor neurons have recently been

used to study the immunopathology of multifocal motor

neuropathy associated anti-GM1 antibodies (Harschnitz

et al., 2016). Dysimmune processes underlying other

inflammatory neuropathies are known to target distinct

topographical regions of the peripheral nerve, including

the myelin sheath and specialized axonal domains formed

at the node of Ranvier and flanking paranodal and juxta-

paranodal domains (Devaux et al., 2012; Querol et al.,

2013). These structures are not formed in pure neuronal

cultures, further highlighting the benefits of myelinating co-

cultures. Currently, the specific antigen target in many in-

flammatory neuropathies is elusive and the exact nature of

their pathology is uncertain. This is likely to be because

solid phase serological assays fail to recapitulate the com-

plex antigen environment created by cis interactions within

neural membranes, and the trans interactions, which char-

acterize axoglial connections and signalling. Such assays

provide little to no insight into pathological mechanisms.

The co-culture system thus has great promise for

strengthening clinical-serological correlations, identifying

new antigen targets, establishing pathological mechanisms,

and testing therapeutic strategies. A further advantage of

this culture system is its stability over time, facilitating the

more realistic study of longer term pathological processes.

Ganglioside antibodies have previously been shown to

cause acute axonal deterioration in the presence of comple-

ment (O’Hanlon et al., 2001; McGonigal et al., 2010),

which is again confirmed by this study. We have now

shown that both mouse- and patient-derived anti-disialosyl

ganglioside antibodies disrupt myelination independently of

complement. The finding that these antibodies bind to the

axolemma and not directly to Schwann cells emphasizes the

importance of axon-derived signals in the formation and

maintenance of healthy myelin. These observations correl-

ate with the demyelinating electrophysiological pattern seen

in some acute sensory neuropathies associated with anti-

GD1b antibodies of the IgG class (Wicklein et al., 1997),

Figure 8 A CANOMAD associated human IgM anti-

disialosyl antibody induces complement independent

demyelination without evidence of axonal injury. (A and B)

Superimposed images of the same field of view of an established

myelinating co-culture 4 weeks apart. (A) Under control conditions

the pattern and extent of myelination at baseline (assessed by

FluoroMyelinTM staining, white) was largely maintained after 4

weeks further culture (assessed by MBP immunofluorescence, red).

(C) Myelin and axons were morphologically normal in these aged

co-cultures. (B) With prolonged exposure to HA1, numerous

internodes present at baseline were no longer apparent after 4

weeks (arrows). In some areas (arrowhead) fragmentation of myelin

could be seen. (D) At higher power in fixed tissue, myelin degen-

eration in such areas could be observed without loss of the

underlying axon. (E) When quantified, there was no significant dif-

ference in axon area between HA1 treated and control cultures, but

(F) the proportion of myelin loss was significantly greater with HA1

(�P5 0.05).
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and with CANOMAD (associated with IgM anti-disialosyl

antibodies), which shows both axonal and demyelinating

features (Willison et al., 2001). These antibodies not only

induce demyelination, but also block de novo myelination

in this experimental system. Anti-ganglioside antibodies

have previously been shown to reduce axonal regeneration

in culture (Rozés Salvador et al., 2016), and their persist-

ence in patients with GBS is associated with delayed recov-

ery (Bech et al., 1997). Our observations also suggest that

they may impair repair associated remyelination, with po-

tential implications for the optimal timing and duration of

immunomodulatory therapy in patients. The anti-disialosyl

antibodies in this study also react with GT1b, a known

ganglioside ligand for myelin associated glycoprotein

(MAG) providing one potential mechanism for altered axo-

glial interactions (Yang et al., 1996). MAG is involved in the

maintenance of myelin, whereas evidence of its role in the

initiation of peripheral nervous system myelination is con-

flicting (Owens et al., 1990; Owens and Bunge, 1991;

Montag et al., 1994). Mice with disrupted ganglioside syn-

thesis do however display increased axonal degeneration and

demyelination within their peripheral nerves, possibly be-

cause the ganglioside-MAG interaction is absent (Sheikh

et al., 1999). Whether anti-disialosyl antibodies bound to

axonal gangliosides block this specific signal, affect another

unidentified pathway, or simply act as a non-specific phys-

ical barrier to axoglial interaction, remains to be determined.

In summary, we have developed a myelinating co-culture

system using human iPSC-derived sensory neurons and

rodent Schwann cells, which faithfully recapitulates the

axoglial signalling required for myelination. This co-culture

system can be used to screen drugs that may promote or

impede myelination and to investigate the immunopathol-

ogy of the inflammatory neuropathies.
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