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Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid

plaque burden, making tau an attractive target for the cure of Alzheimer’s disease. We have explored whether passive immuniza-

tion with the 12A12 monoclonal antibody (26–36aa of tau protein) could improve the Alzheimer’s disease phenotype of two well-

established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the

pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length

physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months

old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its

target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidb metabolisms involved in early disease-associated

synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition

and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associ-

ated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectiv-

ity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer’s disease-related electrophysiological deficits in hippocampal

long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These find-

ings indicate that the 20–22 kDa NH2-terminal tau fragment is crucial target for Alzheimer’s disease therapy and prospect im-

munotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early

Amyloidb-dependent and independent neuropathological and cognitive alterations in affected subjects.
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Introduction
Recent in vitro and in vivo data have highlighted a cru-

cial role of proteolytic fragments of tau protein, in par-

ticular those derived from truncation at its N-terminal

domain, in the initiation/progression of Alzheimer’s dis-

ease and other related tauopathies, thus paving the way

for their potential use as therapeutic targets or as bio-

markers for diagnosing dementia and/or monitoring dis-

ease progression (Avila et al., 2016a; Quinn et al., 2018;

Sebastián-Serrano et al., 2018). On the one hand, tau

cleavage may generate amyloidogenic fragments that initi-

ate its aggregation which, in turn, can cause toxicity

(Wang et al., 2010). On the other hand, tau proteolysis

may result in production of noxious, both intracellular

and extracellular, truncated species which drive neurode-

generation independently of aggregative pathway(s) and

in a fragment-dependent manner as a result of their dele-

terious action on pre- and/or post-synaptic functions and/

or their secretion and transcellular propagation (Quinn

et al., 2018).

Extracellular cleaved tau is toxic to neurons by increas-

ing the Ab production (Bright et al., 2015) and/or by

impairing synaptic plasticity (Fà et al., 2016; Florenzano

et al., 2017; Borreca et al., 2018; Hu et al., 2018).

Hyperphosphorylation and caspase-3 cleavage of tau

(Asp421), which promote aggregation, also favour the

protein secretion in vitro (Plouffe et al., 2012). The
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amino-terminal projection domain of human tau—which

interacts with the plasma membrane (Brandt et al., 1995)

and undergoes early conformational changes in human

tauopathies including Alzheimer’s disease (Combs et al.,

2016, 2017)—is endowed with deleterious action(s),

mainly at nerve endings (King et al., 2006; Ittner et al.,

2010; Amadoro et al., 2012; Zhou et al., 2017). The N-

terminus extremity of tau, despite the lack of the micro-

tubule binding domains which abnormally aggregate to

form paired helical filaments, is prone to come into

higher order of oligomerization (Feinstein et al., 2016)

and is specifically released into the extracellular space in

an in situ tauopathy model (Kim et al., 2010), suggesting

a potential role for molecular ‘templating’ in the propaga-

tion of neurofibrillary lesions. Soluble C-terminally trun-

cated tau species are also preferentially secreted from

synaptosomes of Alzheimer’s disease brains (Sokolow

et al., 2015) and in conditioned media from patient-

derived induced pluripotent stem cell cortical neurons

(Bright et al., 2015; Kanmert et al., 2015; Sato et al.,
2018). Interestingly, although full-length tau is found in

CSF from healthy humans, a heterogeneous population of

fragments—including the NH2-terminal and/or prolin-rich

domain—is mainly discernible in Alzheimer’s disease

patients (Johnson et al., 1997; Portelius et al., 2008;

Meredith et al., 2013; Amadoro et al., 2014; Chen et al.,
2019; Cicognola et al., 2019). Exosomes-associated NH2-

derived tau fragments are also detected in CSF from

Alzheimer’s disease patients (Saman et al., 2012) and a

different CSF pattern of NH2-derived tau fragments

may reflect disease-specific neurodegenerative processes

(Borroni et al., 2009). Consistently, passive immunother-

apy with antibody targeting the N-terminal projection do-

main of full-length human tau has shown to be beneficial

in Alzheimer’s disease transgenic (Tg) mice by improving

the cognitive deficits (Yanamandra et al., 2013; Dai

et al., 2015; Subramanian et al., 2017) and blocking the

seeding/spreading of tau pathology (Dai et al., 2018).

Both intracerebroventricular infusion and peripheral ad-

ministration of anti-tau antibodies specific for N-terminal

25–30 epitopes are curative in P301S mice model of tau-

opathy, by preventing the brain atrophy and ameliorating

the motor/sensorimotor functions (Yanamandra et al.,
2013, 2015). Immunization with antibody directed

against the N-terminal end of full-length tau protein (Dai

et al., 2017) significantly reduced the level of amyloid

precursor protein (APP), amyloid-b peptides (Ab40) and

Ab42 in CA1 region of Alzheimer’s disease animal mod-

els, indicating that tau-based immunotherapy is actually

able to restore the Ab-dependent and/or independent syn-

aptic dysfunction(s) which occur at early stages in

Alzheimer’s disease and other related dementias (Pedersen

and Sigurdsson, 2015; Panza et al., 2016). However, al-

beit tau appears to be the main factor underlying the de-

velopment and progression of Alzheimer’s disease

(Kametani and Hasegawa et al., 2018; Castellani and

Perry, 2019), its expression at physiological level is

required for neuronal functions underlying learning and

memory (Pooler et al., 2014; Regan et al., 2017) and its

down-regulation, even if moderate, has been proved to

have deleterious effects, both in vitro and in vivo (Biundo

et al., 2018; Velazquez et al., 2018). As a consequence,

the development of selectively targeting antibodies against

pathogenic tau may have a unique therapeutic advantage

by leading to valuable, beneficial effects—in the absence

of unwanted consequences due to the ‘loss of function’ of

normal protein—in the cure of human, chronic neurode-

generative tauopathies which are sometimes expected to

require long-term treatments with multiple and high-dose

administrations of drugs (Kontsekova et al., 2014;

Elmaleh et al., 2019).

In this framework, we developed a neo-epitope anti-

body directed against the N-terminal sequence of human

tau protein DRKD(25)-QGGYTMHQDQE (Amadoro

et al., 2012) which encompasses a conserved cleavage-site

sequence previously identified in cellular and animal

Alzheimer’s disease models (Corsetti et al., 2008) and in

human Alzheimer’s disease brains (Rohn et al., 2002).

12A12 (formerly Caspase-Cleaved protein-NH24268 tau

antiserum, Amadoro et al., 2012) is a monoclonal anti-

body (mAb) which recognizes the newly created

D-25NH2tau(Q26–36aa)-terminus of degradation prod-

uct(s) of tau without cross-reacting with the same amino

acidic stretch from full-length isoforms of intact, normal

protein (Amadoro et al., 2019; Supplementary Fig. 1).

The pathologically relevant NH2tau 26–44aa stretch,

which is the minimal active moiety of a neurotoxic 20–

22 kDa NH2-derived tau peptide (aka NH2htau), accu-

mulates at Alzheimer’s disease pre-synaptic terminals

(Amadoro et al., 2006, 2010, 2012; Corsetti et al., 2015)

and is present in CSFs from living patients suffering from

Alzheimer’s disease and other non-Alzheimer’s disease

neurodegenerative diseases (Amadoro et al., 2014).

Interestingly, this peptide is able to negatively impact on

normal synaptic function(s) in vitro (Florenzano et al.,

2017) and in vivo (Borreca et al., 2018), suggesting that

its antibody-mediated selective clearance can have import-

ant clinical and translational implications in contrasting

the earliest neuropathological and cognitive alterations

associated with human tauopathies, including Alzheimer’s

disease (Bright et al., 2015; Sokolow et al., 2015;

Barthélemy et al., 2016a, b; Sato et al., 2018; Cicognola

et al., 2019).

In this study, we explored the potentially beneficial

immunotherapeutic power of the 12A12mAb by means

of its intravenous (i.v.) administration in two lines of

Alzheimer’s disease Tg animals with different genetic

backgrounds, such as Tg2576 carrying the APP KM670/

671NL Swedish mutation and 3xTg mice expressing the

amyloid precursor protein KM670/671NL Swedish muta-

tion, tauP301L, PS1M146V human transgenes.

Relevantly, unlike other murine or humanized NH2tau-

directed immunotherapeutic antibodies (Yanamandra

et al., 2013, 2015; Dai et al., 2015, 2017, 2018;
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Subramanian et al., 2017; Qureshi et al., 2018),

12A12mAb reacts with the 20–22 kDa neurotoxic NH2-

truncated tau but not with the physiological full-length

form of protein (Corsetti et al., 2008; Amadoro et al.,

2012) advocating its in vivo use as safe, more harmless

and personalized medicine treatment to slow progressing

human tauopathies.

Materials and methods

Animals

All experiments involving animals were performed in ac-

cordance with the ARRIVE guidelines and were carried

out in accordance with the ethical guidelines of the

European Council Directive (2010/63/EU); experimental

approval was obtained from the Italian Ministry of Health

(protocol # 524/2017 PR; 554/2016-PR). Only male sub-

jects were used to avoid changes in female hormone state

that can affect cognitive data. All efforts were made to

minimize the number of animals used and suffering.

One, 3- and 6-month-old Tg2576 and 3xTg mice (Tg-

Alzheimer’s disease) (n¼ 8–10 per group/treatment) and

age-matched wild-type (WT) controls (n¼ 8–10 per

group/treatment) were used in this study.

Heterozygous Tg2576 mice overexpressing the APP695

with the Swedish mutation (APP KM670/671NL,

TgHuAPP695swe: Tg2576) in a hybrid genetic back-

ground (87% C57BL/6� 12.5% SJL) (Hsiao et al., 1996)

were subsequently backcrossed to C57BL/6xSJL F1

females and the offspring were genotyped to confirm the

presence of human mutant APP DNA sequence by PCR.

WT littermates were used as controls.

The homozygous 3xTg mice harbouring human amyl-

oid precursor protein KM670/671NL Swedish mutation

and tauP301L transgenes with knock-in PS1M146V

under the control of the mouse Thy1.2 promoter were

obtained from The Jackson Laboratory (https://www.jax.

org/strain/004807). Mice were bred on the mixed C7BL/

6; 129X1/SvJ; 129S1/Sv genetic background and geno-

types were confirmed by PCR on tail biopsies (Oddo

et al., 2003). B6129SF2/J strain mice, used as WT con-

trols in the present study, were the offspring of a cross

between C57BL/6J females (B6) and 129S1/SvImJ males

(129S); they are commonly used as controls for genetical-

ly engineered strains generated with 129-derived embry-

onic stem cells and maintained on a mixed B6; 129

background (https://www.jax.org/strain/101045). The

housing conditions (four or five animals per cage) in

pathogen-free facilities were controlled (temperature

22�C, 12 h light/12 h dark cycles, humidity 50–60%)

with ad libitum access to chow and water.

Immunization scheme

The N-terminal tau 12A12 antibody (26–36aa) was pro-

duced and characterized by monoclonal antibodies core

facility at EMBL—Monterotondo, Rome, Italy (Dott.

Alan Sawyer), as previously described in Florenzano

et al. (2017). 12A12mAb was purified from hybridoma

supernatants according to standard procedures and its

purity was determined using sodium dodecyl sulphate-

polyacrylamide gel electrophoresis and Coomassie stain-

ing. In detail, the hybridoma supernatant was precipitated

by ammonium sulphate (336 g/l). After precipitation, the

solution was centrifuged at 10 000 g for 1 h and the pel-

let was dissolved in phosphate-buffered-saline (PBS) and

dialyzed against the same buffer. The solution was centri-

fuged at 10 000 g for 30 min and loaded on a HiTrap

Protein G HP (GE Healthcare) equilibrated with PBS.

The column was washed with PBS (5 column volumes).

121A12mAb was eluted with 0.1 M Glycine-HCl, pH

2.7. The fractions containing the antibody were neutral-

ized by 1 M Tris-HCl, pH 9.0, collected and immediately

dialyzed against PBS. 121A12mAb concentration was

determined by measuring the absorbance at 280 nm. The

average yield was 8 mg/l of cell supernatant. 12A12mAb

was �95% pure and contained �1 U/mg of endotoxin

(LAL Chromogenic Endotoxin quantitation kit; Thermo

Scientific).

To minimize experimental variability, all mice were ini-

tially grouped according to their body weight and age

and mice from the same litter were finally assigned to

different groups. For each animal strain (Tg2576, 3xTg),

the grouped mice were randomized into: (i) WT mice

treated with saline vehicle; (ii) WT mice treated with

12A12mAb (30 lg/dose); (iii) age-matched Tg-Alzheimer’s

disease mice treated with saline or non-specific mouse

Immunoglobulin (IgG) (normal mouse IgG, Santa Cruz

sc-2025, 30 lg/dose); and (iv) age-matched Tg-Alzheimer’s

disease mice treated with 12A12mAb (30 lg/dose) or

non-specific mouse IgG (normal mouse IgG, Santa Cruz

sc-2025, 30 lg/dose). Animals were infused over 14 days

with two weekly injections administered on two alternate

days to the lateral vein of the tail. The dose and route of

immunization were based on prior studies using

Alzheimer’s disease Tg mice (Castillo-Carranza et al.,
2015). In details, mice were placed in a restrainer

(Braintree Scientific), and an inch of the tail was shaved

and placed in warm water to dilate veins. After injection

via the lateral tail vein, mice were returned to home

cages and kept under general observation. Abnormalities

in overall health, home-cage nesting, sleeping, feeding,

grooming, body weight and condition of the fur of ani-

mals were noted.

Tissue collection, harvesting and
preparation

For biochemical analysis, tissue sampling was carried out

according to Mably et al. (2015) with some modifica-

tions. Briefly, 2 days following the last injection, animals

were sacrificed by cervical dislocation to avoid anaesthe-

sia-mediated tau phosphorylation (Planel et al., 2007)
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and intra-cardially perfused with ice-cold PBS using a

30-ml syringe to remove blood contamination. Brains

were collected, the meninges were carefully removed and

dissected hippocampi were immediately frozen on dry-ice

and, then, stored at �80�C until use.

Hippocampal total protein lysates were carried out

according to Castillo-Carranza et al. (2015) with some

modifications. In details, frozen mice hippocampi were

diced and homogenized in PBS with a protease inhibitor

mixture (Roche) and 0.02% NaN3 using a 1:3 (w/v) dilu-

tion. Samples were then centrifuged at 10 000 rpm for

10 min at 4�C and the supernatants were collected.

Tris-buffered saline (TBS) extracts were carried out

according to Mably et al. (2015) with some modifica-

tions. Frozen mice hippocampi were homogenized in five

volumes (wt/vol) TBS, pH 7.4, plus proteases inhibitor

cocktail (Sigma-Aldrich P8340) and phosphatase inhibitor

cocktail (Sigma-Aldrich, Oakville, Ontario, Canada

P5726/P2850) with 30 strokes of a glass Dounce tissue.

The homogenate was centrifuged at 90 000 g at 4�C for

1 h. The supernatant (TBS extract) was removed and

stored at �20�C.

Synaptosomes preparations were carried out as previ-

ously reported (Corsetti et al., 2015; Florenzano et al.,

2017).

Cloning, bacterial expression and
purification of the 20–22 kDa
NH226-230 tau fragment (aka
NH2htau)

cDNA fragment coding for the amino acids 26–230 of

the isoform 4 of human tau protein (htau40) was cloned

into the vector pET-11a (Novagen) suitable for the ex-

pression of recombinant proteins in BL21DE3 Gold

Escherichia coli cells. After induction with IPTG, recom-

binant protein in lysates from bacterial pellet was purified

to homogeneity by a two-step procedure: step 1 was a

HiCood Q Sepharose 16/10; step 2 was Hitrap Phenyl

5 ml. Degree of protein purification was evaluated by

Coomassie Brilliant Blue G-250 and checked by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis under

reducing conditions by western blotting with commercial

human-specific NH2-tau antibody (DC39N1 45–73aa)

and with 12A12mAb (26–36aa). The molecular identity

of purified peptide fraction was finally checked by elec-

trospray ionization mass spectrometry.

Detection of the NH2htau fragment
by 12A12mAb-based enzyme-linked
immunosorbent assay

High-binding black 96 well plates (Costar 3925, Corning,

NY) were coated overnight at 4�C following the addition

of 5 lg/ml 12A12mAb capture antibody diluted in coat-

ing buffer (50 mM NaHCO3, pH9.6). Plates were washed

with PBST (PBS containing 0.05% Tween-20) and incu-

bated with 5% non-fat dry milk (w/v) in PBST at room

temperature (RT) for 2–4 h while shaking to block non-

specific binding sites. Plates were washed with PBST and

incubated (50 ll/well) overnight at 4�C while shaking

with recombinant NH226-230 tau fragment standard

curves prepared in assay buffer concentration of 5% milk

(w/v) and 0.05% Tween-20 (v/v) in PBS, pH 8. Plates

were washed with PBST and incubated (50 ll/well) over-

night at 4�C with rabbit H150 antibody (1–150aa;

Santa-Cruz sc-5587) diluted to the final concentration of

2.5 lg/ml in assay buffer concentration of 5% milk and

0.05% Tween-20 (v/v) in PBS. Plates were then washed

with PBST and added with 50 ll/well of rabbit horserad-

ish peroxidase-conjugated secondary antibody for 1 h at

RT. Plates were washed with PBST and developed at RT

using TMB substrate (T0440; Sigma-Aldrich, Oakville,

Ontario, Canada). Luminescence counts were measured

using Packard TopCount (PerkinElmer, MA). Log-trans-

formed luminescence counts from individual samples were

interpolated to concentration using a second-order poly-

nomial fit to the respective standards (GraphPad Prism

5.00, GraphPad Software, San Diego).

Detection of i.v.-delivered
12A12mAb in TBS brain extracts

The concentration of i.v. delivered anti-tau 12A12mAb

was measured in TBS brain extracts according to Mably

et al. (2015) with some modifications. A solid-phase en-

zyme-linked immunosorbent assay (ELISA) was performed

on the plate-immobilized synthetic NH226-44aa which

was used as catching antigenic peptide, being the minimal

Alzheimer’s disease-relevant (Borreca et al., 2018), active

moiety of the parental longer NH226-230 (Amadoro

et al., 2004, 2006). Clear 96 well high-binding plates

(Costar 3925, Corning, NY) were coated (50 ll/well) of

5 lg/ml synthetic NH226-44aa in coating buffer (0.05 M

Carbonate-Bicarbonate, pH9.6) overnight at 4�C. Wells

were washed twice with PBST and loaded (50 ll/well)

with (i) the standard curve prepared by making serial

dilutions of 12A12mAb (250–0.12 ng/ml), (ii) the TBS

extracts diluted 1/50, 1/10, 1/2, 1/1.3 or (iii) blanks

diluted in assay buffer concentration of 5% milk and

0.05% Tween-20 (v/v) in PBS overnight at 4�C. Plates

were then washed with PBST and added with 50 ll/well

of rabbit horseradish peroxidase-conjugated secondary

antibody for 1 h at RT. Plates were washed with PBST

and developed at RT using TMB substrate (T0440;

Sigma-Aldrich, Oakville, Ontario, Canada). Luminescence

counts were measured using Packard TopCount

(PerkinElmer, MA). Log-transformed luminescence counts

from individual samples were interpolated to concentra-

tion using a second-order polynomial fit to the respective

standards (GraphPad Prism 7.00, GraphPad Software,

San Diego).
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Cell culture, treatment and protein
lysates preparation

SH-SY5Y human neuroblastoma cells were cultured and

terminally differentiated into post-mitotic neurons accord-

ing to Corsetti et al. (2008). Culture treatment and pro-

tein lysates preparation were carried out by using

standard procedures, according to Borreca et al. (2018).

Western blot analysis and
densitometry

Western blot analysis and densitometry were carried out

by using standard procedures, according to Borreca et al.

(2018).

The following antibodies were used: anti-Ab/APP 6E10

(4–9aa) mouse MAB1560 Chemicon; anti-Alzheimer pre-

cursor protein 22C11 (66–81aa of N-terminus) mouse

APP-MAB348 Chemicon Temecula-CA; anti-pan tau pro-

tein H150 (1–150aa of N-terminus) rabbit sc-5587

Santa Cruz Biotechnology; anti-pan tau protein

DC25(microtubule binding repeat) mouse T8201 Sigma-

Aldrich; tau 21 (21–36aa of N-terminus) rabbit

AHB0371 Biosource International (USA); anti-N-tau (45–

73aa) DC39N1 mouse T8451 Sigma-Aldrich; neuronal

marker b III tubulin antibody mouse ab78078 (clone

2G10) Abcam; GAPDH antibody (6C5) mouse sc-32233

Santa Cruz Biotechnology; activity-regulated cytoskeleton-

associated protein (C-7) mouse sc-17839 Santa Cruz

Biotechnology; glial fibrillary acidic protein antibody rab-

bit Z0334 Dako; Iba1 antibody rabbit Wako 016-20001

(for WB).

Novel object recognition test

Two days after the last i.v. injection, mice run the novel

object recognition (NOR) task (Antunes and Biala, 2012)

to check the hippocampal-dependent episodic memory

(Bevins and Besheer, 2006; Akkerman et al., 2012a, b).

The entire task was performed in three consecutive ses-

sions during the same day (1-day version), according to

previously published protocol (Borreca et al., 2018).

Object place recognition test

The object place recognition paradigm involves the activ-

ity of the hippocampus and is used to test the short-term

memory (Vogel-Ciernia and Wood, 2014). The animals,

which underwent the NOR paradigm with a training and

test session, were tested in the object place recognition

paradigm 24 h later, with a separated training and test

session. The objects used for the object place recognition

were different from those used previously for the NOR

test in order to avoid possible confounding effects. The

entire behavioural task including three phases (a common

habituation phase, a training phase and a test phase) was

performed by using standard protocol (Lesburguères

et al., 2017).

Spontaneous alternation (Y-maze)
test

Evaluation of short-term working memory was carried

out by using the spontaneous alternation version of the

Y-maze, which involves different brain structures ranging

from the hippocampus to the prefrontal cortex. Y-maze

testing also indicates overall activity, or hyperactivity,

based on the number of arm entries Spontaneous alterna-

tion, expressed as a percentage, was calculated by divid-

ing the number of entries into all three arms on

consecutive choices (correct choices) by number of arm

entries subtracted by two, then multiplying the quotient

by 100 (Hiramatsu et al., 1997; Wall and Messier,

2002). A high spontaneous alternation rate is indicative

of sustained working memory because the animals must

remember which arm was entered last to know not to re-

enter it.

Energy metabolism

Energy expenditure (EE) and oxygen consumption (VO2)

were measured by an indirect calorimeter system (TSE

PhenoMaster/LabMaster SystemVR ) in vehicle- or

12A12mAb-treated mice by a constant air flow of 0.35 l/

min. Mice were adapted for 6 h to the metabolic chamber

before the start of recording, and VO2 was measured

every 30 min in each mouse, starting at 7:00 PM and

ending automatically after 4 days (96 h later). RT was

kept constant (22 6 1�C). The EE for each sample point

was evaluated across the 48 h of total recording.

Locomotor activity was assessed during the indirect cal-

orimetric assay by the number of infra-red beams broken.

Each cage of the calorimeter system is equipped with the

InfraMotV
R

device that uses ‘passive infrared sensors’ to

detect and record the motor activity of the mouse by the

body-heat image and its spatial displacement across time.

Any type of body movement was detected and recorded

as activity counts. EE was also analysed by considering

animals’ steady conditions or lack of motor activity (rest-

ing EE, REE; only values between 0 and 2 activity counts

were included).

Golgi-Cox staining and dendritic
spine analysis

Two days after the last i.v. injection, mice were sacrificed

with a lethal dose of anaesthetic (Zoletil/Rompun 800

and 100 mg/kg, respectively) and perfused transcardially

with 0.9% saline solution. Brains were dissected and im-

mediately immersed in a Golgi-Cox solution (1%

K2Cr2O7, 1% HgCl2 and 0.8% K2CrO4) at RT for

6 days, according to a previously described protocol

(Gibb and Kolb, 1998; Rosoklija et al., 2014). On the
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seventh day, brains were transferred in a 30% sucrose

solution for cryoprotection and then sectioned with a

vibratome. Staining and dendritic spine analysis was car-

ried out according to standard criteria (Horner and

Arbuthnott, 1991; Leuner et al., 2003) and by using pre-

viously published method (Borreca et al., 2018).

Statistical comparisons were made on single mouse values

obtained by averaging the number of spines counted on

neurons of the same mouse.

Electrophysiological recordings

Two days after the last i.v. injection of 12A12mAb, mice

were anaesthetized by halothane or isofluorane inhalation

and decapitated. The brain was rapidly removed and put

in ice-cold cutting solution (in mM: 124 NaCl, 3.2 KCl,

1 NaH2PO4, 26 NaHCO3, 2 MgCl2, 1 CaCl2, 10 glu-

cose, 2 sodium pyruvate and 0.6 ascorbic acid, bubbled

with 95% O2–5% CO2, pH 7.4). Electrophysiological

recordings were performed on hippocampal coronal slices

(400 lm thick) by using standard procedures (Podda

et al., 2016; Nobili et al., 2017).

Statistical analysis

In box-and-whisker plots, the centre lines denoted median

values, edges were upper and lower quartiles, whiskers

showed minimum and maximum values and points were

individual experiments. Other data were expressed as

mean 6 SEM. All data were representative of at least

three separate experiments (n ¼ independent experi-

ments). Statistically significant differences were calculated

by one-way or two-way analysis of variance (ANOVA)

followed by Bonferroni’s, Fisher’s and Dunnett’s post hoc

tests for multiple comparisons among more than two

groups. P< 0.05 was accepted as statistically significant

(*P< 0.05; **P< 0.01; ***P< 0.0005; ****P< 0.0001).

All statistical analyses were performed using GraphPad

Prism 7 software.

Data availability

The datasets used and/or analysed during the current

study and detailed protocols/experimental procedures are

available from the corresponding author on reasonable

request. Western blotting fill-size images can be found in

Supplementary Materials.

Results

Intravenously injected anti-NH2htau
12A12mAb is biologically active in
the animals’ hippocampus

Tg2576 and 3xTg mice—two well-established animal

Alzheimer’s disease models (Hsiao et al., 1996;

Oddo et al., 2003) which express the human APP695

with Swedish mutations (K670N-M671L), alone or in

combination with MAPT P301L and PSEN1 M146V, re-

spectively—were analysed because these Tg animals are

recognized to display progressive tau-dependent, hippo-

campus-based synaptic and cognitive impairments (Oddo

et al., 2006; Castillo-Carranza et al., 2015; Amar et al.,

2017). The hippocampal parenchyma was examined in

the present study, since this vulnerable cerebral area: (i)

selectively and disproportionally degenerates at early

stages of mild cognitive impairment prior to the clinical

diagnosis of full-blown dementia (Honer et al., 1992;

West et al., 1994; Gomez-Isla et al., 1996; Kordower

et al., 2001; Scheff et al., 2006a, b); (ii) preferentially

develops tau neuropathology into synaptic compartments,

whose initial deterioration is considered the best correlate

of cognitive decline in Alzheimer’s disease symptomatol-

ogy by critically subserving the transition from normal

aging to mild cognitive impairment (Braak and Braak,

1991, Arriagada et al., 1992; Guillozet et al., 2003;

Markesbery et al., 2006, 2010; Pooler et al., 2014;

Spires-Jones and Hyman, 2014).

Before addressing the possible benefits offered by

systemic delivery of the cleavage-specific 12A12mAb

(D-25NH2tau(Q26–36aa)-terminus), we determined an ap-

propriate lifetime at which Tg-Alzheimer’s disease mice

could be employed for antibody immunization experiments.

In light of these considerations, the in vivo level of the

pathogenic 20–22 kDa NH2htau was measured by western

blotting sodium dodecyl sulphate-polyacrylamide gel electro-

phoresis analyses carried out on synaptosomal preparations

from hippocampi of WT and Alzheimer’s disease Tg ani-

mals of both genetic backgrounds at three ages (1, 3, 6-

month-old Tg2576 and 3xTg). As shown in Fig. 1A and B,

the signal intensity of 12A12mAb-positive NH2htau immu-

noreactivity band was virtually undetectable in 6-month-old

cognitively intact controls but appeared to be up-regulated

in diseased animals (one-way ANOVA followed by

Dunnett’s post hoc test for multiple comparisons Tg2576

F(3,12) ¼ 13.34, P¼ 0.0004; 3-month-old Tg2576 versus

6-month-old WT, ***P< 0.0005; 6-month-old Tg2576 ver-

sus 6-month-old WT, **P< 0.01; 3xTg F(3,12) ¼ 76.79,

P< 0.0001; 1-month-old 3xTg versus 6-month-old WT,

*P< 0.05; 3-month-old 3xTg versus 6-month-old WT,

****P< 0.0001; 6-month-old 3xTg versus 6-month-old

WT, ****P< 0.0001). Consistent with previous investiga-

tions from rodent preparations (Rohn et al., 2002; Corsetti

et al., 2008) and human nerve terminals specimens

(Amadoro et al., 2010, 2012; Corsetti et al., 2015;

Sokolow et al., 2015), the steady-state expression level of

the neurotoxic 20–22 kDa NH2htau truncated fragment

significantly increased and time-dependently accumulated

starting from 1 month of age into synaptic-enriched frac-

tions of cognitively impaired older animals from both

Alzheimer’s disease Tg mouse models. The specific ability

of 12A12mAb in binding the 20–22 kDa NH2htau frag-

ment in vitro, both in recombinant and native forms, was
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Figure 1 The i.v.-injected 12A12mAb anti-tau antibody is biologically active into the animals’ hippocampus. (A, B) Western blot

analysis carried out on hippocampi from Tg2576 and 3xTg Alzheimer’s disease mice at different ages (1, 3 and 6 months old) and from 6-month-

old WT by probing with 12A12mAb (left). b-III tubulin was used as loading control. Arrows on the right side indicate the molecular weight (kDa)

of bands calculated from migration of standard proteins. Full uncropped blots are available in Supplementary Fig. 5. Pooled data and relative

densitometric quantifications are reported on the right. In this and all other figures, in box-and-whisker plots the centre lines denote median

values, edges are upper and lower quartiles, whiskers show minimum and maximum values and points are individual experiments. Statistically

significant differences (see details in the main text) were calculated by ANOVA followed by post hoc test for multiple comparisons among more

than two groups. P< 0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005; ****P < 0.0001). (C) Western blotting

analysis was carried out by probing with anti-mouse IgG as primary antibody (Thermo-Fisher 10400C) on hippocampal protein extracts (40lg)

from animals of the three experimental groups (WT, ‘naı̈ve’ 3xTg, 3xTg þ mAb) which underwent i.v. injection with saline or 12A12mAb (see

details in Materials and methods section). b-III tubulin was used as loading control. Arrows on the right side indicate the molecular weight (kDa)

of bands calculated from migration of standard proteins. Full uncropped blots are available in Supplementary Fig. 5. Notice that 3xTg animals,

which are systemically i.v. injected for 14 days with 12A12mAb (see details in Materials and methods section), exhibit high levels of cerebral

mouse IgG when compared to not-vaccinated controls confirming that a fraction of mAb injected into the tail vein is present in the hippocampal

parenchyma. Asterisks point to the light and heavy antibody chains (25 and 50 kDa, respectively). (D) Brain levels of anti-tau antibody 12A12mAb

were evaluated by ELISA in the TBS-soluble fraction of hippocampal homogenates from WTand 3xTg mice that i.v. received saline or 12A12mAb

for 14 days (see details in the Materials and methods section). The ELISA used to measure the anti-tau antibody relies on the plate-immobilized

recombinant NH226-44aa tau which, being the minimal Alzheimer’s disease-relevant (Borreca et al., 2018) active moiety of the parental longer

NH226-230 (Amadoro et al., 2004, 2006), was used as catching peptide. Notice that a significant portion of the 12A12mAb in 3xTg brains is

bound to endogenous NH2htau and does non-specifically interact with the large amount of intracellular tau released during homogenization.

Statistically significant differences (see details in the main text) were calculated by ANOVA followed by post hoc test for multiple comparisons

among more than two groups. P < 0.05 was accepted as statistically significant.

8 | BRAIN COMMUNICATIONS 2020: Page 8 of 34 V. Corsetti et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/2/1/fcaa039/5816590 by guest on 24 April 2024

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa039#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa039#supplementary-data


checked by western blotting and ELISA (Supplementary

Fig. 1).

Having ascertained that the NH2htau accumulated into

hippocampal synapses under pathological conditions in

association with progressive disruption of animals’ mem-

ory/learning function(s), we investigated whether the

12A12mAb could be exploited to systemic tau-directed

immunization regimen. In particular, we ascertained

whether 12A12mAb was able to gain access to the cere-

bral parenchyma after its peripheral administration, an

optimal prerequisite for local engagement of the patho-

genic target and its successful neutralization/clearance

in vivo. To this aim, 6-month-old mice from these two

different strains (Tg-Alzheimer’s disease) were infused

over 14 days with two weekly injections of 12A12mAb

(30 lg/dose) administered on two alternate days to the

lateral vein of the tail. Both age-matched WTs and

‘naı̈ve’ (i.e. not-immunized) Tg Alzheimer’s disease coun-

terparts, which were sham-infused under the same experi-

mental conditions with vehicle (saline) only, were also

included as negative controls. By probing with anti-mouse

IgG used as primary antibody, western blotting analysis

(Fig. 1C) carried out on hippocampal protein extracts

from the three experimental groups (WT, ‘naı̈ve’ Tg-

Alzheimer’s disease, Tg-Alzheimer’s disease þ mAb

which, importantly, were sacrificed and thoroughly per-

fused with PBS in order to make sure that their brains

were free of blood contaminations) showed that

12A12mAb-injected 3xTg animals exhibited high levels of

cerebral mouse IgG when compared to not-vaccinated,

saline-treated controls. This qualitative finding is in line

with previous reports on the ability of other, intravenous-

ly administered anti-tau antibodies to cross the blood–

brain barrier of diseased Tg mice (about 0.1% of

delivered total amount), likely owing to its age-related im-

pairment and increased permeability (Asuni et al., 2007;

Blair et al., 2015; Mably et al., 2015; Bennett et al., 2018).

Next, to confirm that peripherally delivered 12A12mAb

was actually able to bind the NH2htau in vivo, we car-

ried out ELISA quantitative test on TBS-soluble fractions

isolated from hippocampi of WT, ‘naı̈ve’3xTg and 3xTg

þ mAb animals after 14 days i.v. injection. Healthy, WT

mice infused with 12A12mAb under the same experimen-

tal conditions (WT þ mAb) were also included to ascer-

tain whether 12A12mAb could enter the brain from

periphery despite the intact blood–brain barrier and/or

the lack of tau pathology into the CNS. It’s worth under-

lying that: (i) the ELISA test aimed at assessing the cere-

bral amount of injected 12A12mAb is based on the

plate-immobilized synthetic NH226-44aa which, being the

minimal Alzheimer’s disease-relevant (Borreca et al.,

2018) active moiety of the parental longer NH226-230

(Amadoro et al., 2004, 2006), was used as catching pep-

tide; (ii) only the free (i.e. unoccupied) antibody can read-

ily bind to its immobilized specific antigen and be

measured, whereas the tau-bound antibody is not detect-

able. As shown in Fig. 1D, a sizeable proportion of the

injected 12A12mAb was unbound and biologically active

(antigen-binding competent) in 3xTg brains, being able to

recognize the synthetic plate-immobilized recombinant tau

peptide. Interestingly, the levels of i.v.-administered

12A12mAb were significantly lower in 3xTg þ mAb ex-

perimental group than in WT þ mAb counterpart (two-

way ANOVA analysis followed by Bonferroni’s post hoc

test for multiple comparisons, genotype � treatment

interaction F(1,24) ¼ 28.92, P< 0.0001; WT þ saline

versus Tg-Alzheimer’s disease þ saline n.s., P> 0.99;

****P< 0.0001 for all other pair comparisons), indicat-

ing that a higher fraction of this antibody is actually

bound in vivo to the endogenously generated NH2htau

antigen—and thus less available for capture in in vitro
ELISA assay—into the hippocampi from diseased animals

than in healthy controls. Similar results were also found

in 6-month-old Tg2576 animals from the other genetic

background which were analysed and treated under the

same experimental conditions (data not shown).

Collectively, these findings demonstrated that: (i) the

pathological tau truncated at its N-terminal domain early

accumulates into hippocampal synapses from Tg-

Alzheimer’s disease, suggesting that it might contribute to

the age-dependent disruption of animals’ memory and

learning functions; (ii) after its i.v. injection, 12A12mAb

can be actively up-taken into the brain because an appre-

ciable percentage of free and antigen-binding competent

form of antibody is present into the hippocampus both

from healthy controls and 3xTg immunized mice, regard-

less of the integrity of their blood–brain barrier and/or

the presence of tau pathology; (iii) 12A12mAb does not

aspecifically interact, neither in WT nor in 3xTg, with

the large amount of intracellular full-length normal tau

which is routinely released during procedure of samples

homogenization, in line with our previous in vivo obser-

vations advocating its cleavage-specificity towards the

NH2htau truncated fragment (Amadoro et al., 2012,

Supplementary Fig. 1); (iv) 12A12mAb is not in limiting

amount and, thus, endowed with potential therapeutic ef-

fect (in vivo target-engagement) because after immuniza-

tion it is locally detectable in its active/antigen-competent

state into mouse brains, with higher level in the WT con-

trols than in diseased 3xTg ones.

12A12mAb passive immunization
reduces both pathological tau and
APP/Ab metabolisms into synaptic
compartments from treated
Alzheimer’s disease Tg mice at the
prodromal stage of neuropathology

Co-occurrence between tau and Ab pathology has been

described to take place within neuronal processes and

nerve ending compartments at early stages of Alzheimer’s

disease (Takahashi et al., 2010; Amadoro et al., 2012;

N-truncated tau as target in Alzheimer’s disease therapy BRAIN COMMUNICATIONS 2020: Page 9 of 34 | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/2/1/fcaa039/5816590 by guest on 24 April 2024

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa039#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa039#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa039#supplementary-data


Spires-Jones and Hyman, 2014; Rajmohan and Reddy,

2017). In the preclinical models of Tg2576 and 3xTg, Ab
exerts its synaptotoxicity, at least in part, via tau, but

both separate and synergistic neurodegenerative mecha-

nisms have been also described in these two experimental

paradigms (Nisbet et al., 2015; Li and Gotz, 2017;

Polanco et al., 2018). Recent in vitro and in vivo evi-

dence have demonstrated that Ab and tau pathology—in

addition to their direct and/or indirect interaction

(Castillo-Carranza et al., 2015; Dai et al., 2017, 2018;

Rajamohamedsait et al., 2017)—can damage the synaptic

terminals in an APP-dependent manner suggesting that its

increased expression level per se should be considered as

an additional therapeutic target to preserve the integrity

and function of crucial neuronal networks (Gulisano

et al., 2018; Kametani and Hasegawa, 2018; Schreurs

et al., 2018).

In view of these considerations, we investigated whether

the antibody-mediated neutralization of pathogenic NH2-

truncated tau following i.v. 12A12mAb infusion could

mitigate in vivo the occurrence of neurochemical deriva-

tives from the abnormal APP and tau metabolisms which

are largely recognized to compromise the Alzheimer’s dis-

ease nerve terminals at prodromal disease stages (Braak

and Del Tredici, 2015). To this aim, western blotting so-

dium dodecyl sulphate-polyacrylamide gel electrophoresis

analyses (Fig. 2, Tg2576; Fig. 3, 3xTg) were carried out

on hippocampal synaptosomal preparations from the

three experimental groups (WT, ‘naı̈ve’ Tg-Alzheimer’s

disease, Tg-Alzheimer’s disease þ mAb) of both genetic

backgrounds (3-month-old Tg2576 and 3xTg) by probing

with both 12A12mAb and specific commercial antibodies

detecting the Alzheimer’s disease-like, site-specific tau

hyperphosphorylation at Ser202/Thr205 epitope (AT8)

(Goedert et al., 1995) and the accumulation of soluble

6E10-positive APP/Ab derivatives (Teich et al., 2015). As

shown in Figs 2A and 3A—and in line with Fig. 1A and

B—the intensity signal of the neurotoxic 20–22 kDa

NH2htau truncated fragment was markedly increased in

saline-treated, ‘naı̈ve’ Tg-Alzheimer’s disease mice when

compared to non-Tg WT controls (one-way ANOVA fol-

lowed by Bonferroni’s post hoc test for multiple compari-

sons F(2,18) ¼ 117.5, P< 0.0001, Tg2576; F(2,18) ¼
34.54, P< 0.0001, 3xTg; ****P< 0.0001, Tg2576 versus

WT; ****P< 0.0001, 3xTg versus WT). Importantly, the

12A12mAb treatment significantly reduced the synaptic

load of 20–22 kDa NH2htau form(s) in Tg-Alzheimer’s

disease animals from both strains indicating that this

antibody, after i.v. delivery, successfully engaged/inter-

cepted its target into hippocampus with consequent neu-

tralization/clearance in vivo (one-way ANOVA followed

by Bonferroni’s post hoc test ****P< 0.0001, Tg2576 þ
mAb versus Tg2576; ****P< 0.0001, 3xTg þ mAb ver-

sus 3xTg). Following 12A12mAb immunization, the AT8

immunoreactivity was strongly inhibited in Tg-

Alzheimer’s disease animals (one-way ANOVA followed

by Bonferroni’s post hoc test F(2,18) ¼ 23.72,

P< 0.0001, Tg2576; F(2,18) ¼ 42.18, P< 0.0001, 3xTg;

Tg2576 versus WT, ****P< 0.0001; Tg2576 þ mAb ver-

sus WT n.s., P¼ 0.7913; Tg2575 þ mAb versus Tg2576,

***P< 0.0005; 3xTg versus WT, ****P< 0.0001; 3xTg

þ mAb versus WT n.s., P¼ 0.3747; 3xTg þ mAb versus

3xTg, ****P< 0.0001), proving that the anti-truncated

tau antibody was able to down-regulate the extent of tau

neuropathology in vivo (Figs 2C and 3C). A drastic de-

cline and/or disappearance of the expression levels of

6E10-positive APP/Ab specie(s) (i.e. 4 kDa Ab monomer,

14 kDa low-molecular weight Ab oligomers or APP C-ter-

minal fragment (bCTF)) was also clearly observed in

Tg-Alzheimer’s disease hippocampal synapses from treated

experimental groups of both genetic backgrounds (Figs 2E

and 3E and F) (one-way ANOVA followed by

Bonferroni’s post hoc test F(2,18) ¼ 104.7, P< 0.0001,

Tg2576; F(2,18) ¼ 115.8, P< 0.0001, 3xTg; Tg2576 ver-

sus WT, ****P< 0.0001; Tg2576 þ mAb versus WT

n.s., P¼ 0.0536; Tg2576 þ mAb versus Tg2576,

****P< 0.0001; ****P< 0.0001 for all pair comparisons

from 3xTg). Importantly, the steady-state expression level

of total tau detected by probing with H150 and DC25

(Figs 2B and 3B), two commercial anti-pan tau antibodies

binding both murine and human tau isoforms (Zilka

et al., 2006; Lee et al., 2010; Um et al., 2011; Schroeder

et al., 2016), was unchanged in synapses from Alzheimer’s

disease Tg animals after 12A12mAb immunization regi-

men, with significantly higher level of total tau detected in

3xTg in comparison with WT controls due to the presence

of both endogenous and human Tg proteins (one-way

ANOVA followed by Bonferroni’s post hoc test F(2,18) ¼
0.3014, P¼ 0.7434 Tg2576; F(2,18) ¼ 22.8 P< 0.0001

3xTg; n.s. P> 0.999 for all pair comparisons from

Tg2576; 3xTg versus WT ***P< 0.0005; 3xTg þ mAb

versus WT ****P< 0.0001; 3xTg þ mAb versus 3xTg

n.s. P¼ 0.1577). These findings are consistent with tau

cleavage-specificity of 12A12mAb which selectively binds

in vivo the neurotoxic NH2htau truncated specie(s)

(Amadoro et al., 2012; Corsetti et al., 2015) without

showing any cross-reaction towards the full-length form of

protein (Supplementary Fig. 1). Finally, as visualized by

22C11 commercial antibody (Figs 2D and 3D),

12A12mAb immunization resulted to act upstream on Ab
production by normalizing the disease-associated up-regu-

lation in the expression level of APP full-length holopro-

tein in both Tg Alzheimer’s disease mice models (one-way

ANOVA followed by Bonferroni’s post hoc test F(2,18) ¼
46.07 P< 0.0001 Tg2576; F(2,18) ¼ 97.33 P< 0.0001

3xTg; Tg2576 versus WT ****P< 0.0001; Tg2576 þ
mAb versus Tg2576 ****P< 0.0001; Tg2576 þ mAb ver-

sus WT n.s. P¼ 0.999; ****P< 0.0001 3xTg for all com-

parisons). Interestingly, this evidence supports more recent

studies which suggest a prominent, causal role of APP ac-

cumulation in triggering synaptotoxicity and tauopathy

(Kametani and Hasegawa, 2018; Schreurs et al., 2018).

Collectively, these results demonstrate that: (i) when i.v.

administrated to young (3 months old) Tg2576 and 3xTg
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Figure 2 Reduction of the hippocampal NH2htau in Tg-Alzheimer’s disease (Tg2576) mice immunized with 12A12mAb

ameliorates the disease-associated synaptic neuropathology. Representative blots (n ¼ 5) of sodium dodecyl sulphate-polyacrylamide

gel electrophoresis western blotting analysis (left) on isolated synaptosomal preparations from hippocampal region of animals from three

experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of Tg2576 strain to assess the content of the NH2htau

fragment (A), total tau full-length (B), AT8-phosphorylated tau (C), APP holoprotein (D) and Ab monomeric and oligomeric species (E). Data

were quantified for molecular weight size ranges for each antibody and normalized to b-III tubulin which was used as loading control (F) and

relative densitometric quantifications are reported (right). Arrows on the right side indicate the molecular weight (kDa) of bands calculated from

migration of standard proteins. Full uncropped blots are available in Supplementary Fig. 6. Notice that changes in levels of total tau are not

statistically significant. Statistically significant differences (see details in the main text) were calculated by ANOVA followed by post hoc test for

multiple comparisons among more than two groups. P < 0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005;

**** P < 0.0001).
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Figure 3 Reduction of the hippocampal NH2htau in Tg-Alzheimer’s disease mice (3xTg) immunized with 12A12mAb

ameliorates the disease-associated synaptic neuropathology. (A–G)Representative blots (n ¼ 5) of sodium dodecyl sulphate-

polyacrylamide gel electrophoresis western blotting analysis (left) on isolated synaptosomal preparations from hippocampal region of animals

from three experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of 3xTg strain to assess the content of the

NH2htau fragment (A), total tau full-length (B), AT8-phosphorylated tau (C), APP holoprotein (D) and Ab monomeric and oligomeric species

(E/F). Data were quantified for molecular weight size ranges for each antibody and normalized to b-III tubulin which was used as loading control

(G) and relative densitometric quantifications are reported (right). Arrows on the right side indicate the molecular weight (kDa) of bands

calculated from migration of standard proteins. Full uncropped blots are available in Supplementary Fig. 7. Notice that changes in levels of total

tau are not statistically significant. Statistically significant differences (see details in the main text) were calculated by ANOVA followed by post

hoc test for multiple comparisons among more than two groups. P < 0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P <

0.0005; ****P < 0.0001).
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mice—two well-established Alzheimer’s disease animal

models showing tau-dependent neuropathology (Oddo

et al., 2006; Castillo-Carranza et al., 2015; Amar et al.,

2017)—the cleavage-specific 12A12mAb is able to reach

an appreciable concentration into the hippocampal paren-

chyma ensuing an effective binding/degradation of the

pathologic 20–22 kDa NH2htau form(s); (ii) the in vivo

antibody-mediated removal of the 20–22 kDa NH2htau

form(s) alleviates the detrimental alterations of both APP/

Ab and tau metabolisms (i.e. AT8 tau hyperphosphoryla-

tion, APP/Ab species accumulation and processing) com-

monly occurring at the earliest stage of Alzheimer’s

disease progression into nerve endings; (ii) the

12A12mAb-mediated immunodepletion of the toxic 20–

22 kDa NH2htau form(s) takes place in the absence of

any significant change in the stability/turnover of normal

full-length tau protein which is known to be endowed

with important physiological functions into synaptic com-

partments (Pooler et al., 2014; Regan et al., 2017) and

whose reduction, even if partial, is extremely harmful in

terminally differentiated post-mitotic neurons in vivo

(Biundo et al., 2018; Velazquez et al., 2018).

Cognitive performance is
significantly improved in
symptomatic Alzheimer’s disease
Tg mice after i.v. 12A12mAb
delivery

Having established that classical molecular determinants

underlying the phenotypic Alzheimer’s disease manifesta-

tions are strongly reduced at early/pre-symptomatic stages

of neuropathology following peripheral administration of

12A12mAb, cognitive functioning of symptomatic Tg-

Alzheimer’s disease animals (6-month-old Tg2576 and

3xTg) was analysed under the same schedule of treatment

by means of a comprehensive behavioural test battery

(Fig. 4, Tg2576; Fig. 5, 3xTg).

The NOR task is a paradigm which is considered an

appropriate readout for measures of learning/memory im-

pairment in Tg and non-Tg animal models of tauopa-

thies, including Alzheimer’s disease (Polydoro et al. 2009;

Lanté et al., 2015). Relevantly, the NOR behavioural

task: (i) involves brain areas such as transentorhinal/ento-

rhinal/perirhinal cortices and hippocampus which are

pathologically relevant in this field, being affected by

neurofibrillary tau changes at early stages of disease

(Braak and Braak, 1991; Lasagna-Reeves et al., 2011,

2012; Bengoetxea et al., 2015; Sankaranarayanan et al.,

2015); (ii) is a non-aversive learning paradigm, avoiding

the potential confounds of using differential rewards or

punishments, able to evaluate the hippocampal-dependent

episodic memory (Antunes and Biala, 2012; Leger et al.,

2013) which is the first type of memory affected in

Alzheimer’s disease patients (Reed et al., 1997; Zola and

Squire, 2001; de Toledo-Morrell et al., 2007; Salmon and

Bondi, 2009; Grayson, et al., 2015). Owing to innate

and spontaneous preference of mice towards novelty, any

increase in exploration of the novel object (NO) during

the test session is to be ascribed to the animal’s ability in

discriminating it from the familiar one (FO). This param-

eter was quantified as preference index (PI), which is cal-

culated as the percentage of time spent exploring the new

object over the total time spent exploring the two objects.

In the recognition session, a PI for the NO >50% indi-

cated that the NO was preferred, <50% that the FO

was preferred and at 50% that no object was preferred

(Hammond et al., 2004).

Interestingly (Figs 4A and 5A), Tg2576 and 3xTg mice

receiving 12A12mAb showed a significant rescue in

short-term memory deficits when tested in this hippocam-

pal-dependent task, being able to distinguish NO from

FO (Tg2576 þ mAb PI¼ 58.6%; 3xTg þ mAb

PI¼ 66.41%) just as WT, healthy non-Tg mice (B6SJL

PI¼ 59.44%; C57 PI¼ 68.0%, respectively). On the other

hand, saline-treated/‘naı̈ve’ Tg-Alzheimer’s disease mice

from both strains exhibited a poor performance when

evaluated in NOR test because they spent the same time

in exploring the NO versus the FO (Tg2576

PI¼ 48.51%; 3xTg PI¼ 50.48%, respectively).

Accordingly, a two-way ANOVA of behavioural data

(treatment � object discrimination) indicated significant

difference between the three experimental groups of both

strains (F(1,32) ¼ 6.60 P¼ 0.01 for Tg2576; F(2,56) ¼
3.4 P¼ 0.04 for 3xTg) with the NO being preferred from

12A12mAb-infused Alzheimer’s disease Tg animals

(Fisher’s post hoc test NO versus FO Tg2576 þ mAb:

**P< 0.01; 3xTg þ mAb: ***P< 0.0005) which behaved

in the same manner of WT, non-Tg ones (Fisher’s post

hoc test NO versus FO B6SJL: ***P< 0.0005; C57:

***P< 0.0005). Conversely, not-immunized Alzheimer’s

disease mice from both genetic backgrounds did not dis-

criminate between NO and FO object and displayed de-

fective mnestic abilities without any preference for NO

(Fisher’s post hoc test Tg2576: P¼ 0.61; 3xTg: P¼ 0.32).

Furthermore, these results were not due to an intrinsic in-

ability of animals to interact with the objects because no

significant difference (treatment � object discrimination)

was measured during training phase among the animals’

cohorts from both strains which explored both objects

for the same length of time and without any particular

preference towards a side of the cage (two-way ANOVA

analysis F(2,32) ¼ 0.087 P¼ 0.916 for Tg2576 back-

ground; F(2,52) ¼ 1.09: P¼ 0.34 for 3xTg mice; Fisher’s

post hoc test left object versus right object B6SJL:

P¼ 0.53, Tg2576: P¼ 0.20, Tg2576 þ mAb: P¼ 0.30;

Fischer’s post hoc test left object versus right object C57:

P¼ 0.72, 3xTg: P¼ 0.91, 3xTg þ mAb: P¼ 0.11).

In addition to the objects’ recognition memory, the hip-

pocampal formation is devoted to store information

about places in the organism’s environment, their spatial

relations and the existence of specific objects in specific

places (spatial memory) (O’Keefe and Conway, 1978;
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Figure 4 Improved cognition in Tg-Alzheimer’s disease (Tg2576) mice immunized with 12A12mAb. (A–C) Fourteen days after

i.v. 12A12mAb immunization, the in vivo effect of NH2htau removal on cognitive performance was investigated in animals from the three

experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of Tg2576 genetic background in the NOR (A), OPR

(B) and Y-maze (C) tasks (top to bottom). For NOR (A) and OPR (B): right and left histograms, respectively, represent the PI (%) of

corresponding values measured during the test trial among animals from the different experimental groups (WT, Tg-Alzheimer’s disease and

Tg-Alzheimer’s disease þ mAb) of Tg2576 genetic background. The columns refer to objects presented during training and test trial. Analysis of

PI (%) measured as time spending in the exploration of the novel/DO/(time spending in the exploration of novel/DO þ time spending in the

exploration of familiar/SO) � 100. Data were expressed as means 6 SEM (n ¼ 6–10). Values are means of at least three independent

experiments and statistically significant differences (see details in the main text) were calculated by ANOVA followed by post hoc test for multiple

comparisons among more than two groups. P < 0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005; ****P <

0.0001). For Y-maze (C): right and left histograms, respectively, represent the total entries (the total arm entries correspond to the total number

of arms entered) and the spontaneous alternation (the number of alternations corresponds to the successive entries into three different arms in
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Broadbent et al., 2004; Manns and Eichenbaum, 2009).

Accordingly, immunized and not-immunized animals from

the three experimental groups run the object place recog-

nition task, another hippocampal-dependent paradigm

which examines the memory/learning ability of mice in

spatial relationships, rather than in objects recognition,

by calculating the time spent in discriminating the spatial-

ly displaced ‘old familiar’ object relative to the stationary

‘old familiar’ object (Antunes and Biala, 2012; Vogel-

Ciernia and Wood, 2014). Rodents normally display a

clear preference for the object moved to a novel place

[displaced object (DO)] in comparison to the object that

remains in the same (familiar) place [stationary object

(SO)], which confirms their proficiency for remembering

which spatial locations have or have not been engaged

earlier (Warburton et al., 2013).

Again (Figs 4B and 5B), cognitive impairment of mice

from the two genetic backgrounds (Tg2576 and 3xTg)

was relieved following i.v. 12A12mAb injection because

immunized animals were able to distinguish DO from SO

(Tg2576 PI¼ 73.26%; 3xTg PI¼ 69.07%) by performing

in spatial novelty memory task just as WT, healthy non-

Tg ones (B6SJL PI¼ 79.71%; C57 PI¼ 71.48%, respect-

ively). On the other hand, saline-treated ‘naı̈ve’

Alzheimer’s disease Tg mice showed no preference for the

moved object as they spent nearly equivalent amounts of

time exploring the DO and SO which confirms that these

not-immunized animals from both strains have object lo-

cation memory dysfunction (Tg2576 home-cage

PI¼ 48.29%; 3xTg home-cage PI¼ 52.53%, respectively).

Consistently, a two-way ANOVA of behavioural data

(treatment � object discrimination) indicated significant

difference between the three animals’ cohorts in both

strains analysed (F(2,20) ¼ 9.68 P¼ 0.001 for Tg2576;

F(2,50) ¼ 33.11 P< 0.001 for 3xTg) with the DO being

preferred from 12A12mAb-immunized Alzheimer’s disease

mice (Fisher’s post hoc test DO versus SO Tg2576 þ
mAb: *P< 0.05, 3xTg þ mAb: ***P< 0.0005) which

behaved in the same manner of WT, non-Tg ones

(Fisher’s post hoc test DO versus SO B6SJL:

***P< 0.0005, C57: ***P< 0.0005). In contrast, ‘naı̈ve’

Tg2576 and 3xTg mice displayed no difference between

DO and SO object with no obvious preference for DO

(Fisher’s post hoc test Tg2576: P¼ 0.76; 3xTg: P¼ 0.35).

Besides, regardless of the genetic background, no vari-

ation (treatment � object discrimination) was measured

during the training phase among the three experimental

groups which explored both objects for the same length

of time and without any particular preference towards a

side of the cage (two-way ANOVA analysis F(2,20) ¼
0.47 P¼ 0.63 for Tg2576 background; F(2,52) ¼ 0.79

P¼ 0.46 for 3xTg mice; Fisher’s post hoc test left object

versus right object B6SJL: P¼ 0.58, Tg2576: P¼ 0.76,

Tg2576 þ mAb: P¼ 0.47; Fischer’s post hoc test left ob-

ject versus right object C57: P¼ 0.24, 3xTg: P¼ 0.86,

3xTg þ mAb: P¼ 0.68).

After assessing the object discrimination and spatial

memory, we also tested mice in the spontaneous alterna-

tion by employing the Y-maze, an hippocampal-depend-

ent episodic-like behavioural test for measuring their

willingness to explore new environments (exploratory ten-

dency). Animals are started from the base of the Y-

shaped apparatus placed horizontally and allowed to free-

ly explore all three arms. The number of arm entries and

the number of triads are recorded in order to calculate

the percentage of alternation (Deacon and Rawlins, 2006;

Borchelt and Savonenko, 2008) which is based on the

fact that the rodent tends to choose the arm not visited

before, reflecting memory (spatial-based working mem-

ory) of the previous choice (Paul et al., 2009).

Interestingly (Fig. 4C), in line with previous literature

findings (King and Arendash, 2002; Deacon et al., 2008;

Yassine et al., 2013), the spontaneous alternation task

did not reliably detect cognitive deficits in Tg2576 mice

at 6 months of age because no difference was found in

their working-memory performance in comparison to cog-

nitively intact, WTs, both in spontaneous alternation and

total entries into the arms (spontaneous alternation one-

way ANOVA F(2,12) ¼ 0.15 P¼ 0.86; Fisher’s post hoc
test WT versus Tg2576 P¼ 0.99; Tg2576 versus Tg2576

þ mAb P¼ 0.68; Total Entries F(2,12) ¼ 0.28 P¼ 0.76;

Fisher’s post hoc test WT versus Tg2576 P¼ 0.81;

Tg2576 versus Tg2576 þ mAb P¼ 0.72). All three

groups of mice alternated between arms above chance

level (22.2%), indicating that neither cohort showed im-

pairment in this test. On the other hand (Fig. 5C) and in

line with previous reports (Spires-Jones and Knafo, 2012;

Ameen-Ali et al., 2017), although disability was clearly

discernible in naı̈ve, cognitively impaired 3xTg at 6

months of age when tested in comparison to age-matched

WTs (Spontaneous alternation one-way ANOVA F(2,28)

¼ 7.44 P¼ 0.025; Total entries F(2,28) ¼ 18.01

P¼ 0.00001), no significant improvement in their refer-

ence and working-memory/learning abilities was detected

Figure 4 Continued

overlapping triplet sets) of animals from the different experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of

Tg2576 genetic background. The percentage alternation was calculated as the ratio between number of correct triplets (e.g. ABC) and total

entrances minus 2, multiplied by 100. Values are means of at least three independent experiments and statistically significant differences (see

details in the main text) were calculated by ANOVA followed by post hoc test for multiple comparisons among more than two groups. P < 0.05

was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005; ****P < 0.0001). FO ¼ familiar object; LO ¼ left object; OPR ¼
object place recognition; RO ¼ right object.
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Figure 5 Improved cognition in Tg-Alzheimer’s disease (3xTg) mice immunized with 12A12mAb. Fourteen days after i.v.

12A12mAb immunization, the in vivo effect of NH2htau removal on cognitive performance was investigated in animals from the three

experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of 3xTg genetic background in the NOR (A), OPR

(B) and Y-maze (C) tasks(top to bottom). For NOR (A) and OPR (B): right and left histograms, respectively, represent the PI (%) of

corresponding values measured during the test trial among animals from the different experimental groups (WT, Tg-Alzheimer’s disease and Tg-

Alzheimer’s disease þ mAb) of 3xTg genetic background. The columns refer to objects presented during training and test trial. Analysis of PI (%)

measured as time spending in the exploration of the novel/DO/(time spending in the exploration of novel/DO þ time spending in the

exploration of familiar/SO) � 100. Data were expressed as mean 6 SEM (n ¼ 6–10). Values are means of at least three independent experiments

and statistically significant differences (see details in the main text) were calculated by ANOVA followed by post hoc test for multiple

comparisons among more than two groups. P < 0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005;
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following systemic injection with 12A12mAb (Fisher’s

post hoc test analysis, Total entries: WT versus 3xTg

***P< 0.0005; WT versus 3xTg þ mAb ***P< 0.0005;

3xTg versus 3xTg þ mAb P¼ 0.19; Spontaneous alterna-

tion WT versus 3xTg ***P< 0.0005; WT versus 3xTg þ
mAb *P< 0.05; 3xTg versus 3xTg þ mAb P¼ 0.17). In

this framework, it is worth stressing that, in contrast to

3xTg characterized by genetically driven tau pathology,

Tg2576 mice express human APP (K670N/

M671L)PS1(M146V) transgene in endogenous back-

ground of murine not-mutated tau. Therefore, the dis-

crepancy in results between two different Tg Alzheimer’s

disease rodent models, each having its own characteris-

tics, may be due to the aggressive phenotype of the

human tau-overexpressing 3xTg strain, which is likely to

require a more optimized immunization regimen (anti-

body dosage, time of treatment, timing of administration)

in order to fully prevent and/or delay its robust cognition

symptomatology. Alternatively, the reversible nature of

in vivo tau neuropathology could be restricted within

strain-specific temporal window(s) because of the com-

plex and multifactorial feature of Alzheimer’s disease

pathology involving a wide range of inflammatory, oxida-

tive, neurodegenerative causative mechanisms (Webster

et al., 2014; Velazquez et al., 2018).

Finally, to rule out the possibility that the in vivo en-

hancement of cognitive skills in immunized animals

involved an effect of 12A12mAb treatment on body en-

ergy homeostasis known to influence their sensorial-

motor abilities, metabolic rate (EE) from vehicle- or anti-

body-infused non-Tg WT mice was assessed by means of

indirect calorimetry during 2 days of continuous analysis/

recording. As shown in Supplementary Fig. 2A, an un-

paired t-test of EE data revealed no significant difference

between the two experimental groups [vehicle-treated ani-

mals: (M¼ 25.29; SEM ¼ 60.61) or mAb-treated ani-

mals: (M¼ 24.92; SEM ¼ 60.64 t(142) ¼ 0.42)].

Furthermore, the EE analysis in resting conditions

(REE)—i.e. by considering only the EE values generated

in the absence of motor activity (i.e. 0–2 counts)—did

not show any variation in heat production from

12A12mAb-treated healthy WT mice, thus corroborating

the important finding that intra-caudal injection either

with vehicle alone (M¼ 18.51; SEM ¼ 60.43), or with

antibody (M¼ 18.08; SEM ¼ 60.52 t(142) ¼ 0.42), was

ineffective in altering the whole body REE, whatever the

physical motor activity involved (t(118) ¼ 0.63)

(Supplementary Fig. 2B).

In keeping with this finding, no change in recognition

memory performance was detected when vehicle- or

12A12mAb-treated WT mice were evaluated in the

NOR paradigm (Supplementary Fig. 2C and D), further

indicating that the immunization regimen per se did not

affect cognitive functions under non-pathological set-

tings. Two-way ANOVA of time (s) of exploration of

FO versus NO showed no significant difference for

treatment factor (F(1,12) ¼ 0.28 P ¼ ns), significant ob-

ject novelty factor (F(1,12) ¼ 18.74 P< 0.001) and no

significant effect of the interaction between treatment

and object novelty (F(1,12) ¼ 0.08 P ¼ ns). Post hoc

Tukey’s test for object novelty (FO versus NO) further

confirmed that both vehicle-treated (**P< 0.01) and

mAb-treated (**P< 0.01) WT animals exhibited intact

recognition memory (Supplementary Fig. 2C). No differ-

ence was found between the PI of vehicle-treated and

mAb-treated WT groups (unpaired sample t-test: vehicle-

treated and mAb-treated ones, t(6) ¼ 1.672, P ¼ ns,

Supplementary Fig. 2D), thus demonstrating that

12A12mAb-induced injection did not impair recognition

memory in non-Tg mice. In agreement with the cleav-

age-selectivity of antibody (Supplementary Fig. 1), the

12A12mAb treatment appeared to be avoid of potential

adverse side-effects in discriminatory skills when injected

in healthy animals, notwithstanding its ability of pene-

trating the animals’ blood–brain barrier and/or success-

fully accessing to hippocampus in biologically active

state (Fig. 1D).

Likewise, no difference in cognitive performance was

detected when sham-immunized 6-month-old Tg2576

mice (i.e., animals administered with IgG isotype control,

at the same dosage and period of time) were tested for

performance in NOR paradigm in comparison with their

vehicle-treated counterparts. Two-way ANOVA analysis

on time (s) of exploration of FO versus NO displayed no

significant difference for object factor (F(1,8) ¼ 0.66 P ¼
ns) and treatment factor (F(1,8) ¼ 0.67 P ¼ ns) in ve-

hicle- and IgG-treated Tg mice (Supplementary Fig. 3A).

Moreover, the unpaired sample t-test of PI data showed

that neither vehicle nor IgG administration improved the

deficit of recognition memory (compare Supplementary

Figure 5 Continued

****P < 0.0001). For Y-maze (C): right and left histograms, respectively, represent the total entries (the total arm entries correspond to the total

number of arms entered) and the spontaneous alternation (the number of alternations corresponds to the successive entries into three different

arms in overlapping triplet sets) of animals from the different experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ
mAb) of 3xTg genetic background. The percentage alternation was calculated as the ratio between number of correct triplets (e.g. ABC) and

total entrances minus 2, multiplied by 100. Values are means of at least three independent experiments and statistically significant differences

(see details in the main text) were calculated by ANOVA followed by post hoc test for multiple comparisons among more than two groups. P <

0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005; ****P < 0.0001). FO ¼ familiar object; LO ¼ left object; OPR

¼ object place recognition; RO ¼ right object.
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Fig. 3B with Supplementary Fig.2C), thus confirming the

lack of ability of Tg animals in discriminating between

FO and NO (t(4) ¼ 0.05, P ¼ ns). Similar results were

detected following IgG infusion in 6-month-old 3xTg

mice when compared to not-immunized Tg counterparts

(data not shown).

Active behaviour, such as exploring a novel environ-

ment, induces the expression of the immediate-early

gene Arc (activity-regulated cytoskeletal-associated pro-

tein, or Arc/Arg3.1) in several brain regions, including

the hippocampus. Activity-regulated cytoskeleton-associ-

ated protein messenger RNA is quickly induced and dy-

namically up-regulated by behavioural experience and

the protein is selectively translated into activated den-

drites, being required for the memory consolidation of

an early initial potentiation of synaptic transmission into

a lasting form of long-term potentiation (LTP) (Ramirez-

Amaya et al., 2005, 2013; Plath et al., 2006; Korb and

Finkbeiner, 2011). Interestingly and consistent with their

cognitive enhancement in behavioural assessments (Figs

4 and 5), western blotting analyses performed on hippo-

campal synaptosomal-enriched preparations isolated

from post-trained animals (Supplementary Fig. 4A and

B) showed that the stimulus-driven, steady-state expres-

sion level of activity-regulated cytoskeleton-associated

protein was significantly up-regulated in 12A12mAb-

immunized Tg2576 and 3xTg mice when compared to

their saline-treated cognitively impaired counterparts

(one-way ANOVA followed by Bonferroni’s post hoc
test F(2,18) ¼ 34.81 P< 0.0001 Tg2576; F(2,18) ¼
33.32 P< 0.0001 3xTg; Tg2576 þ mAb versus Tg2576

****P< 0.0001; Tg2576 þ mAb versus WT n.s.

P¼ 0.1441; 3xTg þ mAb versus 3xTg ***P< 0.0005;

3xTg þ mAb versus WT **P< 0.01). Conversely and in

line with their scarce performance in novelty-based cog-

nitive tasks (Figs 4 and 5), naı̈ve Alzheimer’s disease Tg

animals—which were not systemically infused with

12A12mAb—displayed marked defects in the experience-

dependent induction of activity-regulated cytoskeleton-

associated protein expression, and then in their proc-

esses of memory/learning trace consolidation following

its initial acquisition, as shown by the finding that

immunoreactivity signal of protein in their synaptic frac-

tions was significantly lower than that from healthy WT

controls (one-way ANOVA followed by Bonferroni’s

post hoc test ****P< 0.0001 for Tg2576 versus WT

and for 3xTg versus WT).

Collectively, these experiments indicate that passive

immunization with 12A12mAb, which selectively targets

the neurotoxic NH2htau fragment(s) in vivo, significant-

ly improves cognition in symptomatic (6 months old)

Tg-Alzheimer’s disease animals by rescuing their instinct-

ual and innate preference for novelty (object recognition

and object location skills) when tested in two patho-

logically relevant, hippocampal-dependent behavioural

tasks.

Loss in dendritic spine density is
prevented in hippocampal CA1
region from 12A12mAb-infused
6-month-old Tg-Alzheimer’s disease
animals

Dendritic spines, the sites of excitatory synapses protruding

from dendritic shafts, are cellular morphological specializa-

tions devoted to memory-forming processes in neurons

(Segal, 2005). Being extremely dynamic structures, modifica-

tion in their number, size and/or shape is an important

index of synaptic plasticity occurring in response to external

environmental inputs (Pignataro et al., 2015). As a conse-

quence, loss of dendritic arbourization (length/complexity)

in vulnerable neuronal networks, although occurring along

different spatio-temporal patterns among commonly used

Tg animal models, undoubtedly represents one of the ear-

liest changes of structural plasticity which critically contrib-

utes over time to the disruption of neuronal network with

consequent appearance of cognitive dysfunction in

Alzheimer’s disease and other related dementias (Knobloch

and Mansuy, 2008; Spires-Jones and Knafo, 2012; Cochran

et al., 2014; Dorostkar et al., 2015). Therefore, in order to

complement our behavioural findings, we assessed the

neuroanatomical effect of passive immunization with

12A12mAb on dendritic connectivity from 6-month-old

Alzheimer’s disease animals. To this aim, hippocampal sec-

tions from mice of the three experimental groups were

stained by Golgi-Cox impregnation procedure followed by

quantitative assessment of dendritic spine density (number

of spines per unit length) along both apical and basal com-

partments of individual CA1 pyramidal neurons (Fig. 6).

As shown in Fig. 6A and in line with previous works

reporting in Tg2576 an early decline of dendritic boutons

which undergo dystrophy and shrinkage (Lanz et al.,

2003; Jacobsen et al., 2006; D’Amelio et al., 2011), the

spine loss was detectable at the age of 6 months in apical

compartments of CA1 hippocampal neurons from this

genetic background when animals were compared to non-

Tg controls. Importantly, in 12A12mAb-immunized

Alzheimer’s disease group the apical spine density was

significantly ameliorated up to the level of saline-injected

cognitively intact WTs (one-way ANOVA followed by

Fisher’s post hoc test F(2,8) ¼ 10.828, P ¼ 0.00530;

**P< 0.01 WT versus Tg2576; **P< 0.01 Tg2576 þ
mAb versus Tg2576), indicating that treatment was

strongly effective in blocking/preventing the dendritic de-

generation. Interestingly, no difference was detected when

spines were counted in the basal compartment of CA1

neurons from the three experimental cohorts (one-way

ANOVA F(2,8) ¼ 0.71926, P¼ 0.51611), suggesting that

age-related spine changes in Tg2576 mice initially involve

the apical dendritic arbours with no apparent effect on

basal dendrites of CA1 pyramidal neurons which are

more likely to be affected only later, when their
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structural plasticity and stability (formation and elimin-

ation) is completely impaired (Spires-Jones et al., 2007).

On the other hand and in stark contrast with previous

literature findings (BIttner et al., 2010), we found out

(Fig. 6B) that the reduction in the spines density, both in

apical and basal compartments of individual CA1 pyram-

idal neurons, already started from the age of 6 months in

cognitively impaired 3xTg mice (one-way ANOVA fol-

lowed by Fisher’s post hoc test apical: F(2,7) ¼ 18.697,

P¼ 0.00156; basal: F(2,7) ¼ 13.404, P¼ 0.00404) which

exhibited lower values in dendritic protrusions counts

when compared with their age-matched, non-Tg WTs.

Remarkably, degeneration of dendritic spine structures was

robustly decreased in immunized 3xTg mice (apical:

**P< 0.01 3xTg þ mAb versus 3xTg; **P< 0.01 WT

versus 3xTg; basal: **P< 0.01 3xTg þ mAb versus 3xTg;

*P< 0.05 WT versus 3xTg) pointing out that—possibly as

result of increased afferent inputs to the CA1 from other

neighbouring hippocampal areas and/or as a local positive

effect in the CA1 region—12A12mAb treatment was able

to mitigate the age-related pathology of post-synaptic con-

nections from symptomatic 6-month-old 3xTg mice, both

in their apical and basal compartments.

Systemic administration of
12A12mAb also normalizes the
Alzheimer’s disease-related
electrophysiological alterations of
Tg-Alzheimer’s disease animal
models

In order to investigate whether 12A12mAb immunization,

in addition to its protective actions on Alzheimer’s

Figure 6 Immunization with 12A12mAb in Tg-Alzheimer’s disease mice is protective against the dendritic spines density loss

which affects the memory and learning processes. (A, B) Comparative photomicrographs of Golgi-stained hippocampal CA1 neurons

showing dendritic segments from animals from three experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of

both strains (Tg2576, 3xTg) (left, refers to CA1 pyramidal neurons dendrites scale bar: 5 mm). Box-and-whisker plots (right) depict the

morphometric analysis of the dendritic spine density from the three experimental groups. Values are expressed as number of spines per 1 mm

segment. Statistically significant differences (comparisons were made on single mouse values obtained by averaging the number of spines counted

on neurons of the same mouse) were calculated by ANOVA followed by post hoc test for multiple comparison among more than two groups. P

< 0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005; ****P < 0.0001).
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disease-related behavioural and neurochemical and neuro-

anatomical abnormalities, was also able to exert an effect

on electrophysiological correlate(s) of the memory/learn-

ing processes, hippocampal synaptic transmission and

plasticity in the Schaffer collateral pathway were com-

pared between Tg and WT animals from both genetic

backgrounds (Fig. 7A–D for Tg2576; Fig. 7E–H for

3xTg).

We first recorded basal synaptic transmission and the

strength of pre-synaptic Schaffer collaterals activation (i.e.

axonal depolarization) from CA3-to-CA1 synapses in

acute brain slices from 6-month-old WT and age-matched

Tg2576 animals treated with saline vehicle or

12A12mAb, respectively. To this aim, we first generated

input/output curves by measuring the field excitatory

post-synaptic potentials elicited in the stratum radiatum

of the CA1 area after stimulation of the Schaffer collater-

als at increasing intensities. As shown in Fig. 7A and B

and in line with previous investigations reporting no

change in basal synaptic transmission in this Tg

Alzheimer’s disease model at 6 months of age (Chapman

et al., 1999; Nobili et al., 2017), the input/output curves

displayed a similar trend among the three experimental

groups (two-way repeated-measures ANOVA for stimulus

intensity � experimental group followed by Bonferroni’s

post hoc test F(12,282) ¼ 0.8409 P¼ 0.6082; n.s.

P> 0.05 for all comparisons).

Next, we investigated the pre-synaptic function by

assessing paired-pulse facilitation, a short-term plasticity

paradigm which inversely depends on Ca2þ-dependent

pre-synaptic changes in neurotransmitter release probabil-

ity at nerve endings (Manabe et al., 1993; Debanne

et al., 1996; Dobrunz and Stevens, 1997; Dobrunz et al.,

1997; Thomson, 2000; Zucker and Regehr, 2002). Again

(Fig. 7C), short-term potentiation was almost identical

among the three animals’ cohorts (two-way repeated-

measures ANOVA for paired-pulse interval � experimen-

tal group, followed by Bonferroni’s post hoc test

F(10,170) ¼ 0.51 P¼ 0.8839; n.s. P> 0.05 for all com-

parisons), consistent with previous results referring no

significant dissimilarity in paired-pulse facilitation be-

tween 6-month-old Tg2576 and WT littermates (Jung

et al., 2011; Nobili et al., 2017).

In contrast to the basic synaptic transmission (input–

output relationship and paired-pulse facilitation), the

‘classical’ N-methyl-D-aspartate (NMDA) receptor-depend-

ent LTP paradigm at Schaffer collaterals/CA1 synapses—

a long-lasting enhancement of the strength/efficacy of ex-

citatory synaptic transmission which is widely used in

investigations on numerous APP/Ab models of

Alzheimer’s disease (Rowan et al., 2003; Shankar et al.,

2008)—turned out to be significantly compromised in 6-

month-old Tg2576 mice in comparison to age-matched

WTs (Fig. 7D). Following the induction of LTP by deliv-

ery of trains of high-frequency stimulation at half-max-

imal intensity, field excitatory post-synaptic potential

slopes appeared to decay down to baseline in 6-month-

old Tg2576 animals so that no persistent, activity-driven

potentiation was measurable starting from 30 min after

induction which was indicative of an impaired function

of hippocampal Schaffer collaterals/CA1 synapses.

Importantly and in keeping with improvement of cogni-

tive performance in hippocampal-dependent behavioural

assessments, peripheral administration of 12A12mAb was

able to mitigate in vivo the disease-related LTP deficiency

of symptomatic Tg2576 animals, as shown by the fact

that the LTP amplitude calculated after application of

high-frequency stimulation was significantly increased in

immunized experimental group when compared to ‘naı̈ve’

cognitively impaired counterpart (one-way ANOVA fol-

lowed by Bonferroni’s post hoc test F(2,21) ¼ 19.38

P< 0.0001; ***P< 0.0005 Tg2576 versus WT; *P< 0.05

Tg2576 þ mAb versus Tg2576; Tg2576 þ mAb versus

WT **P< 0.01). Moreover, these electrophysiological

investigations further corroborated the finding that the

disruption of synaptic plasticity in hippocampal Schaffer

collateral commissural pathway from this Alzheimer’s dis-

ease model was more likely due to altered post-synaptic

signalling pathways, given that no alteration in paired-

pulse facilitation was contextually detected in Tg animals

at 6 months of age (Chapman et al., 1999; Jacobsen

et al., 2006; Jung et al., 2011; Nobili et al., 2017).

In contrast with results from symptomatic Tg2576

mice, in 3xTg paradigm the input/output relationship

revealed a significant reduction of field excitatory post-

synaptic potential slopes evoked by increasing stimulation

intensities (Fig. 7E and F) when 6-month-old Tg animals

were compared to WT counterparts (two-way repeated-

measures ANOVA for stimulus intensity � experimental

group followed by Bonferroni’s post hoc test F(12,204) ¼
5.812 P< 0.0001; *P< 0.05 and **P< 0.01 WT versus

3xTg for paired comparisons). Most importantly, cumula-

tive distributions of field excitatory post-synaptic poten-

tial slopes within the range of 100 and 300 lA of

stimulus amplitude were shifted to higher values in

12A12mAb-immunized Alzheimer’s disease group in con-

trast to ‘naı̈ve’, cognitively impaired counterpart, indicat-

ing that antibody treatment positively influenced the fast

glutamatergic transmission in this genetic background

(#P< 0.05, ##P< 0.01, ###P< 0.001 for 3xTg versus 3xTg

þ mAb for paired comparisons with Bonferroni’s post

hoc test). No change in paired-pulse facilitation short-

term plasticity (Fig. 7G) was found among the three

experimental cohorts (two-way ANOVA paired-pulse

interval � genotype followed by Bonferroni’s post hoc

test F(12,198) ¼ 0.3464 P¼ 0.9792 n.s. P> 0.05 for all

comparisons), consistent with previous data showing that

the abnormalities in pre-synaptic release machinery were

not discernible between 6-month-old 3xTg and age-

matched WTs when measured in a facilitation electro-

physiological paradigm (Oddo et al., 2003). In a way

similar to Tg2576, hippocampal slices from 6-month-old

12A12mAb-injected 3xTg animals displayed a strong po-

tentiation after high-frequency stimulation bout, pointing
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Figure 7 Reduction of cognitive deficits in 12A12mAb-immunized Tg-Alzheimer’s disease mice correlates with an increased

LTP. (A, D) For Tg2576; (E, H) for 3xTg) time plot of average fEPSP responses (A, E) and changes in magnitude of LTP at CA3-Ca1 synapses

(D, H) were calculated among animals (n ¼ 6–10) from three experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ
mAb) of both strains. At least seven slices from six different mice were recorded for each experimental condition. Data are presented as the

mean (6SEM). The traces above the plot show fEPSPs at baseline (1) and at 60 min after LTP induction (2). The box-whisker plots show pooled

data. Statistically significant differences (see details in the main text) were calculated by ANOVA followed by post hoc test for multiple

comparisons among more than two groups. P < 0.05 was accepted as statistically significant (*P < 0.05; **P < 0.01; ***P < 0.0005;

(continued)
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to a strong protective action evoked in vivo by the anti-

body treatment on the cellular/molecular correlate(s) of

their memory/learning processes (one-way ANOVA fol-

lowed by Bonferroni’s post hoc test F(2,33) ¼ 7.018

P¼ 0.0029; **P< 0.01 3xTg versus WT; *P< 0.05 3xTg

þ mAb versus 3xTg; 3xTg þ mAb versus WT n.s.

P> 0.05). Notably, when LTP was calculated in 6-

month-old 3xTg mice (Fig. 7H), a lower post-tetanic po-

tentiation was found against WTs suggesting that, in this

Alzheimer’s disease strain, the LTP reduction in magni-

tude and persistence was more likely due to deficits of in-

duction (either pre- and/or post-synaptic), in line with

structural and functional modifications observed both in

their basal synaptic transmission and dendritic spine

density (Fig. 6B).

Taken together, these electrophysiological recordings in-

dicate that disruption of excitatory synaptic transmission

and plasticity detected at 6 months of age in hippocampal

CA3-CA1 circuit of these two genetically distinct Tg-

Alzheimer’s disease animal models, although manifests at

different rate and involves non-overlapping causative

mechanism(s), was significantly rescued following in vivo

peripheral administration of 12A12mAb.

Expression levels of inflammatory
astroglial and microglial markers
are also down-regulated in
6-month-old 12A12mAb-immunized
Tg-Alzheimer’s disease animals

The inflammatory response—which is one of the earliest

manifestations of neurodegenerative tauopathies, including

Alzheimer’s disease (Bellucci et al., 2004; Yoshiyama et al.,

2007; Wes et al., 2014; Leyns et al., 2017; Ishikawa et al.,
2018)—may act as a double-edged sword being either det-

rimental or protective depending on the context

(Schlachetzki and Hull, 2009). On the one hand, activated

glial cells contribute to the Alzheimer’s disease pathogenesis

by means of diverse mechanisms including complement-

mediated synapse removal, non-cell autonomous spreading

of pathological seeds/conformers, extracellular release of in-

flammatory mediators such as pro-inflammatory cytokines,

complement components, chemokines, free radicals and

gliotransmitters which, in turn, trigger neurodegeneration.

On the other hand, astro- and microglial reactions are

endowed with beneficial role in Alzheimer’s disease envir-

onment by stimulating the digestion/clearance of pathogen-

ic Ab and tau species and, then, by preventing their

accumulation into insoluble cerebral lesions, the senile pla-

ques and neurofibrillary tangles.

To get further insights into protective effect evoked by

i.v. 12A12mAb-based immunization in Tg-Alzheimer’s

disease mice, the extent of inflammatory response was

assessed on hippocampi from 6-month-old Tg2576 and

3xTg mice of the three experimental groups (WT, ‘naı̈ve’

Tg-Alzheimer’s disease, Tg-Alzheimer’s disease þ mAb).

Western blotting analysis (Fig. 8) were carried out on

animals’ total extracts by probing with antibodies which

detect the glial fibrillary acidic protein and Iba1, whose

cell type-specific steady-state expression levels are recog-

nized as indicative of active astrogliosis and microgliosis,

respectively (Sydow et al., 2016). As shown in Fig. 8A

and B and regardless of the different genetic background,

the immunoreactivity signals of these two classical inflam-

matory markers were strongly increased in saline-treated,

‘naı̈ve’ Tg-Alzheimer’s disease mice in comparison to WT

controls, in line with previous findings reporting a prom-

inent astrocytic and microglial activation in hippocampal

parenchyma from these animal models (Olabarria et al.,

2010, 2011; Vogels et al., 2019). Remarkably, the gliosis

detected in 12A12mAb-injected Tg-Alzheimer’s disease

mice turned out to be significantly down-regulated com-

pared to their naı̈ve counterparts (one-way ANOVA fol-

lowed by Bonferroni’s post hoc test glial fibrillary acidic

protein: F(2,21) ¼ 169.4 P< 0.0001 Tg2576

****P< 0.0001 for all comparisons; F(2,18) ¼ 53.88

P< 0.0001 3xTg; ****P< 0.0001 3xTg versus WT;

****P< 0.0001 3xTg þ mAb versus 3xTg; n.s. P> 0.05

3xTg þ mAb versus WT; Iba1: F(2,21) ¼ 38.43

P< 0.0001 Tg2576 ****P< 0.0001 Tg2576 versus WT;

****P< 0.0001 Tg2576 þ mAb versus Tg2576; n.s.

P> 0.05 Tg2576 þ mAb versus WT; F(2,18) ¼ 273

P< 0.0001 3xTg ****P< 0.0001 for all comparisons),

indicating that: (i) the neuron-derived, extracellularly

released 20–22 kDa NH2htau form(s) is more likely to

be endowed with non-cell autonomous action by contri-

buting to the glial cells activation; (ii) the neuroprotective

effect of 12A12mAb appears to be, at least in part, due

to its modulatory role at the glia-neurons interplay.

Figure 7 Continued

**** P < 0.0001). (B, C) For Tg2576; (F, G) for 3xTg) input/output curves show the fEPSP slopes plotted against the corresponding stimulus

intensities recorded from hippocampal slices of animals (n ¼ 6–10) from three experimental groups (WT, Tg-Alzheimer’s disease and Tg-

Alzheimer’s disease þ mAb) of both strains (B, F). Comparison of PPF in animals (n ¼ 6–10) from three experimental groups (WT, Tg-

Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of both strains (Tg2576, 3xTg) was also determined (C, G). PPF was induced by pairs of

stimuli delivered at increasing interpulse intervals (20, 50, 100, 200, 300, 500 ms). Data are presented as the mean (6SEM) facilitation ratio of

the second response relative to the first response. Statistically significant differences (see details in the main text) were calculated by ANOVA

followed by post hoc test for multiple comparisons among more than two groups. P < 0.05 was accepted as statistically significant (*P < 0.05; **P

< 0.01; ***P < 0.0005; ****P < 0.0001). fEPSP ¼ field excitatory post-synaptic potential; PPF ¼ paired-pulse facilitation.
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Taken together these findings indicate that sub-chronic

i.v. delivery of 12A12mAb into the hippocampus is de-

void of potentially adverse inflammatory effects associ-

ated to classical immunization regimen by limiting the

local activation of neuroglia which is per se both a con-

sequence to the disease process and a contributor to the

synaptic pathology and neuronal damage (Block et al.,
2007; Yoshiyama et al., 2007; Edison et al., 2008; Perry

et al., 2010; Schwab et al., 2010; Zotova et al., 2010).

Discussion
Accumulating evidence have suggested that the detrimen-

tal effects of Ab are dependent on tau pathology

(Rapoport et al., 2002; King et al., 2006; Roberson

et al., 2007; Ittner et al., 2010; Vossel et al., 2010;

Desikan et al., 2011; Shipton et al., 2011; Nussbaum

et al., 2012; Bloom, 2014) and that tau, rather than Ab
(Murray et al., 2015), serves a prominent role in early

synaptic decline and cognitive impairment (Arriagada

et al., 1992; Ashe and Zahs, 2010; Nelson et al., 2012;

Pontecorvo et al., 2017; Busche et al., 2019).

Independently of its ability of seeding aggregation, abnor-

mal extracellular/intracellular tau is per se neurotoxic

(Diaz-Hernandez et al., 2010; Medina and Avila, 2014a,

b; Hu et al., 2018) and propagates trans-synaptically

along interconnected neuronal networks in a stereotypical

manner which strongly correlates with the development

of clinical symptoms during Alzheimer’s disease

Figure 8 Inflammatory response (activation of astrocytes and microglia) is strongly down-regulated in 12A12mAb-

immunized Tg-Alzheimer’s disease mice. (A, B) Neuroinflammation processes (activation of astrocytes and microglia) were assessed on

hippocampal extracts from animals from three experimental groups (WT, Tg-Alzheimer’s disease and Tg-Alzheimer’s disease þ mAb) of both

strains (Tg2576, 3xTg) by western blotting analysis (left) for inflammatory proteins (glial fibrillary acidic protein, Iba1). Relative densitometric

quantification of intensity signals (right) indicates lower levels of glial fibrillary acidic protein and Iba1 in Tg-Alzheimer’s disease mice þ mAb

compared to not-immunized Tg-Alzheimer’s disease. GAPDH housekeeping expression serves as loading control. Arrows on the right side

indicate the molecular weight (kDa) of bands calculated from migration of standard proteins. Full uncropped blots are available in Supplementary

Fig. 8. Values are from at least three independent experiments and statistically significant differences (see details in the main text) were calculated

by ANOVA followed by post hoc test for multiple comparisons among more than two groups. P < 0.05 was accepted as statistically significant

(*P < 0.05; **P < 0.01; ***P < 0.0005; ****P < 0.0001). GAPDH ¼ glyceraldehyde-3-phosphate dehydrogenase; GFAP ¼ glial fibrillary acidic

protein.
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progression (Mohamed et al., 2013; Pooler et al., 2013;

Yamada et al., 2017). These pathologically relevant find-

ings represent the rationale which advocates the employ-

ment of tau-based strategies (Li and Gotz, 2017;

Congdon and Sigurdsson, 2018) as promising disease-

modifying intervention of slow progressing Alzheimer’s

disease and other human dementias (Novak et al., 2018a;

Jadhav et al., 2019), especially in view of the disappoint-

ing outcomes from Ab-targeting pharmacological and im-

munological approaches (Sigurdsson, 2008; Giacobini and

Gold, 2013; Doody et al., 2014; Salloway et al., 2014;

Schroeder et al., 2016; Agadjanyan et al., 2017). In this

connection, tau-directed passive immunotherapy—which

relies on the specific, epitope-directed antibody-mediated

depletion/clearance of its toxic species (Sigurdsson, 2008;

Pedersen and Sigurdsson, 2015; Li and Gotz, 2017;

Congdon and Sigurdsson, 2018)—has been recently rec-

ognized as a feasible, valuable approach to reduce the

neuropathology and to improve the memory/learning abil-

ities of experimental animal models of tauopathies

(Boutajangout et al., 2011; Chai et al., 2011; d’Abramo

et al., 2013; Yanamandra et al., 2013, 2015; Castillo-

Carranza et al., 2014; Dai et al., 2015, 2018;

Subramanian et al., 2017). However, several reasons

have hindered the clinical success of tau-targeting

approaches which are currently under investigation

(Giacobini and Gold, 2013; Novak et al., 2018a; Elmaleh

et al., 2019). To this regard, recent reports of ongoing

trials indicate that the potential flaws include: (i) study

design with the medical care given too late when neuron-

al damage is already present in a considerable extent so

that drugs/modulators are unable to compensate ad-

equately for the detrimental effects; (ii) systemic toxicity

owing to long-term and multiple administrations of

drugs/modulators used at high doses which can interfere

with the neuronal physiology (i.e. affect the normal

cellular metabolism and/or impact on the immune surveil-

lance); (iii) inadequate brain bioavailability of medica-

ments against the target substrate and/or the biochemical

pathway, even after crossing the blood–brain barrier; (iv)

adverse risks of inflammatory response, such as cerebral

microhaemorrhages (Elmaleh et al., 2019).

Here, we show that systemic administration with

12A12mAb—which selectively recognizes the human tau

at D25(DRKD26QGGYTMHQDQEGDTDAGLK44), a

known N-terminal truncation protein site (Quinn et al.,
2018) previously identified both in cellular and animal

Alzheimer’s disease paradigms (Corsetti et al., 2008) and

in human Alzheimer’s disease brains (Rohn et al., 2002;

Amadoro et al., 2012; Corsetti et al., 2015)—rescues the

neurochemical, anatomical, behavioural and electro-

physiological alterations underlying the Alzheimer’s dis-

ease phenotype in two well-established Tg mouse strains,

such as preclinical Tg2576 and 3xTg models. Of particu-

lar relevance is the fact that the Tg Tg2576 mice express-

ing human mutant APP (K670N/M671L), in contrast to

3xTg harbouring PS1(M146V), APP(Swe) and tau(P301L)

transgenes, display an endogenous genetic background of

murine not-mutated tau. Furthermore, since treatments

started when synaptic deterioration is evident but exten-

sive neurodegeneration has not yet developed turn out to

be the most effective in preventing the disease-associated

brain atrophy and related cognitive impairment (Bokde

et al., 2009; Elmaleh et al., 2019), our experimental eval-

uations are carried out on symptomatic animals which

are employed at early-middle stages (6 months old) of

pathology progression, when their hippocampi are not

largely compromised with massive neuronal loss. It is

also worth underlining that the 12A12mAb we employed

in the present study is specific for the pathological trun-

cated tau because it selectively binds in vivo the neuro-

toxic Alzheimer’s disease-linked NH226-230 fragment (i.e.

NH2htau) without showing any significant cross-reaction

towards the intact, physiological form of protein, in line

with our previous investigations (Amadoro et al., 2012).

To this point, biochemical and functional outcomes

in vivo measures further confirm that 12A12mAb: (i)

does not specifically interact with the abundant intracellu-

lar pool of endogenous normal full-length tau protein

whose steady-state level is unchanged in hippocampus

after its i.v. delivery in Tg-Alzheimer’s disease mice re-

gardless of the genetic backgrounds; (ii) is harmless when

injected in healthy, cognitive-intact WT mice, despite the

ability of successfully penetrating/reaching the brain in its

biologically active (antigen-competent) state under physio-

logical settings. Remarkably, the cleavage-specific

12A12mAb—which selectively binds 20–22 kDa

NH2htau without unproductive and deleterious cross-re-

action towards the physiological intact tau—appears to

be potent tool by providing measurable changes on

Alzheimer’s disease brain physiopathology which result in

significant improvement of the synaptic and cognitive def-

icits in affected animals, even after its short-term

(14 days) i.v. delivery. Conversely, there is proof that the

use of other therapeutic anti-tau antibodies binding all

forms of tau is more likely to result in considerable re-

duction of its effective dose available in vivo against the

target toxic tau species with consequent requirement of

more aggressive and prolonged applications (Novak

et al., 2018a). Furthermore, our results may have import-

ant clinical implications by prospecting the non-invasive

i.v. delivery route of 12A12mAb as effective and safe dis-

ease-modifying approach in contrasting the earliest neuro-

pathological and cognitive alterations of subjects which

suffer the chronically developing human Alzheimer’s dis-

ease and non-Alzheimer’s disease tauopathies character-

ized by an increased burden of tau truncation. In post-

mitotic neurons, tau is endowed with important functions

beyond the control of microtubule integrity and dynamics

(Sotiropoulos et al., 2017) and the treatment with tau-

targeting antibodies may have undesirable adverse side-

effects due to ‘loss of function’ of full-length protein

(Rosenmann et al., 2006; Rozenstein-Tsalkovich et al.,

2013; Bakota et al., 2017). Although we cannot rule out
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the later development of gliosis following prolonged im-

munization regimen, from a translational perspective an-

other interesting finding of the present study is that the

sub-chronic i.v. treatment with 12A12mAb is sufficient

per se to drive a robust therapeutic effect in the absence

of increased microglia and astrocyte activation which, on

the contrary, appears to be critical for the mechanism of

action of at least a few Ab-directed antibodies (Bard

et al., 2000; Wilcock et al., 2004) leading as byproduct

to excessive deleterious stimulation of local inflammatory

response (Lemere, 2013; Wisniewski and Goni, 2015).

We find no obvious evidence of neuroinflammatory re-

sponse which is known to cause mortality in WT mice

when actively immunized with various fragments of tau

(Rosenmann et al., 2006; Rozenstein-Tsalkovich et al.,

2013). Furthermore, the evidence that passive immuniza-

tion with 12A12mAb can normalize in vivo the APP/Ab
dysmetabolism in two independent genetic backgrounds

overexpressing human mutated APP (K670N/M671L) not

only unveils a novel and potential connection between

tau and APP/Ab, whereby toxic tau can upstream affect

APP/Ab pathology in damaging synapses, but also—and

more importantly—highlights the 20–22 kDa NH2-ter-

minal tau fragment as crucial target for Alzheimer’s dis-

ease therapy starting from its earliest stages which are

characterized by initial disruption of synaptic functions in

the absence of frank neuronal loss. Therefore, this study

prospects the peripheral administration of the humanized

counterpart of murine 12A12mAb as a novel, promising

multi-targeted intervention in preventing disease-associ-

ated cognitive deterioration in human beings suffering

Alzheimer’s disease-related dementias, being endowed

with higher clinical potentialities than those altering ei-

ther neuropathology alone (Oddo et al., 2006;

Rosenmann et al., 2006; Lambracht-Washington and

Rosenberg, 2013; Bakota et al., 2017).

Concerning the mechanism(s) of action involved in the

beneficial power of 12A12mAb immunization, in the pre-

sent study, we are unable to anticipate whether tau-

directed therapeutic effects offered by i.v. delivery of

12A12mAb involve only the extracellular or both intra-

cellular and extracellular pool of toxic truncated tau be-

cause we did not collect and analyse the level of

NH2htau fragment in CSF or interstitial fluid and

plasma. It is worth noting that the N-terminal, but not

C-terminal, fragments of tau including the 20–22 kDa

NH2htau form(s), are mainly secreted from synaptosomes

of Alzheimer’s disease brains (Sokolow et al., 2015) and

detected both in CSF from Alzheimer’s disease patients

(Johnson et al., 1997; Portelius et al., 2008; Meredith

et al., 2013; Amadoro et al., 2014; Chen et al., 2019;

Cicognola et al., 2019) and in conditioned media from

patient-derived induced pluripotent stem cells cortical

neurons (Bright et al., 2015; Kanmert et al., 2015; Sato

et al., 2018). The NH226-44 amino acidic stretch, which

is the minimal biological active moiety of parental 20–22

kDa NH2-truncated tau form(s) (Amadoro et al., 2010,

2012; Corsetti et al., 2015) has been recently recognized

as one among the potentially targetable tau epitopes for

promising Alzheimer’s disease immunotherapeutic inter-

ventions, being largely represented into CSF samples

(Barthélemy et al., 2016a, b; Sato et al., 2018) and in

autoptic specimens from affected subjects (Borreca et al.,

2018). Interestingly, previous in vitro, ex vivo and

in vivo experiments from our research group have dem-

onstrated that this short peptide when extracellularly

administered to hippocampal neurons dynamically per-

turbs the plasma membranes—mainly of distal axonal

compartments (Perini et al., 2019)—by exerting a dele-

terious action on synaptic connectivity and plasticity

being more likely internalized only after prolonged incu-

bation times (Florenzano et al., 2017; Borreca et al.,

2018). Moreover, studies have shown that tau antibodies

can be readily taken up by neurons, promote the intracel-

lular sequestration/clearance of pathological species by

means of different mechanisms and prevent their release

into the extracellular space followed by consequent

spreading throughout the brain (Asuni et al., 2007;

Krishnamurthy et al., 2011; Congdon et al., 2013; Gu

et al., 2013; Collin et al., 2014; Pedersen and Sigurdsson,

2015; Shamir et al., 2016). After its i.v. administration in

both healthy and disease mice, the 12A12mAb in circula-

tion seems to be able to successfully penetrate the hippo-

campus and engage in vivo its target at a sufficient level

to exert biologically relevant neuroprotective effects. The

N-terminal region of tau, despite the lack of the micro-

tubule binding domains which abnormally aggregate to

form paired helical filaments, is able to undergo higher

order of oligomerization (Feinstein et al., 2016) and, in

this framework, the binding of 12A12mAb to the

NH2htau may also prevent the trans-synaptic propagation

of detrimental insoluble tau. Therefore, both extracellular

and intracellular interaction between 12A12mAb and the

NH2htau might be plausible routes by which immuniza-

tion directed against this harmful, Alzheimer’s disease-

relevant N-truncated tau specie(s) operates in vivo.

Furthermore, although the immune system has been in-

creasingly recognized as an important player in the

immunotherapeutic approaches (Congdon and Sigurdsson,

2018; Katsinelos et al., 2019), the finding that the cogni-

tive skills improvement of 12A12mAb-injected

Alzheimer’s disease Tg mice are paralleled by a strong

and concomitant reduction of the disease-associated cere-

bral level of reactive gliosis further supports recent results

showing that (i) antibody-mediated targeting of patho-

logical tau in vivo does not necessarily required engage-

ment of microglia that may per se induce deleterious

neuroinflammation (Lee et al., 2016); (ii) the neuroprotec-

tive mechanism action evoked by tau-based immunother-

apy is more likely to rely on the direct neutralization of

toxic extracellular species and/or on preventing their up-

take by neurons (Congdon et al., 2013; Gu et al., 2013).

In this regard, glial activation and neuroinflammation

have been reported to severely impact on tau pathology
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directly, by participating to tau aggregation and degrad-

ation and spreading (Asai et al., 2015; Yuan et al., 2016;

Bolos et al., 2017; Hopp et al., 2018), or indirectly,

through a non-cell autonomous effect on neuronal signal-

ling via cytokine and complement factor and gliotransmit-

ter secretion (Liddelow et al., 2017; Piacentini et al.,

2017; Litvinchuk et al., 2018) and up-regulation of senes-

cence-associated genes (Bussian et al., 2018) and synapses

pruning (Marttinen et al., 2018; Vogels et al., 2019).

Another challenging question is whether the neuropro-

tection offered by 12A12mAb can be further ameliorated

in vivo following its prolonged administration, especially

in more severe 3xTg animal model, or sustained even

after its discontinuing immunization. Further investiga-

tions will be needed to better clarify the dose-dependent

effect of 12A12mAb treatment on pathology and cogni-

tive performance of Alzheimer’s disease Tg mice and how

long the beneficial effect can last beyond the period of

the immunization.

It is also worth stressing that—although mouse and

human tau amino acidic sequences are similar—there are

14 amino acid differences in the N-terminal region

(Andorfer et al., 2003; Bright et al., 2015; Hernandez

et al., 2019). Nevertheless, the extreme N-terminal se-

quence of tau protein starting at D25 encompasses a not-

canonical caspase(s) cleavage-site sequence (McStay et al.,
2008; Kumar et al., 2014) which has been identified both

in cellular (human SY5Y and rat PC12) and animal

(Alzheimer’s disease11 mice) Alzheimer’s disease models

(Rohn et al., 2002; Corsetti et al., 2008) and in human

Alzheimer’s disease brains (Rohn et al., 2002; Amadoro

et al., 2012; Quinn et al., 2018). Moreover results from

in vitro experiments and Tg animal models have shown

that truncation plays a causative role in remodelling the

highly flexible conformational ensemble of intrinsically

disordered protein tau into Alzheimer’s disease-like patho-

logical conformations (Novak et al., 2018b).

Conformational changes involving the amino-terminus of

tau early occur in Alzheimer’s disease and other related

tauopathies (Garcia-Sierra et al., 2003). Consistently,

Mukrasch et al., have demonstrated that—although the

largest part of tau441 amino acid sequence is devoid of

any ordered structure—the N-terminal 50 residues of pro-

tein favour a compact conformation, as indicated by

strong contacts within the residue stretch 1–20 and from

this region to residues 30–50 (Mukrasch et al., 2009).

Therefore it is reasonable to hypothesize that, although

the amino acid sequence of human and murine tau sur-

rounding this epitope is divergent, 12A12mAb is more

likely to recognize the newly generated, sequence- and

structural-based immunoreactive determinants whose for-

mation requires pathological truncation occurring under

Alzheimer’s disease conditions at D25 residue both in

human and rodent tau (Rohn et al., 2002; Corsetti et al.,

2008; Quinn et al., 2018; Amadoro et al., 2019). In sup-

port of this finding and in line with the experimental evi-

dence that temporary secondary structures occur in

causal relation with tau neuropathology progression, both

in isolated domains of the full-length protein and of

some of its fragments (Mukrasch et al., 2009; Avila

et al., 2016b; Fichou et al., 2019), by means of molecu-

lar dynamics (MD) simulations and SAXS experiments,

we have recently demonstrated that the short sequence

including the 26–44 of N-terminal region of human

tau—but not its reverse counterpart (tau44-26 peptide)—

undergoes isolated b-bridges, a-helices and 3-helix which

involve the Y29, T30, Q33, D34, Q35, E36 amino acid

residues (Perini et al., 2019). Importantly, these amino

acid residues are present both in murine and primate tau

sequence. Besides, the fact that 12A12mAb does not

change the expression level of full-length tau but select-

ively reduces the endogenously produced 20–22 kDa tau

fragment in both Alzheimer’s disease strains, as we

showed in western blotting Figs 2 and 3, further

strengthens the notion that a local conformational elem-

ent (i.e. sequence- and structure-based immunoreactive

epitope) is more likely to underlie its in vivo specificity in

targeting the neo-epitope of the N-derived truncated

pathological tau specie(s), both in human and mouse.

Finally, since the epitopes cannot be predicted reliably

from antigen primary amino acid sequences because some

novel epitopes can arise exclusively due to the alteration

of the molecule’s conformation (Opuni et al., 2018), fur-

ther experiments of immunoprecipitation followed by

mass spectrometry and alanine epitope scanning mapping

are needed to identify the crucial binding residues and

the precise structure of N-terminal of tau protein that are

directly involved in the interaction with 12A12mAb.

Concerning the interplay occurring in vivo between

APP/Ab and tau pathologies, according to the classical

Ab cascade hypothesis aberrant changes of tau metabol-

ism are considered downstream of Ab pathology which

acts as initial trigger (Hardy and Selkoe, 2002; De

Strooper and Karran, 2016). Consistently, compelling

studies have demonstrated that Ab can potentiate tau

abnormalities (Gotz et al., 2001; Lewis et al., 2001;

Oddo et al., 2004; Bolmont et al., 2007) and that an

enhanced neuropathology occurs following in vivo inter-

action between Ab and tau (Gotz et al., 2001; Lewis

et al., 2001; Hurtado et al., 2010; Bennett et al., 2017;

Pontecorvo et al., 2017; He et al., 2018; Jacobs et al.,

2018; Quiroz et al., 2018). In this regard, our findings

highlighting a novel mechanistic interplay between APP/

Ab and tau at synapses fit more well with other studies

showing that changes in tau metabolism precede Ab
pathology in aged and Alzheimer’s disease brains (Braak

and Del Tredici, 2004; Schonheit et al., 2004; Braak

et al., 2013; Jack et al., 2013) and that the removal of

pathogenetic species of tau can prevent in vivo the dele-

terious effect of both Ab and tau (Oddo et al., 2006;

Castillo-Carranza et al., 2015; Dai et al., 2017, 2018;

Rajamohamedsait et al., 2017). Remarkably, the spread-

ing/propagation of tau neuropathology into the Ab pla-

que-bearing cerebral cortex is associated with the

26 | BRAIN COMMUNICATIONS 2020: Page 26 of 34 V. Corsetti et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/2/1/fcaa039/5816590 by guest on 24 April 2024



transition from the preclinical (asymptomatic) to the clin-

ical (symptomatic) stage of Alzheimer’s disease

(Delacourte et al., 1999; Wang et al., 2016; Pontecorvo

et al., 2017). Furthermore, although the tau pathology to

evolve to full-blown Alzheimer’s disease requires the con-

comitant presence of Ab pathology (Braak and Del

Tredici, 2011; Duyckaerts, 2011; Jack et al., 2013; Crary

et al., 2014), the failure of anti-Ab therapies in prevent-

ing the disease progression suggests that Alzheimer’s dis-

ease pathogenesis might be driven by tau independently

of Ab (Giacobini and Gold, 2013). However, whether Ab
is necessary for tau neurotoxicity or whether the reverse

is true is still an open question (Ashe and Zahs, 2010).

On the other hand, recent data also suggest that tau and

Ab may be independent processes and reciprocally inter-

act over the evolution of Alzheimer’s disease (Small and

Duff, 2008; Mondragón-Rodrı́guez et al., 2010). In this

context, co-occurrence between tau and Ab within neur-

onal processes and synaptic compartments has been

described in Alzheimer’s disease (Hoover et al., 2010;

Ittner et al., 2010; Zempel et al., 2010; Amadoro et al.,

2012; Miller et al., 2014) and synaptic abnormalities

occur in aging Tg2576 and 3xTg mice (Spires-Jones

et al., 2007; Nisticò et al., 2012; Ameen-Ali et al., 2017).

Ab and tau pathologies exert synergistic effects on neur-

onal morphology/function (Rhein et al., 2009) particular-

ly at synapses (Hoover et al., 2010; Ittner et al., 2010;

Takahashi et al., 2010; Amadoro et al., 2012) believed to

initiate Alzheimer’s disease progression (Selkoe, 2002),

indicating that passive immunization with 12A12mAb

can contribute to improve disease-associated mnestic dis-

abilities at its early phases by preventing both pathogno-

monic toxic proteins from damaging synaptic connectivity

in pathologically relevant vulnerable neuronal circuits.

Furthermore, a recent hypothesis also suggests that syn-

aptic dysfunction in Alzheimer’s disease is triggered by

impairment of APP metabolism which further progresses

via tau pathology (Gulisano et al., 2018; Kametani and

Hasegawa, 2018; Schreurs et al., 2018). Consistently, an

increased level of APP and/or its C-terminal fragments

are able to induce axonal and synaptic defects (Rusu

et al., 2007; Rodrigues et al., 2012; Deyts et al., 2016;

Xu et al., 2016) associated with mis-localization of tau

(Blurton-Jones and Laferla, 2006; Hochgrafe et al.,

2013). Overexpression of APP promotes per se the seeded

aggregation of intracellular tau in cultured cell, suggesting

that APP, rather than Ab, can work as a receptor of ab-

normal tau fibrils (Takahashi et al., 2015) by accelerating

in vivo internalization in neurons (Holmes et al., 2013;

Mirbaha et al., 2015) followed by pathological accumula-

tion and propagation. Besides, both soluble/prefibrillar

extracellular toxic Ab and tau can damage the synaptic

terminals in APP-dependent manner (Puzzo et al., 2017;

Wang et al., 2017), suggesting a translation potential of

12A12mAb for APP-targeted therapy in patients.

Concerning the routes by which the 12A12mAb-medi-

ated removal of the NH2htau can affect the cross-talk

between Ab and tau neuropathology or interfere up-

stream with APP metabolism and/or its processing

in vivo, both cell- and non-cell autonomous action mech-

anisms (Alasmari et al., 2018) should be taken into ac-

count by operating in alternative but not mutually

exclusive manners and by acting at different transcrip-

tional (Bright et al., 2015; Zhang et al., 2018), transla-

tion (Asuni et al., 2014; Borreca et al., 2016; Meier

et al., 2016; Koren et al., 2019) and post-translational

(Amadoro et al., 2012) levels. Furthermore, variations in

the type of mechanism(s) engaged in vivo by 12A12mAb

in two APP mouse models analysed and/or dissimilarity

in their temporal progression of plaque deposition

(Ameen-Ali et al., 2017) are more likely to account for

the difference in the magnitude of antibody effect(s) on

APP/Ab mis-processing. At the present, in vitro, ex vivo

and in vivo experiments are being performed by our re-

search group to better clarify this important issue.

In conclusion, the present investigation not only high-

lights a novel dynamic positive feed-forward regulation

between APP/Ab and N-truncated tau in vivo by reinforc-

ing the concept of pathological tau as main therapeutic

target of Alzheimer’s disease but also hopefully helps to

design more efficacious and safety tau-directed interven-

tions by prospecting the 12A12mAb as beneficial and dis-

ease-modifying approach for the cure of Alzheimer’s

disease and other tauopathies.

Supplementary material
Supplementary material is available at Brain
Communications online.
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